1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
//! Given a chat conversation, the model will return a chat completion response.

use super::{openai_post, ApiResponseOrError, Usage};
use derive_builder::Builder;
use serde::{Deserialize, Serialize};
use std::collections::HashMap;

#[derive(Deserialize, Clone)]
pub struct ChatCompletion {
    pub id: String,
    pub object: String,
    pub created: u64,
    pub model: String,
    pub choices: Vec<ChatCompletionChoice>,
    pub usage: Option<Usage>,
}

#[derive(Deserialize, Clone)]
pub struct ChatCompletionChoice {
    pub index: u64,
    pub message: ChatCompletionMessage,
    pub finish_reason: String,
}

#[derive(Deserialize, Serialize, Debug, Clone)]
pub struct ChatCompletionMessage {
    /// The role of the author of this message.
    pub role: ChatCompletionMessageRole,
    /// The contents of the message
    pub content: String,
    /// The name of the user in a multi-user chat
    #[serde(skip_serializing_if = "Option::is_none")]
    pub name: Option<String>,
}

#[derive(Deserialize, Serialize, Debug, Clone, Copy)]
#[serde(rename_all = "lowercase")]
pub enum ChatCompletionMessageRole {
    System,
    User,
    Assistant,
}

#[derive(Serialize, Builder, Debug, Clone)]
#[builder(pattern = "owned")]
#[builder(name = "ChatCompletionBuilder")]
#[builder(setter(strip_option, into))]
pub struct ChatCompletionRequest {
    /// ID of the model to use. Currently, only `gpt-3.5-turbo` and `gpt-3.5-turbo-0301` are supported.
    model: String,
    /// The messages to generate chat completions for, in the [chat format](https://platform.openai.com/docs/guides/chat/introduction).
    messages: Vec<ChatCompletionMessage>,
    /// What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic.
    ///
    /// We generally recommend altering this or `top_p` but not both.
    #[builder(default)]
    #[serde(skip_serializing_if = "Option::is_none")]
    temperature: Option<f32>,
    /// An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
    ///
    /// We generally recommend altering this or `temperature` but not both.
    #[builder(default)]
    #[serde(skip_serializing_if = "Option::is_none")]
    top_p: Option<f32>,
    /// How many chat completion choices to generate for each input message.
    #[builder(default)]
    #[serde(skip_serializing_if = "Option::is_none")]
    n: Option<u8>,
    /// If set, partial message deltas will be sent, like in ChatGPT. Tokens will be sent as data-only [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format)
    /// as they become available, with the stream terminated by a `data: [DONE]` message.
    #[builder(setter(skip), default)] // skipped until properly implemented
    #[serde(skip_serializing_if = "Option::is_none")]
    stream: Option<bool>,
    /// Up to 4 sequences where the API will stop generating further tokens.
    #[builder(default)]
    #[serde(skip_serializing_if = "Vec::is_empty")]
    stop: Vec<String>,
    /// The maximum number of tokens allowed for the generated answer. By default, the number of tokens the model can return will be (4096 - prompt tokens).
    #[builder(default)]
    #[serde(skip_serializing_if = "Option::is_none")]
    max_tokens: Option<u64>,
    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far, increasing the model's likelihood to talk about new topics.
    ///
    /// [See more information about frequency and presence penalties.](https://platform.openai.com/docs/api-reference/parameter-details)
    #[builder(default)]
    #[serde(skip_serializing_if = "Option::is_none")]
    presence_penalty: Option<f32>,
    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim.
    ///
    /// [See more information about frequency and presence penalties.](https://platform.openai.com/docs/api-reference/parameter-details)
    #[builder(default)]
    #[serde(skip_serializing_if = "Option::is_none")]
    frequency_penalty: Option<f32>,
    /// Modify the likelihood of specified tokens appearing in the completion.
    ///
    /// Accepts a json object that maps tokens (specified by their token ID in the tokenizer) to an associated bias value from -100 to 100. Mathematically, the bias is added to the logits generated by the model prior to sampling. The exact effect will vary per model, but values between -1 and 1 should decrease or increase likelihood of selection; values like -100 or 100 should result in a ban or exclusive selection of the relevant token.
    #[builder(default)]
    #[serde(skip_serializing_if = "Option::is_none")]
    logit_bias: Option<HashMap<String, f32>>,
    /// A unique identifier representing your end-user, which can help OpenAI to monitor and detect abuse. [Learn more](https://platform.openai.com/docs/guides/safety-best-practices/end-user-ids).
    #[builder(default)]
    #[serde(skip_serializing_if = "String::is_empty")]
    user: String,
}

impl ChatCompletion {
    pub fn builder(
        model: &str,
        messages: impl Into<Vec<ChatCompletionMessage>>,
    ) -> ChatCompletionBuilder {
        ChatCompletionBuilder::create_empty()
            .model(model)
            .messages(messages)
    }

    pub async fn create(request: &ChatCompletionRequest) -> ApiResponseOrError<Self> {
        openai_post("chat/completions", request).await
    }
}

impl ChatCompletionBuilder {
    pub async fn create(self) -> ApiResponseOrError<ChatCompletion> {
        ChatCompletion::create(&self.build().unwrap()).await
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::set_key;
    use dotenvy::dotenv;
    use std::env;

    #[tokio::test]
    async fn chat() {
        dotenv().ok();
        set_key(env::var("OPENAI_KEY").unwrap());

        let chat_completion = ChatCompletion::builder(
            "gpt-3.5-turbo",
            [ChatCompletionMessage {
                role: ChatCompletionMessageRole::User,
                content: "Hello!".to_string(),
                name: None,
            }],
        )
        .temperature(0.0)
        .create()
        .await
        .unwrap()
        .unwrap();

        assert_eq!(
            chat_completion.choices.first().unwrap().message.content,
            "Hello there! How can I assist you today?"
        );
    }
}