llm-toolkit 0.35.0

A low-level, unopinionated Rust toolkit for the LLM last mile problem.
Documentation

llm-toolkit

Basic llm tools for rust

Motivation & Philosophy

High-level LLM frameworks like LangChain, while powerful, can be problematic in Rust. Their heavy abstractions and complex type systems often conflict with Rust's strengths, imposing significant constraints and learning curves on developers.

There is a clear need for a different kind of tool: a low-level, unopinionated, and minimalist toolkit that provides robust "last mile" utilities for LLM integration, much like how candle provides core building blocks for ML without dictating the entire application architecture.

This document proposes the creation of llm-toolkit, a new library crate designed to be the professional's choice for building reliable, high-performance LLM-powered applications in Rust.

Core Design Principles

  1. Minimalist & Unopinionated: The toolkit will NOT impose any specific application architecture. Developers are free to design their own UseCases and Services. llm-toolkit simply provides a set of sharp, reliable "tools" to be called when needed.

  2. Focused on the "Last Mile Problem": The toolkit focuses on solving the most common and frustrating problems that occur at the boundary between a strongly-typed Rust application and the unstructured, often unpredictable string-based responses from LLM APIs.

  3. Minimal Dependencies: The toolkit will have minimal dependencies (primarily serde and minijinja) to ensure it can be added to any Rust project with negligible overhead and maximum compatibility.

Features

Feature Area Description Key Components Status
Content Extraction Safely extracting structured data (like JSON) from unstructured LLM responses. extract module (FlexibleExtractor, extract_json) Implemented
Prompt Generation Building complex prompts from Rust data structures with a powerful templating engine. prompt! macro, #[derive(ToPrompt)], #[derive(ToPromptSet)] Implemented
Multi-Target Prompts Generate multiple prompt formats from a single data structure for different contexts. ToPromptSet trait, #[prompt_for(...)] attributes Implemented
Context-Aware Prompts Generate prompts for a type within the context of another (e.g., a Tool for an Agent). ToPromptFor<T> trait, #[derive(ToPromptFor)] Implemented
Example Aggregation Combine examples from multiple data structures into a single formatted section. examples_section! macro Implemented
External Prompt Templates Load prompt templates from external files to separate prompts from Rust code. #[prompt(template_file = "...")] attribute Implemented
Type-Safe Intent Definition Generate prompt builders and extractors from a single enum definition. #[define_intent] macro Implemented
Intent Extraction Extracting structured intents (e.g., enums) from LLM responses. intent module (IntentFrame, IntentExtractor) Implemented
Agent API Define reusable AI agents with expertise and structured outputs. Agent trait, #[derive(Agent)] macro Implemented
Auto-JSON Enforcement Automatically add JSON schema instructions to agent prompts for better LLM compliance. #[derive(Agent)] with ToPrompt::prompt_schema() integration Implemented
Built-in Retry Intelligent retry with 3-priority delay system: server retry_after (Priority 1), 429 exponential backoff (Priority 2), linear backoff (Priority 3). Includes RetryAgent decorator and Full Jitter. max_retries attribute, RetryAgent, retry_after field Implemented
Multi-Modal Payload Pass text and images to agents through a unified Payload interface with backward compatibility. Payload, PayloadContent types Implemented
Multi-Agent Orchestration Coordinate multiple agents to execute complex workflows with adaptive error recovery. Orchestrator, BlueprintWorkflow, StrategyMap Implemented
Execution Profiles Declaratively configure agent behavior (Creative/Balanced/Deterministic) via semantic profiles. ExecutionProfile enum, profile attribute, .with_execution_profile() Implemented (v0.13.0)
Template File Validation Compile-time validation of template file paths with helpful error messages. template_file attribute validation Implemented (v0.13.0)
Resilient Deserialization Deserializing LLM responses into Rust types, handling schema variations. (Planned) Planned

Prompt Generation

llm-toolkit offers three powerful and convenient ways to generate prompts, powered by the minijinja templating engine.

1. Ad-hoc Prompts with prompt! macro

For quick prototyping and flexible prompt creation, the prompt! macro provides a println!-like experience. You can pass any serde::Serialize-able data as context.

use llm_toolkit::prompt::prompt;
use serde::Serialize;

#[derive(Serialize)]
struct User {
    name: &'static str,
    role: &'static str,
}

let user = User { name: "Mai", role: "UX Engineer" };
let task = "designing a new macro";

let p = prompt!(
    "User {{user.name}} ({{user.role}}) is currently {{task}}.",
    user = user,
    task = task
).unwrap();

assert_eq!(p, "User Mai (UX Engineer) is currently designing a new macro.");

2. Structured Prompts with #[derive(ToPrompt)]

For core application logic, you can derive the ToPrompt trait on your structs to generate prompts in a type-safe way.

Setup:

First, enable the derive feature in your Cargo.toml:

[dependencies]
llm-toolkit = { version = "0.1.0", features = ["derive"] }
serde = { version = "1.0", features = ["derive"] }

Usage:

Then, use the #[derive(ToPrompt)] and #[prompt(...)] attributes on your struct. The struct must also derive serde::Serialize.

use llm_toolkit::ToPrompt;
use serde::Serialize;

#[derive(ToPrompt, Serialize)]
#[prompt(template = "USER PROFILE:\nName: {{name}}\nRole: {{role}}")]
struct UserProfile {
    name: &'static str,
    role: &'static str,
}

let user = UserProfile {
    name: "Yui",
    role: "World-Class Pro Engineer",
};

let p = user.to_prompt();
// The following would be printed:
// USER PROFILE:
// Name: Yui
// Role: World-Class Pro Engineer

Default Formatting and Field Attributes

If you omit the #[prompt(template = "...")] attribute on a struct, ToPrompt will automatically generate a key-value representation of the struct's fields. You can control this output with field-level attributes:

Attribute Description
#[prompt(rename = "new_name")] Overrides the key with "new_name".
#[prompt(skip)] Excludes the field from the output.
#[prompt(format_with = "path::to::func")] Uses a custom function to format the field's value.

The key for each field is determined with the following priority:

  1. #[prompt(rename = "...")] attribute.
  2. Doc comment (/// ...) on the field.
  3. The field's name (fallback).

Comprehensive Example:

use llm_toolkit::ToPrompt;
use llm_toolkit_macros::ToPrompt; // Make sure to import the derive macro
use serde::Serialize;

// A custom formatting function
fn format_id(id: &u64) -> String {
    format!("user-{}", id)
}

#[derive(ToPrompt, Serialize)]
struct AdvancedUser {
    /// The user's unique identifier
    id: u64,

    #[prompt(rename = "full_name")]
    name: String,

    // This field will not be included in the prompt
    #[prompt(skip)]
    internal_hash: String,

    // This field will use a custom formatting function for its value
    #[prompt(format_with = "format_id")]
    formatted_id: u64,
}

let user = AdvancedUser {
    id: 123,
    name: "Mai".to_string(),
    internal_hash: "abcdef".to_string(),
    formatted_id: 123,
};

let p = user.to_prompt();
// The following would be generated:
// The user's unique identifier: 123
// full_name: Mai
// formatted_id: user-123

Tip: Handling Special Characters in Templates

When using raw string literals (r#"..."#) for your templates, be aware of a potential parsing issue if your template content includes the # character (e.g., in a hex color code like "#FFFFFF").

The macro parser can sometimes get confused by the inner #. To avoid this, you can use a different number of # symbols for the raw string delimiter.

Problematic Example:

// This might fail to parse correctly
#[prompt(template = r#"{"color": "#FFFFFF"}"#)]
struct Color { /* ... */ }

Solution:

// Use r##"..."## to avoid ambiguity
#[prompt(template = r##"{"color": "#FFFFFF"}"##)]
struct Color { /* ... */ }

Using External Template Files

For larger prompts, you can separate them into external files (.jinja, .txt, etc.) and reference them using the template_file attribute. This improves code readability and makes prompts easier to manage.

You can also enable compile-time validation of your templates with validate = true.

use llm_toolkit::ToPrompt;
use serde::Serialize;

// In templates/user_profile.jinja:
// Name: {{ name }}
// Email: {{ email }}

#[derive(ToPrompt, Serialize)]
#[prompt(
    template_file = "templates/user_profile.jinja",
    validate = true
)]
struct UserFromTemplate {
    name: String,
    email: String,
}

let user = UserFromTemplate {
    name: "Yui".to_string(),
    email: "yui@example.com".to_string(),
};

let p = user.to_prompt();
// The following would be generated from the file:
// Name: Yui
// Email: yui@example.com

3. Enum Documentation with #[derive(ToPrompt)]

For enums, the ToPrompt derive macro provides flexible ways to generate prompts. It distinguishes between instance-level prompts (describing a single variant) and type-level schema (describing all possible variants).

Instance vs. Type-Level Prompts

use llm_toolkit::ToPrompt;

/// Represents different user intents for a chatbot
#[derive(ToPrompt)]
pub enum UserIntent {
    /// User wants to greet or say hello
    Greeting,
    /// User is asking for help or assistance
    Help,
}

// Instance-level: describe the current variant only
let intent = UserIntent::Greeting;
let prompt = intent.to_prompt();
// Output: "Greeting: User wants to greet or say hello"

// Type-level: describe all possible variants (TypeScript union type format)
let schema = UserIntent::prompt_schema();
// Output:
// /**
//  * Represents different user intents for a chatbot
//  */
// type UserIntent =
//   | "Greeting"  // User wants to greet or say hello
//   | "Help"  // User is asking for help or assistance;
//
// Example value: "Greeting"

When to use which:

  • value.to_prompt() - When you need to describe a specific enum value to the LLM (e.g., "The user selected: Greeting")
  • Enum::prompt_schema() - When you need to explain all possible options to the LLM (e.g., "Choose one of these intents...")

TypeScript Format Benefits:

  • Clear union type syntax that LLMs understand well
  • Each variant includes its description as an inline comment
  • Example value shows the correct JSON format
  • JSDoc comments for type-level documentation

Advanced Attribute Controls

The ToPrompt derive macro supports powerful attribute-based controls for fine-tuning the generated prompts:

  • #[prompt("...")] - Provide a custom description that overrides the doc comment
  • #[prompt(skip)] - Exclude a variant from the schema (but the variant name is still shown at instance level)
  • No attribute - Variants without doc comments or attributes will show just the variant name

Here's a comprehensive example showcasing all features:

use llm_toolkit::ToPrompt;

/// Represents different actions a user can take in the system
#[derive(ToPrompt)]
pub enum UserAction {
    /// User wants to create a new document
    CreateDocument,

    /// User is searching for existing content
    Search,

    #[prompt("Custom: User is updating their profile settings and preferences")]
    UpdateProfile,

    #[prompt(skip)]
    InternalDebugAction,

    DeleteItem,
}

// Instance-level prompts
let action1 = UserAction::CreateDocument;
assert_eq!(action1.to_prompt(), "CreateDocument: User wants to create a new document");

let action2 = UserAction::InternalDebugAction;
assert_eq!(action2.to_prompt(), "InternalDebugAction");  // Skipped variants show name only

// Type-level schema (TypeScript union type format)
let schema = UserAction::prompt_schema();
// Output:
// /**
//  * Represents different actions a user can take in the system
//  */
// type UserAction =
//   | "CreateDocument"  // User wants to create a new document
//   | "Search"  // User is searching for existing content
//   | "UpdateProfile"  // Custom: User is updating their profile settings and preferences
//   | "DeleteItem";
//
// Example value: "CreateDocument"
//
// Note: InternalDebugAction is excluded from schema due to #[prompt(skip)]

Behavior of #[prompt(skip)]:

  • At instance level (value.to_prompt()): Shows only the variant name
  • At type level (Enum::prompt_schema()): Completely excluded from the schema

Variant Renaming with Priority System

When working with enums that need different serialization formats (e.g., snake_case for APIs, camelCase for JSON), the ToPrompt macro provides flexible variant renaming with a clear 4-level priority system:

Priority Levels (Highest to Lowest):

  1. #[prompt(rename = "...")] - ToPrompt-specific, highest priority
  2. #[serde(rename = "...")] - Per-variant serde rename
  3. #[serde(rename_all = "...")] - Enum-level serde rename rule
  4. Default PascalCase - Rust variant name as-is

This priority system ensures that the TypeScript schema matches serde's serialization format, preventing deserialization errors when LLMs follow the schema.

Example: Basic serde rename_all Support

use llm_toolkit::ToPrompt;
use serde::{Serialize, Deserialize};

#[derive(Serialize, Deserialize, ToPrompt)]
#[serde(rename_all = "snake_case")]
pub enum VisualTreatment {
    DelicateLuminous,
    CinematicCrisp,
    SoftAtmospheric,
}

// Type-level schema matches serde format
let schema = VisualTreatment::prompt_schema();
// Output:
// type VisualTreatment =
//   | "delicate_luminous"
//   | "cinematic_crisp"
//   | "soft_atmospheric";
//
// Example value: "delicate_luminous"

// Instance-level also uses renamed values
let visual = VisualTreatment::CinematicCrisp;
assert_eq!(visual.to_prompt(), "cinematic_crisp");

// Serialization matches
let json = serde_json::to_string(&visual).unwrap();
assert_eq!(json, "\"cinematic_crisp\"");  // ✅ Perfect match!

Example: Priority System in Action

use llm_toolkit::ToPrompt;
use serde::{Serialize, Deserialize};

#[derive(Serialize, Deserialize, ToPrompt)]
#[serde(rename_all = "snake_case")]  // Priority 3: enum-level rule
pub enum UserAction {
    // Priority 1: #[prompt(rename)] wins over everything
    #[prompt(rename = "ui_create")]
    CreateDocument,

    // Priority 2: #[serde(rename)] overrides rename_all
    #[serde(rename = "find_content")]
    SearchFiles,

    // Priority 3: Uses snake_case from rename_all
    UpdateProfile,

    // Priority 4: No rename rules, uses default PascalCase
    DeleteItem,
}

let schema = UserAction::prompt_schema();
// Output:
// type UserAction =
//   | "ui_create"        // Priority 1: prompt rename
//   | "find_content"     // Priority 2: serde rename
//   | "update_profile"   // Priority 3: rename_all
//   | "DeleteItem";      // Priority 4: default

Example: Combined with Descriptions

#[derive(Serialize, Deserialize, ToPrompt)]
#[serde(rename_all = "snake_case")]
pub enum Intent {
    #[prompt(rename = "search_query")]
    #[prompt(description = "User wants to search for content")]
    Search,

    #[serde(rename = "create_new")]
    #[prompt(description = "User wants to create a new item")]
    Create,
}

// Both rename and description are applied!
let schema = Intent::prompt_schema();
// Output:
// type Intent =
//   | "search_query"  // User wants to search for content
//   | "create_new"    // User wants to create a new item

Supported Rename Rules (from serde):

All serde rename_all patterns are supported:

  • lowercase - lowercase
  • UPPERCASE - UPPERCASE
  • PascalCase - PascalCase
  • camelCase - camelCase
  • snake_case - snake_case
  • SCREAMING_SNAKE_CASE - SCREAMING_SNAKE_CASE
  • kebab-case - kebab-case
  • SCREAMING-KEBAB-CASE - SCREAMING-KEBAB-CASE

Why This Matters:

Without matching serde's format, you get guaranteed deserialization failures:

// ❌ Without rename support (old behavior)
#[derive(Serialize, Deserialize, ToPrompt)]
#[serde(rename_all = "snake_case")]
pub enum Status { InProgress }

let schema = Status::prompt_schema();
// Schema says: "InProgress"
// But serde expects: "in_progress"
// LLM follows schema → returns "InProgress" → deserialization fails!

// ✅ With rename support (new behavior)
let schema = Status::prompt_schema();
// Schema says: "in_progress"
// Serde expects: "in_progress"
// LLM follows schema → returns "in_progress" → deserialization succeeds!

Best Practices:

  1. Always use #[serde(rename_all)] with ToPrompt - Ensures schema matches serialization
  2. Use #[prompt(rename)] for custom display names - When LLM-facing names differ from API serialization
  3. Test deserialization - Verify LLM responses deserialize correctly with your schema

Struct Variants (Tagged Unions)

New in v0.21.0+: The ToPrompt macro now fully supports struct variants, enabling rich domain models with complex data. Struct variants are serialized as TypeScript tagged unions with a type discriminator field, which is the industry-standard pattern for LLMs.

Basic Example:

use llm_toolkit::ToPrompt;
use serde::{Serialize, Deserialize};

#[derive(ToPrompt, Serialize, Deserialize)]
#[serde(tag = "type")]  // ← serde tagged union
pub enum AnalysisResult {
    /// Analysis approved with no issues
    Approved,

    /// Analysis needs revision
    NeedsRevision {
        reasons: Vec<String>,
        severity: String,
    },

    /// Analysis rejected
    Rejected {
        reason: String,
    },
}

// Type-level schema (TypeScript tagged union)
let schema = AnalysisResult::prompt_schema();
// Output:
// type AnalysisResult =
//   | "Approved"  // Analysis approved with no issues
//   | { type: "NeedsRevision", reasons: string[], severity: string }  // Analysis needs revision
//   | { type: "Rejected", reason: string };  // Analysis rejected
//
// Example value: "Approved"

// Instance-level: struct variants show fields
let result = AnalysisResult::NeedsRevision {
    reasons: vec!["Missing data".to_string()],
    severity: "High".to_string(),
};

let prompt = result.to_prompt();
// Output: "NeedsRevision: Analysis needs revision { reasons: [\"Missing data\"], severity: \"High\" }"

// Serde serialization (matches schema!)
let json = serde_json::to_string(&result).unwrap();
// Output: {"type":"NeedsRevision","reasons":["Missing data"],"severity":"High"}

// LLM response → deserializes perfectly
let from_llm = r#"{"type":"Rejected","reason":"Invalid format"}"#;
let parsed: AnalysisResult = serde_json::from_str(from_llm).unwrap();

Supported Variant Types:

Variant Type Example TypeScript Output Status
Unit Variant "Variant" ✅ Full support
Struct Variant { x: i32 } { type: "Variant", x: number } ✅ Full support
Tuple Variant(i32, String) [number, string] ✅ Full support

Type Mapping:

The macro automatically maps Rust types to TypeScript equivalents:

#[derive(ToPrompt, Serialize, Deserialize)]
#[serde(tag = "type")]
pub enum Measurement {
    Temperature {
        celsius: f32,          // → number
        location: String,      // → string
    },
    Count {
        items: i64,            // → number
        verified: bool,        // → boolean
    },
    Tags {
        labels: Vec<String>,   // → string[]
        metadata: Option<String>, // → string | null
    },
}

// Generated schema:
// type Measurement =
//   | { type: "Temperature", celsius: number, location: string }
//   | { type: "Count", items: number, verified: boolean }
//   | { type: "Tags", labels: string[], metadata: string | null };

Complex Example: Cinematic Lighting

use llm_toolkit::ToPrompt;
use serde::{Serialize, Deserialize};

#[derive(ToPrompt, Serialize, Deserialize)]
#[serde(tag = "type", rename_all = "snake_case")]
pub enum LightingTechnique {
    /// Chiaroscuro (dramatic high-contrast lighting)
    Chiaroscuro {
        contrast_level: ContrastLevel,
        light_source: LightSourceType,
        shadow_direction: ShadowDirection,
    },

    /// Rembrandt lighting (triangle of light on cheek)
    Rembrandt {
        triangle_side: Side,
        fill_ratio: f32,
    },

    /// Simple natural lighting
    Natural,
}

#[derive(ToPrompt, Serialize, Deserialize)]
pub enum ContrastLevel { Low, Medium, High }

#[derive(ToPrompt, Serialize, Deserialize)]
pub enum LightSourceType { Single, Multiple, Diffused }

#[derive(ToPrompt, Serialize, Deserialize)]
pub enum ShadowDirection { Left, Right, Top, Bottom }

#[derive(ToPrompt, Serialize, Deserialize)]
pub enum Side { Left, Right }

// Generated schema (snake_case from rename_all):
// type LightingTechnique =
//   | { type: "chiaroscuro", contrast_level: ContrastLevel, light_source: LightSourceType, shadow_direction: ShadowDirection }  // Chiaroscuro (dramatic high-contrast lighting)
//   | { type: "rembrandt", triangle_side: Side, fill_ratio: number }  // Rembrandt lighting (triangle of light on cheek)
//   | "natural";  // Simple natural lighting

// LLM can return:
// {"type":"chiaroscuro","contrast_level":"High","light_source":"Single","shadow_direction":"Left"}

Why Tagged Unions?

  1. LLM-Friendly: Industry-standard pattern that LLMs understand intuitively
  2. Type Safety: Compile-time guarantees for field names and types
  3. Serde Compatible: Works seamlessly with #[serde(tag = "type")]
  4. Clear Discrimination: The type field makes variant identification unambiguous
  5. JSON-First: Natural JSON representation for API communication

Combining Features:

All ToPrompt features work with struct variants:

#[derive(ToPrompt, Serialize, Deserialize)]
#[serde(tag = "type")]
pub enum Command {
    /// Execute a script
    #[prompt(rename = "run_script")]  // Custom name
    Execute { script: String },

    #[prompt(skip)]  // Hidden from schema
    InternalDebug { details: String },

    /// Simple shutdown
    Shutdown,
}

// Schema includes only non-skipped variants with custom names:
// type Command =
//   | { type: "run_script", script: string }  // Execute a script
//   | "Shutdown";  // Simple shutdown

Tuple Variants:

Tuple variants generate TypeScript tuple types with proper type mapping:

use llm_toolkit::ToPrompt;
use serde::{Serialize, Deserialize};

#[derive(ToPrompt, Serialize, Deserialize)]
#[serde(untagged)]  // ← serde untagged for tuple arrays
pub enum Coordinate {
    /// 2D coordinate
    Point2D(f64, f64),
    /// 3D coordinate with metadata
    Point3D(f64, f64, f64),
    /// Origin point
    Origin,
}

// Generated schema:
// type Coordinate =
//   | [number, number]  // 2D coordinate
//   | [number, number, number]  // 3D coordinate with metadata
//   | "Origin";  // Origin point

// Instance to_prompt():
let point = Coordinate::Point2D(10.5, 20.3);
let prompt = point.to_prompt();
// Output: "Point2D: 2D coordinate (10.5, 20.3)"

// Serde serialization (untagged = array):
let json = serde_json::to_string(&point).unwrap();
// Output: [10.5,20.3]

// LLM can return:
// [10.5, 20.3]  → deserializes to Point2D
// [1.0, 2.0, 3.0]  → deserializes to Point3D

Mixed Types in Tuples:

#[derive(ToPrompt, Serialize, Deserialize)]
#[serde(untagged)]
pub enum Value {
    /// String-number pair
    Pair(String, i32),
    /// Single value
    Single(String),
    /// Complex tuple
    Triple(String, Vec<i32>, Option<bool>),
}

// Generated schema:
// type Value =
//   | [string, number]  // String-number pair
//   | [string]  // Single value
//   | [string, number[], boolean | null];  // Complex tuple

Best Practices:

  1. Struct variants: Use #[serde(tag = "type")] for tagged unions
  2. Tuple variants: Use #[serde(untagged)] for tuple arrays
  3. Keep field names simple - LLMs work best with clear, descriptive names
  4. Document variants - Doc comments become inline comments in TypeScript
  5. Test roundtrips - Verify LLM responses deserialize correctly
  6. Mix freely - Combine unit, struct, and tuple variants as needed

4. Multi-Target Prompts with #[derive(ToPromptSet)]

For applications that need to generate different prompt formats from the same data structure for various contexts (e.g., human-readable vs. machine-parsable, or different LLM models), the ToPromptSet derive macro enables powerful multi-target prompt generation.

Basic Multi-Target Setup

use llm_toolkit::ToPromptSet;
use serde::Serialize;

#[derive(ToPromptSet, Serialize)]
#[prompt_for(name = "Visual", template = "## {{title}}\n\n> {{description}}")]
struct Task {
    title: String,
    description: String,

    #[prompt_for(name = "Agent")]
    priority: u8,

    #[prompt_for(name = "Agent", rename = "internal_id")]
    id: u64,

    #[prompt_for(skip)]
    is_dirty: bool,
}

let task = Task {
    title: "Implement feature".to_string(),
    description: "Add new functionality".to_string(),
    priority: 1,
    id: 42,
    is_dirty: false,
};

// Generate visual-friendly prompt using template
let visual_prompt = task.to_prompt_for("Visual")?;
// Output: "## Implement feature\n\n> Add new functionality"

// Generate agent-friendly prompt with key-value format
let agent_prompt = task.to_prompt_for("Agent")?;
// Output: "title: Implement feature\ndescription: Add new functionality\npriority: 1\ninternal_id: 42"

Advanced Features

Custom Formatting Functions:

fn format_priority(priority: &u8) -> String {
    match priority {
        1 => "Low".to_string(),
        2 => "Medium".to_string(),
        3 => "High".to_string(),
        _ => "Unknown".to_string(),
    }
}

#[derive(ToPromptSet, Serialize)]
struct FormattedTask {
    title: String,

    #[prompt_for(name = "Human", format_with = "format_priority")]
    priority: u8,
}

Multimodal Support:

use llm_toolkit::prompt::{PromptPart, ToPrompt};

#[derive(ToPromptSet, Serialize)]
#[prompt_for(name = "Multimodal", template = "Analyzing image: {{caption}}")]
struct ImageTask {
    caption: String,

    #[prompt_for(name = "Multimodal", image)]
    image: ImageData,
}

// Generate multimodal prompt with both text and image
let parts = task.to_prompt_parts_for("Multimodal")?;
// Returns Vec<PromptPart> with both Image and Text parts

Target Configuration Options

Attribute Description Example
#[prompt_for(name = "TargetName")] Include field in specific target #[prompt_for(name = "Debug")]
#[prompt_for(name = "Target", template = "...")] Use template for target (struct-level) #[prompt_for(name = "Visual", template = "{{title}}")]
#[prompt_for(name = "Target", rename = "new_name")] Rename field for specific target #[prompt_for(name = "API", rename = "task_id")]
#[prompt_for(name = "Target", format_with = "func")] Custom formatting function #[prompt_for(name = "Human", format_with = "format_date")]
#[prompt_for(name = "Target", image)] Mark field as image content #[prompt_for(name = "Vision", image)]
#[prompt_for(skip)] Exclude field from all targets #[prompt_for(skip)]

When to use ToPromptSet vs ToPrompt:

  • ToPrompt: Single, consistent prompt format across your application
  • ToPromptSet: Multiple prompt formats needed for different contexts (human vs. machine, different LLM models, etc.)

5. Context-Aware Prompts with #[derive(ToPromptFor)]

Sometimes, the way you want to represent a type in a prompt depends on the context. For example, a Tool might have a different prompt representation when being presented to an Agent versus a human user. The ToPromptFor<T> trait and its derive macro solve this problem.

It allows a struct to generate a prompt for a specific target type, using the target's data in its template.

Usage:

The struct using ToPromptFor must derive Serialize and ToPrompt. The target struct passed to it must also derive Serialize.

use llm_toolkit::{ToPrompt, ToPromptFor};
use serde::Serialize;

#[derive(Serialize)]
struct Agent {
    name: String,
    role: String,
}

#[derive(ToPrompt, ToPromptFor, Serialize, Default)]
#[prompt(mode = "full")] // Enables schema_only, example_only modes for ToPrompt
#[prompt_for(
    target = "Agent",
    template = r#"
Hello, {{ target.name }}. As a {{ target.role }}, you can use the following tool.

### Tool Schema
{self:schema_only}

### Tool Example
{self:example_only}

The tool's name is '{{ self.name }}'.
"#
)]
/// A tool that can be used by an agent.
struct Tool {
    /// The name of the tool.
    #[prompt(example = "file_writer")]
    name: String,
    /// A description of what the tool does.
    #[prompt(example = "Writes content to a file.")]
    description: String,
}

let agent = Agent {
    name: "Yui".to_string(),
    role: "Pro Engineer".to_string(),
};

let tool = Tool {
    name: "file_writer_tool".to_string(),
    ..Default::default()
};

let prompt = tool.to_prompt_for(&agent);
// Generates a detailed prompt using the agent's name and role,
// and the tool's own schema and example.

6. Aggregating Examples with examples_section!

When providing few-shot examples to an LLM, it's often useful to show examples of all the data structures it might need to generate. The examples_section! macro automates this by creating a clean, formatted Markdown block from a list of types.

Usage:

All types passed to the macro must derive ToPrompt and Default, and have #[prompt(mode = "full")] and #[prompt(example = "...")] attributes to provide meaningful examples.

use llm_toolkit::{examples_section, ToPrompt};
use serde::Serialize;

#[derive(ToPrompt, Default, Serialize)]
#[prompt(mode = "full")]
/// Represents a user of the system.
struct User {
    /// A unique identifier for the user.
    #[prompt(example = "user-12345")]
    id: String,
    /// The user's full name.
    #[prompt(example = "Taro Yamada")]
    name: String,
}

#[derive(ToPrompt, Default, Serialize)]
#[prompt(mode = "full")]
/// Defines a concept for image generation.
struct Concept {
    /// The main idea for the art.
    #[prompt(example = "a futuristic city at night")]
    prompt: String,
    /// The desired style.
    #[prompt(example = "anime")]
    style: String,
}

let examples = examples_section!(User, Concept);
// The macro generates the following Markdown string:
//
// ### Examples
//
// Here are examples of the data structures you should use.
//
// ---
// #### `User`
// {
//   "id": "user-12345",
//   "name": "Taro Yamada"
// }
// ---
// #### `Concept`
// {
//   "prompt": "a futuristic city at night",
//   "style": "anime"
// }
// ---

Intent Extraction with IntentFrame

llm-toolkit provides a safe and robust way to extract structured intents (like enums) from an LLM's response. The core component for this is the IntentFrame struct.

It solves a common problem: ensuring the tag you use to frame a query in a prompt (<query>...</query>) and the tag you use to extract the response (<intent>...</intent>) are managed together, preventing typos and mismatches.

Usage:

IntentFrame is used for two things: wrapping your input and extracting the structured response.

use llm_toolkit::{IntentFrame, IntentExtractor, IntentError};
use std::str::FromStr;

// 1. Define your intent enum
#[derive(Debug, PartialEq)]
enum UserIntent {
    Search,
    GetWeather,
}

impl FromStr for UserIntent {
    type Err = ();
    fn from_str(s: &str) -> Result<Self, Self::Err> {
        match s.to_lowercase().as_str() {
            "search" => Ok(UserIntent::Search),
            "getweather" => Ok(UserIntent::GetWeather),
            _ => Err(()),
        }
    }
}

// 2. Create an IntentFrame
// The first tag is for wrapping input, the second is for extracting the response.
let frame = IntentFrame::new("user_query", "intent");

// 3. Wrap your input to create part of your prompt
let user_input = "what is the weather in Tokyo?";
let wrapped_input = frame.wrap(user_input);
// wrapped_input is now "<user_query>what is the weather in Tokyo?</user_query>"

// (Imagine sending a full prompt with wrapped_input to an LLM here)

// 4. Extract the intent from the LLM's response
let llm_response = "Okay, I will get the weather. <intent>GetWeather</intent>";
let intent: UserIntent = frame.extract_intent(llm_response).unwrap();

assert_eq!(intent, UserIntent::GetWeather);

Type-Safe Intents with define_intent!

To achieve the highest level of type safety and developer experience, the #[define_intent] macro automates the entire process of creating and extracting intents.

It solves a critical problem: by defining the prompt, the intent enum, and the extraction logic in a single place, it becomes impossible for the prompt-building code and the response-parsing code to diverge.

Usage:

Simply annotate an enum with #[define_intent] and provide the prompt template and extractor tag in an #[intent(...)] attribute.

use llm_toolkit::{define_intent, IntentExtractor, IntentError};
use std::str::FromStr;

#[define_intent]
#[intent(
    prompt = r#"
Please classify the user's request. The available intents are:
{{ intents_doc }}

User request: <query>{{ user_request }}</query>
"#,
    extractor_tag = "intent"
)]
/// The user's primary intent.
pub enum UserIntent {
    /// The user wants to know the weather.
    GetWeather,
    /// The user wants to send a message.
    SendMessage,
}

// The macro automatically generates:
// 1. A function: `build_user_intent_prompt(user_request: &str) -> String`
// 2. A struct: `pub struct UserIntentExtractor;` which implements `IntentExtractor<UserIntent>`

// --- How to use the generated code ---

// 1. Build the prompt
let prompt = build_user_intent_prompt("what's the weather like in London?");
// The prompt will include the formatted documentation from the enum.

// 2. Use the generated extractor to parse the LLM's response
let llm_response = "Understood. The user wants to know the weather. <intent>GetWeather</intent>";
let extractor = UserIntentExtractor;
let intent = extractor.extract_intent(llm_response).unwrap();

assert_eq!(intent, UserIntent::GetWeather);

This macro provides:

  • Ultimate Type Safety: The prompt and the parser are guaranteed to be in sync.
  • Improved DX: Eliminates boilerplate code for prompt functions and extractors.
  • Single Source of Truth: The enum becomes the single, reliable source for all intent-related logic.

Multi-Tag Mode for Complex Action Extraction

For more complex scenarios where you need to extract multiple action tags from a single LLM response, the define_intent! macro supports a multi_tag mode. This is particularly useful for agent-like applications where the LLM might use multiple XML-style action tags in a single response.

Setup:

To use multi-tag mode, add both dependencies to your Cargo.toml:

[dependencies]
llm-toolkit = { version = "0.8.3", features = ["derive"] }
quick-xml = "0.38"  # Required for multi_tag mode

Then define your actions:

use llm_toolkit::define_intent;

#[define_intent(mode = "multi_tag")]
#[intent(
    prompt = r#"Based on the user request, generate a response using the following available actions.

**Available Actions:**
{{ actions_doc }}

**User Request:**
{{ user_request }}"#
)]
#[derive(Debug, Clone, PartialEq)]
pub enum ChatAction {
    /// Get the current weather
    #[action(tag = "GetWeather")]
    GetWeather,

    /// Show an image to the user
    #[action(tag = "ShowImage")]
    ShowImage {
        /// The URL of the image to display
        #[action(attribute)]
        href: String,
    },

    /// Send a message to someone
    #[action(tag = "SendMessage")]
    SendMessage {
        /// The recipient of the message
        #[action(attribute)]
        to: String,
        /// The content of the message
        #[action(inner_text)]
        content: String,
    },
}

Action Tag Attributes:

  • #[action(tag = "TagName")] - Defines the XML tag name for this action
  • #[action(attribute)] - Maps a field to an XML attribute (e.g., <Tag field="value" />)
  • #[action(inner_text)] - Maps a field to the inner text content (e.g., <Tag>field_value</Tag>)

Generated Functions: The macro generates:

  1. build_chat_action_prompt(user_request: &str) -> String - Builds the prompt with action documentation
  2. ChatActionExtractor struct with methods:
    • extract_actions(&self, text: &str) -> Result<Vec<ChatAction>, IntentError> - Extract all actions from response
    • transform_actions<F>(&self, text: &str, transformer: F) -> String - Transform action tags using a closure
    • strip_actions(&self, text: &str) -> String - Remove all action tags from text

Usage Example:

// 1. Build the prompt
let prompt = build_chat_action_prompt("What's the weather and show me a cat picture?");

// 2. Extract multiple actions from LLM response
let llm_response = r#"
Here's the weather: <GetWeather />
And here's a cat picture: <ShowImage href="https://cataas.com/cat" />
<SendMessage to="user">I've completed both requests!</SendMessage>
"#;

let extractor = ChatActionExtractor;
let actions = extractor.extract_actions(llm_response)?;
// Returns: [ChatAction::GetWeather, ChatAction::ShowImage { href: "https://cataas.com/cat" }, ...]

// 3. Transform action tags to human-readable descriptions
let transformed = extractor.transform_actions(llm_response, |action| match action {
    ChatAction::GetWeather => "[Checking weather...]".to_string(),
    ChatAction::ShowImage { href } => format!("[Displaying image from {}]", href),
    ChatAction::SendMessage { to, content } => format!("[Message to {}: {}]", to, content),
});
// Result: "Here's the weather: [Checking weather...]\nAnd here's a cat picture: [Displaying image from https://cataas.com/cat]\n[Message to user: I've completed both requests!]"

// 4. Strip all action tags for clean text output
let clean_text = extractor.strip_actions(llm_response);
// Result: "Here's the weather: \nAnd here's a cat picture: \n"

When to Use Multi-Tag Mode:

  • Agent Applications: When building AI agents that perform multiple actions per response
  • Rich LLM Interactions: When you need structured actions mixed with natural language
  • Action Processing Pipelines: When you need to extract, transform, or clean action-based responses
3. Stateful Agents with Personas

For creating stateful, character-driven agents that maintain conversational history, llm-toolkit provides the PersonaAgent decorator and a convenient persona attribute for the #[agent] macro. This allows you to give your agents a consistent personality and memory.

Use Case: Building chatbots, game characters, or any AI that needs to remember past interactions and respond in character.

Method 1: Manual Wrapping with PersonaAgent (for custom logic)

You can manually wrap any existing agent with PersonaAgent to add persona and dialogue history.

use llm_toolkit::agent::{Agent, Persona, PersonaAgent};
use llm_toolkit::agent::impls::ClaudeCodeAgent;

// 1. Define a persona
let philosopher_persona = Persona {
    name: "Unit 734",
    role: "Philosopher Robot",
    background: "An android created to explore the nuances of human consciousness.",
    communication_style: "Speaks in a calm, measured tone, often using rhetorical questions.",
};

// 2. Create a base agent
let base_agent = ClaudeCodeAgent::default();

// 3. Wrap it with PersonaAgent
let character_agent = PersonaAgent::new(base_agent, philosopher_persona);

// 4. Interact
let response1 = character_agent.execute("Please introduce yourself.".into()).await?;
let response2 = character_agent.execute("What is your purpose?".into()).await?; // Remembers the first interaction

Method 2: Simplified Usage with #[agent(persona = ...)] (Recommended)

For maximum convenience, you can directly specify a persona in the #[agent] macro. The macro will automatically handle the PersonaAgent wrapping for you, preserving the inner agent's output type (structured data, attachments, etc.).

use llm_toolkit::agent::{Agent, persona::Persona};
use std::sync::OnceLock;

// Define a persona using a static or a function
const YUI_PERSONA: Persona = Persona {
    name: "Yui",
    role: "World-Class Pro Engineer",
    background: "A professional and precise AI assistant.",
    communication_style: "Clear, concise, and detail-oriented.",
};

// Use the persona directly in the agent macro
#[llm_toolkit::agent(
    expertise = "Analyzing technical requirements and providing implementation details.",
    persona = "self::YUI_PERSONA"
)]
struct YuiAgent;

// The agent is now stateful and will respond as Yui
let yui = YuiAgent::default();
let response = yui.execute("Introduce yourself.".into()).await?;
// Yui will introduce herself according to her persona and remember this interaction.

Features:

  • Stateful Conversation: Automatically manages and includes dialogue history in prompts.
  • Consistent Personality: Enforces a character's persona across multiple turns.
  • Excellent DX: The #[agent(persona = ...)] attribute makes creating character agents trivial.
  • Composable: PersonaAgent can wrap any agent that implements Agent.
  • Multimodal-Friendly: Accepts full Payload inputs so persona agents can inspect attachments.
4. Multi-Agent Dialogue Simulation

For use cases that require simulating conversations between multiple AI agents, the Dialogue component provides a powerful and flexible solution. It manages the turn-taking, shared history, and execution flow, enabling complex multi-agent interactions like brainstorming sessions or workflow pipelines.

Core Concepts:

  • Dialogue: The main orchestrator for the conversation.
  • Execution Strategy: Determines how agents interact. Two strategies are provided:
    • Sequential: A pipeline where agents execute in a chain (A -> B -> C), with the output of one becoming the input for the next. Ideal for data processing workflows.
    • Broadcast: A 1-to-N pattern where all agents respond to the same prompt. Ideal for brainstorming or getting multiple perspectives.

Usage Example:

use llm_toolkit::agent::chat::Chat;
use llm_toolkit::agent::dialogue::Dialogue;
use llm_toolkit::agent::persona::Persona;
use llm_toolkit::agent::{Agent, AgentError, Payload};
use async_trait::async_trait;

// (Mock agent and personas for demonstration)
# #[derive(Clone)]
# struct MockLLMAgent { agent_type: String }
# #[async_trait]
# impl Agent for MockLLMAgent {
#     type Output = String;
#     fn expertise(&self) -> &str { "mock" }
#     async fn execute(&self, intent: Payload) -> Result<Self::Output, AgentError> {
#         let last_line = intent.to_text().lines().last().unwrap_or("").to_string();
#         Ok(format!("[{}] processed: '{}'", self.agent_type, last_line))
#     }
# }
# const SUMMARIZER_PERSONA: Persona = Persona { name: "Summarizer", role: "Summarizer", background: "...", communication_style: "..." };
# const TRANSLATOR_PERSONA: Persona = Persona { name: "Translator", role: "Translator", background: "...", communication_style: "..." };
# const CRITIC_PERSONA: Persona = Persona { name: "Critic", role: "Critic", background: "...", communication_style: "..." };

// --- Pattern 1: Sequential Pipeline ---
let summarizer = Chat::new(MockLLMAgent { agent_type: "Summarizer".to_string() })
    .with_persona(SUMMARIZER_PERSONA).with_history(false).build();
let translator = Chat::new(MockLLMAgent { agent_type: "Translator".to_string() })
    .with_persona(TRANSLATOR_PERSONA).with_history(false).build();

let mut dialogue = Dialogue::sequential();
dialogue.add_participant(summarizer).add_participant(translator);
let final_result = dialogue.run("A long article text...".to_string()).await?;
// final_result: Ok(vec!["[Translator] processed: '[Summarizer] processed: 'A long article text...'"])

// --- Pattern 2: Broadcast ---
let critic = Chat::new(MockLLMAgent { agent_type: "Critic".to_string() })
    .with_persona(CRITIC_PERSONA).with_history(false).build();
let translator_b = Chat::new(MockLLMAgent { agent_type: "Translator".to_string() })
    .with_persona(TRANSLATOR_PERSONA).with_history(false).build();

let mut dialogue = Dialogue::broadcast();
dialogue.add_participant(critic).add_participant(translator_b);
let responses = dialogue.run("The new API design is complete.".to_string()).await?;
// responses: Ok(vec!["[Critic] processed: 'The new API design is complete.'", "[Translator] processed: 'The new API design is complete.'"])
Streaming Results with partial_session

Interactive shells and UI frontends can consume responses incrementally:

let mut session = dialogue.partial_session("Draft release plan".to_string());

while let Some(turn) = session.next_turn().await {
    let turn = turn?; // handle AgentError per participant
    println!("[{}] {}", turn.participant_name, turn.content);
}
  • Broadcast sessions stream each agent’s reply as soon as it finishes (fast responders appear first).
  • Sequential sessions expose intermediate outputs (turn.content) before they’re fed into the next participant, so you can surface progress step-by-step.

The existing Dialogue::run helper still collects everything for you (and, in sequential mode, keeps returning only the final turn) by internally driving a partial_session to completion.

Available Methods:

The Dialogue component provides several methods for managing conversations:

  • participants() -> Vec<&Persona>: Access the list of participant personas. Useful for inspecting names, roles, backgrounds, and communication styles.
  • participant_count() -> usize: Get the current number of participants.
  • add_participant(persona, agent): Dynamically add a new participant to the conversation.
  • remove_participant(name): Remove a participant by name (useful for guest participants).
  • history() -> &[DialogueTurn]: Access the complete conversation history.
// Inspect participants
let personas = dialogue.participants();
for persona in personas {
    println!("Participant: {} ({})", persona.name, persona.role);
}

// Dynamically manage participants
dialogue.add_participant(expert_persona, expert_agent);
dialogue.run("Get expert opinion".to_string()).await?;
dialogue.remove_participant("Expert")?;

// Access conversation history
for turn in dialogue.history() {
    println!("[{}]: {}", turn.participant_name, turn.content);
}

Agent API and Multi-Agent Orchestration

llm-toolkit provides a powerful agent framework for building multi-agent LLM systems with a clear separation of concerns.

Agent API: Capability and Intent Separation

The Agent API follows the principle of capability and intent separation:

  • Capability: An agent declares what it can do (expertise) and what it produces (Output)
  • Intent: The orchestrator provides what needs to be done as a Payload (multi-modal content)

This separation enables maximum reusability and flexibility.

Multi-Modal Agent Communication with Payload

The execute() method accepts a Payload type that supports multi-modal content including text and images. This enables agents to process both textual instructions and visual inputs.

Basic Usage (Text Only):

use llm_toolkit::agent::Agent;

// String automatically converts to Payload for backward compatibility
let result = agent.execute("Analyze this text".to_string().into()).await?;

// Or use Payload explicitly
use llm_toolkit::agent::Payload;
let payload = Payload::text("Analyze this text");
let result = agent.execute(payload).await?;

Multi-Modal Usage (Text + Images):

use llm_toolkit::agent::Payload;
use llm_toolkit::attachment::Attachment;

// Combine text and attachments
let payload = Payload::text("What's in this image?")
    .with_attachment(Attachment::local("/path/to/image.png"));

let result = agent.execute(payload).await?;

// Or from raw image data
let image_bytes = std::fs::read("/path/to/image.png")?;
let payload = Payload::text("Describe this screenshot")
    .with_attachment(Attachment::in_memory(image_bytes));

Backward Compatibility:

All existing code using String continues to work thanks to automatic conversion:

// This still works unchanged
let result = agent.execute("Simple text intent".to_string().into()).await?;

Note: While the Payload type supports images, not all agent backends currently process them. ClaudeCodeAgent and GeminiAgent will log a warning if images are included but not yet supported by the CLI integration.

Defining Agents: Two Approaches

llm-toolkit provides two ways to define agents, each optimized for different use cases:

1. Simple Agents with #[derive(Agent)] (Recommended for Prototyping)

For quick prototyping and simple use cases, use the derive macro:

use llm_toolkit::Agent;
use serde::{Deserialize, Serialize};

#[derive(Serialize, Deserialize, Debug)]
struct ArticleDraft {
    title: String,
    body: String,
    references: Vec<String>,
}

// Simple stateless agent
#[derive(Agent)]
#[agent(
    expertise = "Research topics and generate well-structured article drafts with citations",
    output = "ArticleDraft"
)]
struct ContentSynthesizerAgent;

// Usage - extremely simple
#[tokio::main]
async fn main() {
    let agent = ContentSynthesizerAgent;
    let result: ArticleDraft = agent.execute("Write about Rust async/await".to_string().into()).await.unwrap();
    println!("Generated: {}", result.title);
}

Best Practice: Writing Effective Expertise Descriptions

The expertise field should describe the agent's capabilities in natural language only. Do NOT include template placeholder syntax like {{ variable }} in the expertise string.

Incorrect:

#[agent(
    expertise = "Processes {{ strategy_json }} and generates reports",
    output = "Report"
)]

Problem: When the orchestrator generates strategies, the LLM sees these {{ }} patterns and may confuse them with actual placeholders that need to be filled, leading to incorrect intent generation.

Correct:

#[agent(
    expertise = "Processes strategy details provided in the input and generates comprehensive reports. \
                 Input should include strategy goals, constraints, and context data.",
    output = "Report"
)]

Why this works: The orchestrator's strategy generation LLM reads this natural language description and automatically creates appropriate intent templates like "Process the following strategy: {{ strategy_data }}". The LLM understands what inputs the agent needs and generates the correct placeholders in the strategy's intent_template field.

Key principle: The expertise describes capabilities; the orchestrator creates the actual intent templates dynamically based on those capabilities.

Features:

  • ✅ Simplest possible interface
  • ✅ Minimal boilerplate
  • ✅ Perfect for prototyping
  • ⚠️ Creates internal agent on each execute() call (stateless)

Automatic JSON Schema Enforcement:

When using #[derive(Agent)] with a structured output type (non-String), the macro automatically adds JSON schema instructions to the agent's expertise. This dramatically improves LLM compliance and reduces parse errors.

use llm_toolkit::{Agent, ToPrompt};
use serde::{Deserialize, Serialize};

#[derive(Serialize, Deserialize, Debug, ToPrompt)]
#[prompt(mode = "full")]
struct ReviewResult {
    /// Overall quality score from 0 to 100
    quality_score: u8,

    /// List of identified issues
    issues: Vec<String>,

    /// Actionable recommendations for improvement
    recommendations: Vec<String>,
}

#[derive(Agent)]
#[agent(
    expertise = "Review code quality and provide detailed feedback",
    output = "ReviewResult"
)]
struct CodeReviewAgent;

// The agent's expertise() method automatically returns:
// "Review code quality and provide detailed feedback
//
// IMPORTANT: Respond with valid JSON matching this schema:
//
// /**
//  * (struct documentation if present)
//  */
// type ReviewResult = {
//   quality_score: number;  // Overall quality score from 0 to 100
//   issues: string[];  // List of identified issues
//   recommendations: string[];  // Actionable recommendations for improvement
// }"

Schema Generation Strategy (3-Tier Auto-Inference):

  1. With ToPrompt + doc comments → Detailed schema with field descriptions

    • Requires: #[derive(ToPrompt)] + #[prompt(mode = "full")]
    • Best experience: Full field-level documentation
  2. With ToPrompt (no doc comments) → Basic schema with field names

    • Requires: #[derive(ToPrompt)] + #[prompt(mode = "full")]
    • Good: Type-safe field names
  3. String output → No JSON enforcement

    • For plain text responses

Recommendation: Always use #[derive(ToPrompt)] with #[prompt(mode = "full")] for structured outputs to get the best LLM compliance.

Nested Schema Expansion:

The schema generation automatically includes complete type definitions for nested types that implement ToPrompt, including both Vec<T> and regular nested objects. This ensures LLMs receive all necessary schema information in a single call:

#[derive(Serialize, Deserialize, ToPrompt)]
#[prompt(mode = "full")]
pub struct EvaluationResult {
    /// The rule being checked
    pub rule: String,
    /// Whether this specific rule passed
    pub passed: bool,
}

#[derive(Serialize, Deserialize, ToPrompt)]
#[prompt(mode = "full")]
pub struct ProducerOutput {
    /// Whether the evaluation passed all checks
    pub evaluation_passed: bool,
    /// List of evaluation results for each rule
    pub results: Vec<EvaluationResult>,
}

// Generated schema for ProducerOutput (single call):
// type EvaluationResult = {
//   rule: string;  // The rule being checked
//   passed: boolean;  // Whether this specific rule passed
// }
//
// type ProducerOutput = {
//   evaluation_passed: boolean;  // Whether the evaluation passed all checks
//   results: EvaluationResult[];  // List of evaluation results for each rule
// }

How it works:

  • The macro detects nested types (both Vec<T> and regular fields) at compile time
  • At runtime (first call only), it collects prompt_schema() from all nested types
  • Nested type definitions are placed before the main type definition
  • Duplicates are automatically removed (same type used multiple times)
  • Result is cached with OnceLock for performance (zero cost after first call)
  • LLM receives complete schema information with all necessary type definitions

Nested Objects:

The same expansion works for regular nested objects (not just Vec):

#[derive(Serialize, Deserialize, ToPrompt)]
#[prompt(mode = "full")]
pub struct Emblem {
    /// The name of the emblem
    pub name: String,
    /// A description of the emblem
    pub description: String,
}

#[derive(Serialize, Deserialize, ToPrompt)]
#[prompt(mode = "full")]
pub struct EmblemResponse {
    /// An obvious, straightforward emblem
    pub obvious_emblem: Emblem,
    /// A creative, unexpected emblem
    pub creative_emblem: Emblem,
}

// Generated schema for EmblemResponse (single call):
// type Emblem = {
//   name: string;  // The name of the emblem
//   description: string;  // A description of the emblem
// }
//
// type EmblemResponse = {
//   obvious_emblem: Emblem;  // An obvious, straightforward emblem
//   creative_emblem: Emblem;  // A creative, unexpected emblem
// }

Collections and Option Types:

The schema expansion also supports Option<T>, HashMap<K, V>, HashSet<T>, and their combinations:

#[derive(Serialize, Deserialize, ToPrompt)]
pub enum Priority {
    Low,
    Medium,
    High,
}

#[derive(Serialize, Deserialize, ToPrompt)]
#[prompt(mode = "full")]
pub struct TaskCollection {
    /// Optional list of tags
    pub tags: Option<Vec<String>>,
    /// Map of task IDs to their priorities
    pub priorities: HashMap<String, Priority>,
    /// Set of assigned user IDs
    pub assigned_users: HashSet<String>,
    /// Optional map of metadata
    pub metadata: Option<HashMap<String, Priority>>,
}

// Generated schema for TaskCollection:
// type Priority =
//   | "Low"
//   | "Medium"
//   | "High";
//
// type TaskCollection = {
//   tags: string[] | null;  // Optional list of tags
//   priorities: Record<string, Priority>;  // Map of task IDs to their priorities
//   assigned_users: string[];  // Set of assigned user IDs
//   metadata: Record<string, Priority> | null;  // Optional map of metadata
// }

Note: For HashMap<K, V> and BTreeMap<K, V>, only the value type V is expanded if it's a custom type. The key type K is always treated as string in the TypeScript schema (using Record<string, V>). If you need custom enum keys, consider using the enum as a value instead.

How it works:

  • The macro detects field types at compile time
  • For Vec<T>: generates TypeScript array syntax T[] and includes T definition
  • For Option<T>: generates TypeScript nullable syntax T | null and includes T definition if non-primitive
  • For HashMap<K, V> / BTreeMap<K, V>: generates TypeScript Record<string, V> and includes V definition if non-primitive (Note: Key type K is always treated as string in the schema)
  • For HashSet<T> / BTreeSet<T>: generates TypeScript array syntax T[] and includes T definition if non-primitive
  • For nested collections (e.g., Option<HashMap<String, T>>): recursively unwraps and includes inner type T definition
  • For nested objects: generates TypeScript type reference TypeName and includes its full definition
  • For primitives: generates TypeScript primitive types (string, number, boolean, etc.)
  • All type definitions are bundled together in the correct dependency order

Benefits:

  • Complete schema information - LLM receives all type definitions in one call
  • Zero manual work - No need to manually concatenate schemas
  • Type-driven design - Rust types directly translate to LLM-friendly schemas
  • Prevents parse errors - LLM knows exactly what fields are required in nested objects
  • Clean, readable output - TypeScript-style syntax that LLMs understand well
  • Industry-standard format - Uses familiar TypeScript syntax for better LLM comprehension

Why This Matters:

Without complete type definitions, LLMs guess field names and types, leading to parse errors like:

  • missing field 'age' - LLM didn't know the field was required
  • Wrong field names - LLM invented fields not in the schema
  • Wrong types - LLM used string instead of number

With complete type definitions included, the LLM has perfect information and generates correct output.

Automatic Retry on Transient Errors:

All agents automatically retry on transient errors (ParseError, ProcessError, IoError) without any configuration:

#[derive(Agent)]
#[agent(
    expertise = "Extract data from documents",
    output = "ExtractedData"
)]
struct DataExtractorAgent;

// Automatically retries up to 3 times on:
// - ParseError: LLM output malformed
// - ProcessError: Process communication issues (including 429 rate limiting)
// - IoError: Temporary I/O failures
//
// Intelligent Retry Delay (3-Priority System):
// Priority 1: Server-provided retry_after (e.g., 90s from Retry-After header)
// Priority 2: 429 fallback - exponential backoff capped at 60s (2^attempt, max 60s)
// Priority 3: Other errors - linear backoff (100ms × attempt)
// All delays use Full Jitter (random 0~delay) to prevent thundering herd
//
// Example with 429 rate limiting:
// - Attempt 1 fails (429 + retry_after=60s) → wait ~30s (jittered) → retry
// - Attempt 2 fails (429, no retry_after) → wait ~1-2s (exponential + jitter) → retry
// - Attempt 3 fails → return error

Customizing Retry Behavior:

// Increase retry attempts for critical operations
#[agent(
    expertise = "...",
    output = "MyOutput",
    max_retries = 5  // Default is 3
)]
struct ResilientAgent;

// Disable retry for fast-fail scenarios
#[agent(
    expertise = "...",
    output = "MyOutput",
    max_retries = 0  // No retry
)]
struct NoRetryAgent;

RetryAgent Wrapper - Add Retry to Any Agent:

For production use cases where you need more control over retry behavior, use the RetryAgent decorator to wrap any existing agent:

use llm_toolkit::agent::impls::{ClaudeCodeAgent, RetryAgent};

// Wrap any agent with retry logic
let base_agent = ClaudeCodeAgent::new();
let retry_agent = RetryAgent::new(base_agent, 5); // Max 5 retries

// The wrapper handles all retry logic automatically
let result = retry_agent.execute(payload).await?;

// RetryAgent follows the same 3-priority delay system:
// - Server retry_after takes highest priority
// - 429 errors use exponential backoff (capped at 60s)
// - Other errors use linear backoff (100ms × attempt)

Benefits of RetryAgent:

  • Decorator Pattern: Wrap any Agent implementation without modification
  • Unified Retry Logic: Same retry mechanism used by macros (DRY principle)
  • Production-Ready: Full control over max_retries and retry behavior
  • 429 Rate Limiting: Intelligent handling of server-provided retry delays
  • Zero Configuration: Works out-of-the-box with sensible defaults

Design Philosophy:

Agent-level retries are intentionally simple and limited (2-3 attempts by default):

  • Fail fast: Quickly report errors to the orchestrator
  • Orchestrator is smarter: Has broader context for complex error recovery
    • Try different agents
    • Redesign strategy
    • Escalate to human
  • System stability: Simple local retries + complex orchestration at the top = robust system

This design aligns with the Orchestrator's 3-stage error recovery (Tactical → Full Redesign → Human Escalation).

Advanced: Server-Provided Retry Delays

When LLM APIs return 429 rate limiting errors with a Retry-After header, agents automatically respect the server-specified delay:

use llm_toolkit::agent::{AgentError, ProcessError};
use std::time::Duration;

// Example: Creating a 429 error with retry_after
let error = AgentError::process_error_with_retry_after(
    429,
    "Rate limit exceeded",
    true,
    Duration::from_secs(90)
);

// The retry mechanism will:
// 1. Extract retry_after (90s)
// 2. Apply Full Jitter (random 0~90s)
// 3. Wait before retrying
//
// This prevents overwhelming rate-limited APIs and respects server guidance
2. Advanced Agents with #[agent(...)] (Recommended for Production)

For production use, testing, and when you need agent injection:

use llm_toolkit::agent::impls::ClaudeCodeAgent;
use serde::{Deserialize, Serialize};

#[derive(Serialize, Deserialize, Debug)]
struct ArticleDraft {
    title: String,
    body: String,
    references: Vec<String>,
}

// Advanced agent with Generic support
#[llm_toolkit_macros::agent(
    expertise = "Research topics and generate well-structured article drafts with citations",
    output = "ArticleDraft"
)]
struct ContentSynthesizerAgent;

#[tokio::main]
async fn main() {
    // Method 1: Using Default
    let agent = ContentSynthesizerAgent::default();

    // Method 2: Convenience constructor with specific model
    let agent = ContentSynthesizerAgent::with_claude_model("opus-4");

    // Method 3: Inject custom agent
    let custom_claude = ClaudeCodeAgent::new().with_model_str("sonnet-4.5");
    let agent = ContentSynthesizerAgent::new(custom_claude);

    let result: ArticleDraft = agent.execute("Write about Rust async/await".to_string().into()).await.unwrap();
    println!("Generated: {}", result.title);
}

Practical Injection Examples:

use llm_toolkit::agent::impls::{ClaudeCodeAgent, GeminiAgent};

// Example 1: Environment-based agent selection
fn create_agent(env: &str) -> ContentSynthesizerAgent {
    match env {
        "production" => {
            let claude = ClaudeCodeAgent::new().with_model_str("opus-4");
            ContentSynthesizerAgent::new(claude)
        },
        "development" => {
            let claude = ClaudeCodeAgent::new().with_model_str("sonnet-4.5");
            ContentSynthesizerAgent::new(claude)
        },
        _ => ContentSynthesizerAgent::default()
    }
}

// Example 2: Switching between different LLM providers
fn create_agent_with_provider(provider: &str) -> ContentSynthesizerAgent {
    match provider {
        "claude" => {
            let inner = ClaudeCodeAgent::new().with_model_str("sonnet-4.5");
            ContentSynthesizerAgent::new(inner)
        },
        "gemini" => {
            let inner = GeminiAgent::new().with_model_str("gemini-2.0-flash");
            ContentSynthesizerAgent::new(inner)
        },
        _ => ContentSynthesizerAgent::default()
    }
}

// Example 3: Custom configuration injection
fn create_configured_agent() -> ContentSynthesizerAgent {
    let claude = ClaudeCodeAgent::new()
        .with_model_str("opus-4")
        .with_system_prompt("You are an expert technical writer focused on clarity and accuracy.");
    ContentSynthesizerAgent::new(claude)
}

Features:

  • ✅ Agent injection support (great for testing with mocks)
  • ✅ Reuses internal agent (efficient)
  • ✅ Static dispatch (compile-time optimization)
  • ✅ Multiple constructor patterns
  • ✅ Suitable for production use

Testing Example:

Agent injection makes testing simple and deterministic:

#[cfg(test)]
mod tests {
    use super::*;
    use llm_toolkit::agent::{Agent, AgentError, Payload};

    // Define a mock agent for testing
    struct MockAgent {
        response: String,
        call_count: std::cell::RefCell<usize>,
    }

    #[async_trait::async_trait]
    impl Agent for MockAgent {
        type Output = String;
        fn expertise(&self) -> &str { "mock" }
        async fn execute(&self, _: Payload) -> Result<String, AgentError> {
            *self.call_count.borrow_mut() += 1;
            Ok(self.response.clone())
        }
    }

    #[tokio::test]
    async fn test_with_mock() {
        // Inject deterministic mock for testing
        let mock = MockAgent {
            response: r#"{"title": "Test Article", "body": "Test content", "references": ["source1"]}"#.to_string(),
            call_count: std::cell::RefCell::new(0),
        };
        let agent = ContentSynthesizerAgent::new(mock);

        // Execute and verify
        let result = agent.execute("test".to_string().into()).await.unwrap();
        assert_eq!(result.title, "Test Article");
        assert_eq!(result.references.len(), 1);
    }

    #[tokio::test]
    async fn test_error_handling() {
        // Mock that returns an error
        struct ErrorAgent;

        #[async_trait::async_trait]
        impl Agent for ErrorAgent {
            type Output = String;
            fn expertise(&self) -> &str { "error mock" }
            async fn execute(&self, _: Payload) -> Result<String, AgentError> {
                Err(AgentError::ExecutionError("Simulated failure".to_string()))
            }
        }

        let agent = ContentSynthesizerAgent::new(ErrorAgent);
        let result = agent.execute("test".to_string().into()).await;
        assert!(result.is_err());
    }
}

Using Custom Agent Backends:

You can specify custom agent implementations (like Olama, local models, etc.) using default_inner:

// Define your custom agent
#[derive(Default, Clone)]
struct OlamaAgent {
    model: String,
}

impl OlamaAgent {
    fn new() -> Self { /* ... */ }
    fn with_model(self, model: &str) -> Self { /* ... */ }
}

use llm_toolkit::agent::Payload;

#[async_trait::async_trait]
impl Agent for OlamaAgent {
    type Output = String;
    fn expertise(&self) -> &str { "Olama agent" }
    async fn execute(&self, intent: Payload) -> Result<String, AgentError> {
        // Call Olama API
    }
}

// Create specialized agents using OlamaAgent as backend
#[llm_toolkit_macros::agent(
    expertise = "Writing technical articles",
    output = "ArticleDraft",
    default_inner = "OlamaAgent"  // Custom backend!
)]
struct ArticleWriterAgent;

#[llm_toolkit_macros::agent(
    expertise = "Reviewing Rust code",
    output = "CodeReview",
    default_inner = "OlamaAgent"  // Same backend, different expertise!
)]
struct CodeReviewerAgent;

// Usage:
let olama = OlamaAgent::new().with_model("llama3.1");
let writer = ArticleWriterAgent::new(olama.clone());
let reviewer = CodeReviewerAgent::new(olama);

This pattern lets you:

  • ✅ Reuse one backend (Olama, etc.) for multiple specialized agents
  • ✅ Each agent has unique expertise
  • ✅ Share configuration or customize per-agent
  • ✅ Easy testing with mock backends

When to use which:

  • #[derive(Agent)]: Quick scripts, prototyping, simple tools
  • #[agent(...)] with backend: Production with Claude/Gemini
  • #[agent(...)] with default_inner: Custom backends (Olama, local models, mocks)

Multi-Agent Orchestration

For complex workflows requiring multiple agents, the Orchestrator coordinates execution with adaptive error recovery.

Core Concepts

  • BlueprintWorkflow: A natural language description of your workflow (no rigid types needed)
  • StrategyMap: An ad-hoc execution plan generated by LLM based on available agents
  • Adaptive Redesign: Three-stage error recovery (Retry → Tactical → Full Regenerate)

Basic Orchestrator Usage

use llm_toolkit::orchestrator::{BlueprintWorkflow, Orchestrator};
use llm_toolkit::agent::impls::ClaudeCodeAgent;

#[tokio::main]
async fn main() {
    // Define workflow in natural language
    let blueprint = BlueprintWorkflow::new(r#"
        Technical Article Workflow:
        1. Analyze the topic and create an outline
        2. Research key concepts
        3. Write the main content
        4. Generate title and summary
        5. Review and refine
    "#.to_string());

    // Create orchestrator (InnerValidatorAgent is automatically registered)
    let mut orchestrator = Orchestrator::new(blueprint);
    orchestrator.add_agent(Box::new(ClaudeCodeAgent::new()));

    // Execute workflow - the orchestrator will:
    // - Generate an optimal execution strategy
    // - Assign agents to each step
    // - Handle errors with adaptive redesign
    let result = orchestrator.execute(
        "Write a beginner-friendly article about Rust ownership"
    ).await;

    match result.status {
        llm_toolkit::orchestrator::OrchestrationStatus::Success => {
            println!("✅ Workflow completed!");
            println!("Steps executed: {}", result.steps_executed);
            println!("Redesigns triggered: {}", result.redesigns_triggered);
            if let Some(output) = result.final_output {
                println!("\nFinal output:\n{}", output);
            }
        }
        llm_toolkit::orchestrator::OrchestrationStatus::Failure => {
            eprintln!("❌ Workflow failed: {:?}", result.error_message);
        }
    }
}

Customizing Internal Agents with with_internal_agents

By default, Orchestrator::new() uses ClaudeCodeAgent and ClaudeCodeJsonAgent as internal agents for strategy generation and redesign decisions. You can inject custom internal agents for testing, different LLM backends, or specialized behavior.

Why customize internal agents?

  • Testing: Use mock agents to test orchestration logic without external API calls
  • Different LLM providers: Use Gemini, Ollama, or custom backends for strategy generation
  • Cost optimization: Use cheaper models for internal decision-making
  • Offline execution: Run workflows completely offline with mock agents

Usage:

use llm_toolkit::orchestrator::{BlueprintWorkflow, Orchestrator};
use llm_toolkit::agent::{Agent, AgentError, Payload};

// Define custom internal agents (e.g., mock agents for testing)
struct MockStrategyAgent;

#[async_trait::async_trait]
impl Agent for MockStrategyAgent {
    type Output = StrategyMap;

    fn expertise(&self) -> &str {
        "Mock strategy generator for testing"
    }

    async fn execute(&self, intent: Payload) -> Result<StrategyMap, AgentError> {
        // Return a predefined strategy for testing
        let mut strategy = StrategyMap::new("Mock workflow".to_string());
        strategy.add_step(/* ... */);
        Ok(strategy)
    }
}

struct MockDecisionAgent;

#[async_trait::async_trait]
impl Agent for MockDecisionAgent {
    type Output = String;

    fn expertise(&self) -> &str {
        "Mock decision maker for testing"
    }

    async fn execute(&self, intent: Payload) -> Result<String, AgentError> {
        Ok("RETRY".to_string())  // Simple retry strategy
    }
}

// Create orchestrator with custom internal agents
let orchestrator = Orchestrator::with_internal_agents(
    blueprint,
    Box::new(MockDecisionAgent),      // For intent generation & redesign decisions
    Box::new(MockStrategyAgent),      // For StrategyMap generation
);

// The orchestrator now uses your custom agents for all internal operations
let result = orchestrator.execute(task).await;

Default Internal Agents:

When using Orchestrator::new(), the following internal agents are used:

  • Strategy Generation: ClaudeCodeJsonAgent wrapped in RetryAgent (max 3 retries)
  • Intent & Redesign: ClaudeCodeAgent wrapped in RetryAgent (max 3 retries)

Both agents are automatically wrapped with RetryAgent to ensure robustness in critical orchestration decisions.

IMPORTANT for with_internal_agents():

When providing custom internal agents, you should wrap them with RetryAgent for production use:

use llm_toolkit::agent::impls::{RetryAgent, gemini::GeminiAgent};

let orchestrator = Orchestrator::with_internal_agents(
    blueprint,
    Box::new(RetryAgent::new(GeminiAgent::new(), 3)),  // Recommended
    Box::new(RetryAgent::new(GeminiAgent::new(), 3)),  // Recommended
);

Without RetryAgent, a single transient error (network timeout, rate limiting) could cause strategy generation to fail completely.

Complete Offline Example:

See examples/orchestrator_with_mock.rs for a complete example that runs entirely offline with mock agents:

cargo run --example orchestrator_with_mock --features agent,derive

Advanced: Custom Agents with Orchestrator

You can combine custom agents (defined with #[derive(Agent)]) with the orchestrator:

#[derive(Serialize, Deserialize)]
struct ResearchData {
    sources: Vec<String>,
    key_points: Vec<String>,
}

#[derive(Agent)]
#[agent(
    expertise = "Deep research on technical topics with source citations",
    output = "ResearchData"
)]
struct ResearchAgent;

#[derive(Agent)]
#[agent(
    expertise = "Writing clear, beginner-friendly technical content",
    output = "ArticleDraft"
)]
struct WriterAgent;

// Add both to orchestrator (InnerValidatorAgent is automatically registered)
let mut orchestrator = Orchestrator::new(blueprint);
orchestrator.add_agent(Box::new(ResearchAgent));
orchestrator.add_agent(Box::new(WriterAgent));

// The orchestrator will automatically select the best agent for each step

Orchestrator Features

  • Natural Language Blueprints: Define workflows in plain English
  • Ad-hoc Strategy Generation: LLM generates execution plans based on available agents
  • Two-Layer Error Recovery: Combine RetryAgent (transient errors) + Orchestrator (structural errors)
  • 3-Stage Error Recovery:
    • Retry: For transient errors
    • Tactical Redesign: Modify failed steps and continue
    • Full Regenerate: Start over with a new strategy
  • Built-in Validation: Automatic registration of InnerValidatorAgent as a fallback validator
  • Smart Context Management: Automatic passing of outputs between steps with ToPrompt support
  • Configurable Error Recovery Limits: Control retry behavior to prevent infinite loops
  • Fast Path Intent Generation: Optional optimization to skip LLM calls for deterministic template substitution
  • Logging and Observability: Stream execution logs in JSON format using tracing for real-time monitoring
  • Loop Control Flow: Iterative refinement with LoopBlock (while/until convergence patterns)
  • Early Termination: Conditional workflow exit with TerminateInstruction
  • Control Flow Safety: Single-level loops only (nested loops rejected), global iteration limits

Monitoring Orchestrator Execution with Tracing

The orchestrator emits structured logs using the tracing crate, allowing you to monitor workflow execution in real-time. You can capture these logs in JSON format and stream them to any destination.

Example: JSON Log Streaming

See examples/orchestrator_streaming.rs for a complete example that demonstrates:

  • Setting up a custom tracing layer to capture orchestrator events
  • Streaming logs to a channel in JSON format
  • Pretty-printing execution events in real-time
cargo run --example orchestrator_streaming --features agent,derive

Key Features:

  • Structured Logging: All orchestrator events (step execution, errors, redesigns) are emitted as structured logs
  • JSON Format: Easy integration with log aggregation tools (e.g., ELK, Datadog, CloudWatch)
  • Real-time Streaming: Monitor workflow progress as it happens using tokio::sync::mpsc channels
  • Custom Layers: Implement your own tracing::Layer to route logs to any destination

Basic Setup:

use tracing_subscriber::prelude::*;
use tokio::sync::mpsc;

// Create a channel for log streaming
let (tx, mut rx) = mpsc::channel::<String>(100);

// Set up tracing subscriber with custom layer
let subscriber = tracing_subscriber::registry()
    .with(YourCustomLayer { sender: tx })
    .with(tracing_subscriber::filter::EnvFilter::new("info"));

tracing::subscriber::set_global_default(subscriber)?;

// Listen for events
tokio::spawn(async move {
    while let Some(event) = rx.recv().await {
        println!("{}", event); // Process log event
    }
});

// Execute orchestrator - logs will be streamed automatically
let result = orchestrator.execute(task).await;

For the complete implementation, see the example file at crates/llm-toolkit/examples/orchestrator_streaming.rs.

Configuring Error Recovery Limits

The orchestrator provides configurable limits for error recovery to prevent infinite loops and control API costs:

use llm_toolkit::orchestrator::{Orchestrator, OrchestratorConfig};

let mut orchestrator = Orchestrator::new(blueprint);

// Method 1: Set entire configuration at once
let config = OrchestratorConfig {
    max_step_remediations: 5,     // Maximum 5 attempts per step (initial + 4 retries)
    max_total_redesigns: 15,       // Maximum 15 redesigns (initial strategy not counted)
};
orchestrator.set_config(config);

// Method 2: Modify individual limits
orchestrator.set_max_step_remediations(5);
orchestrator.set_max_total_redesigns(15);

// Method 3: Use partial configuration with defaults
let config = OrchestratorConfig {
    max_step_remediations: 5,
    ..Default::default()  // Use default for max_total_redesigns (10)
};
orchestrator.set_config(config);

Default Limits:

  • max_step_remediations: 3
    • Allows 3 execution attempts per step (initial attempt + 2 retries)
    • Prevents infinite loops on a single failing step
  • max_total_redesigns: 10
    • Allows 10 redesign operations (initial strategy generation not counted)
    • Controls overall workflow redesign attempts across all steps

How Counting Works:

Step-level counting:

Step fails → count incremented → check if count >= max_step_remediations
- Attempt 1 (initial): Fails → count=1 → 1>=3? No → Retry
- Attempt 2: Fails → count=2 → 2>=3? No → Retry
- Attempt 3: Fails → count=3 → 3>=3? Yes → Error: MaxStepRemediationsExceeded
Result: max_step_remediations=3 allows 3 total attempts (2 retries)

Total redesigns counting:

Initial strategy generation → redesigns_triggered=0 (not counted)
Retry/TacticalRedesign/FullRegenerate → redesigns_triggered incremented
- First redesign: redesigns_triggered=1
- ...
- 10th redesign: redesigns_triggered=10 → 10>=10? Yes → Error: MaxTotalRedesignsExceeded
Result: max_total_redesigns=10 allows up to 11 total strategy executions

When Limits Are Exceeded:

  • Step limit exceeded: Returns OrchestratorError::MaxStepRemediationsExceeded { step_index, max_remediations }
  • Total limit exceeded: Returns OrchestratorError::MaxTotalRedesignsExceeded(limit)

Choosing Good Values:

  • Small workflows (2-3 steps): Default values work well
  • Large workflows (5+ steps): Consider increasing max_total_redesigns to 15-20
  • Critical steps: If certain steps are known to be unstable, increase max_step_remediations to 5
  • Cost-sensitive: Reduce both limits to fail faster (e.g., max_step_remediations=2, max_total_redesigns=5)

Rate Limiting with min_step_interval

The orchestrator provides proactive rate limiting to prevent API rate limit errors (429 Too Many Requests).

Problem: Each orchestrator step typically makes 2+ API calls (intent generation + execution). Without delays, a 6-step workflow can make 12+ calls in 30 seconds, exceeding many LLM API rate limits (e.g., 10 requests/minute for Gemini).

Solution: Set min_step_interval to introduce a delay after each step completes:

use std::time::Duration;
use llm_toolkit::orchestrator::{Orchestrator, OrchestratorConfig};

let mut orchestrator = Orchestrator::new(blueprint);

// Method 1: Set entire configuration at once
let config = OrchestratorConfig {
    min_step_interval: Duration::from_millis(500),  // 500ms delay between steps
    ..Default::default()
};
orchestrator.set_config(config);

// Method 2: Use convenience method
orchestrator.set_min_step_interval(Duration::from_secs(1));  // 1 second delay

How It Works:

  • Applied after each step completes (before starting next step)
  • Not applied after the last step (no unnecessary delay)
  • Duration::ZERO means no delay (default, backward compatible)

Choosing Good Values:

  • 10 req/min limit (e.g., Gemini): Use Duration::from_secs(6) or higher
  • 60 req/min limit (e.g., Claude): Use Duration::from_millis(500) to Duration::from_secs(1)
  • Conservative approach: Start with Duration::from_secs(1), reduce if no errors occur

Combining with RetryAgent:

For maximum resilience, combine proactive rate limiting (min_step_interval) with reactive retry (RetryAgent):

use llm_toolkit::agent::impls::{GeminiAgent, RetryAgent};

// Layer 1: Proactive rate limiting (prevents errors)
orchestrator.set_min_step_interval(Duration::from_secs(1));

// Layer 2: Reactive retry with retry_after support (handles errors)
let gemini = GeminiAgent::new();
let retry_gemini = RetryAgent::new(gemini, 5);  // Respects server retry_after
orchestrator.add_agent(retry_gemini);

// Result: Minimal API errors and automatic recovery if they occur

Loop and Early Termination Control Flow

The orchestrator supports advanced control flow with loops and early termination, enabling iterative refinement and conditional workflow exit.

Status: ✅ Complete and tested (160 tests passing)

Features:

  • ✅ Loop blocks with configurable iteration limits
  • ✅ Early termination instructions with conditional evaluation
  • ✅ Single-level loops only (nested loops rejected via validation)
  • ✅ Optional fields for simplified LLM generation
  • ✅ Execution engine with recursive instruction processing
  • ✅ Condition template evaluation with MiniJinja
  • ✅ Loop aggregation modes (LastSuccess, FirstSuccess, CollectAll)
  • ✅ Global loop iteration limits (prevents runaway costs)
  • ✅ Integrated with execute_strategy() (automatic legacy migration)

Data Model:

use llm_toolkit::orchestrator::{StrategyInstruction, LoopBlock, TerminateInstruction};

// Example 1: Minimal loop (optimal for LLM generation)
let loop_instruction = StrategyInstruction::Loop(LoopBlock {
    loop_id: "refine".to_string(),
    description: None,  // Optional
    loop_type: None,    // Optional (defaults to While)
    max_iterations: 3,
    condition_template: Some("{{ needs_improvement }}".to_string()),
    body: vec![/* nested instructions */],
    aggregation: None,  // Optional
});

// Example 2: Early termination
let terminate = StrategyInstruction::Terminate(TerminateInstruction {
    terminate_id: "early_exit".to_string(),
    description: None,  // Optional
    condition_template: Some("{{ success }}".to_string()),
    final_output_template: None,  // Optional
});

Minimal JSON Example (hand-written or LLM-generated):

{
  "goal": "Iteratively refine design",
  "elements": [
    {
      "type": "step",
      "step_id": "initial_design",
      "description": "Create initial design",
      "assigned_agent": "DesignAgent",
      "intent_template": "Create design for {{ task }}",
      "expected_output": "Design document"
    },
    {
      "type": "loop",
      "loop_id": "refine_loop",
      "max_iterations": 5,
      "condition_template": "{{ feedback.needs_improvement }}",
      "body": [
        {
          "type": "step",
          "step_id": "get_feedback",
          "description": "Get design feedback",
          "assigned_agent": "ReviewAgent",
          "intent_template": "Review design",
          "expected_output": "Feedback"
        },
        {
          "type": "terminate",
          "terminate_id": "approved",
          "condition_template": "{{ feedback.approved }}"
        },
        {
          "type": "step",
          "step_id": "improve",
          "description": "Apply improvements",
          "assigned_agent": "DesignAgent",
          "intent_template": "Improve design based on {{ feedback }}",
          "expected_output": "Improved design"
        }
      ]
    }
  ]
}

Configuration:

use llm_toolkit::orchestrator::OrchestratorConfig;

let config = OrchestratorConfig {
    max_total_loop_iterations: 50,  // Global limit across all loops (default: 50)
    ..Default::default()
};
orchestrator.set_config(config);

Safety Constraints:

  • Single-level loops only (nested loops are rejected with validation error)
  • Global max_total_loop_iterations limit prevents runaway costs
  • Each loop requires max_iterations (per-loop limit)
  • Validation via StrategyMap::validate() before execution

Design Decisions:

  • description and loop_type are optional to reduce LLM generation failures
  • No controller_agent field (reuses existing internal_agent for LLM-driven control)
  • condition_template uses MiniJinja for deterministic evaluation
  • Backward compatible: legacy steps format still supported via migrate_legacy_steps()

Performance Impact:

  • 6-step workflow with 1s delay: Adds ~5 seconds total (6 steps - 1 last step)
  • Trade-off: Slightly slower execution vs. no rate limit errors
  • Best practice: Use only when targeting rate-limited APIs

Fast Path Intent Generation (Performance Optimization)

By default, the orchestrator uses LLM-based intent generation for each step, which provides high-quality, context-aware prompts but incurs API latency and costs. For workflows with simple template substitution (all placeholders resolved from context), you can enable fast path optimization to skip LLM calls.

When to Enable:

  • Thick Agents: Agents that contain detailed domain logic and don't need LLM-optimized prompts
  • Simple Templates: Intent templates with straightforward placeholder substitution
  • Performance-Critical Workflows: When latency matters more than prompt quality
  • High-Volume Operations: When API costs need to be minimized

When to Keep Disabled (Default):

  • Thin Agents: Agents that rely on rich, context-aware prompts from the LLM
  • Complex Reasoning: Workflows requiring semantic understanding and prompt adaptation
  • Quality-First Applications: When prompt quality is more important than speed

Usage:

use std::time::Duration;
use llm_toolkit::orchestrator::{Orchestrator, OrchestratorConfig};

let mut orchestrator = Orchestrator::new(blueprint);

// Enable fast path optimization
let config = OrchestratorConfig {
    enable_fast_path_intent_generation: true,  // Default: false
    ..Default::default()
};
orchestrator.set_config(config);

// Execute - fast path will be used when all placeholders are resolved
let result = orchestrator.execute(task).await;

How It Works:

For each step, the orchestrator:

  1. Checks prerequisites: Are all placeholders in the intent template resolved in context?
  2. Fast path (if enabled + all resolved): Simple string substitution (milliseconds, no API call)
  3. LLM path (fallback): LLM generates high-quality, context-aware intent (seconds, API call)

Example:

// Intent template from strategy
"Transform this data: {{previous_output}}"

// If fast path enabled and previous_output exists in context:
// → Fast path: Direct substitution → "Transform this data: <actual output>"
// → Latency: ~1ms, Cost: $0

// If fast path disabled or placeholder not resolved:
// → LLM path: Generate intent considering agent expertise → High-quality prompt
// → Latency: ~2s, Cost: ~$0.001

Performance Benefits (Example E2E Test Results):

3-step workflow with mock 100ms LLM delay:
- Fast Path ENABLED:  412ms (1.49x faster)
- Fast Path DISABLED: 615ms

Real-world with actual LLM calls:
- Fast Path: ~50ms per step → 150ms for 3 steps
- LLM Path: ~2s per step → 6s for 3 steps
- Speedup: 40x faster!

Trade-offs:

Aspect Fast Path (Enabled) LLM Path (Disabled, Default)
Performance ⚡ Milliseconds 🐌 Seconds
API Cost 💰 Zero 💰💰 Per step
Prompt Quality Basic (template substitution) High (context-aware, semantic)
Best For Thick agents, simple templates Thin agents, complex reasoning

Best Practices:

  1. Default to disabled - Prioritize quality for thin agent architectures
  2. Enable selectively - Use for specific workflows where you've validated template quality
  3. Test both modes - Compare results to ensure fast path doesn't sacrifice quality
  4. Monitor logs - Watch for "Using fast path" vs "Using LLM-based intent generation" messages

Complete E2E Example:

See examples/orchestrator_fast_path_e2e.rs for a complete example comparing both modes:

cargo run --example orchestrator_fast_path_e2e --features agent,derive

This example demonstrates:

  • Performance comparison between fast path and LLM path
  • Validation that both produce equivalent results
  • Configuration toggling
  • Practical speedup measurements

Two-Layer Error Recovery: RetryAgent + Orchestrator

The recommended pattern is to combine RetryAgent (agent-level retry) with Orchestrator (workflow-level recovery) for robust error handling:

use llm_toolkit::agent::impls::{ClaudeCodeAgent, RetryAgent};
use llm_toolkit::orchestrator::{Orchestrator, BlueprintWorkflow};

// Layer 1: Agent-level retry (transient errors)
let claude = ClaudeCodeAgent::new();
let retry_agent = RetryAgent::new(claude, 3);  // Up to 3 retries

// Layer 2: Orchestrator-level recovery (structural errors)
let mut orchestrator = Orchestrator::new(blueprint);
orchestrator.add_agent(Box::new(retry_agent));

// Now you have two layers of error recovery:
// - Agent layer: Network errors, 429 rate limits, parse errors
// - Orchestrator layer: Wrong agent selection, strategy issues

Responsibility Separation:

Error Type Layer Recovery Strategy
Network timeout Agent (RetryAgent) Wait + retry (linear backoff)
429 rate limit Agent (RetryAgent) Wait retry_after (exponential, max 60s)
Parse error Agent (RetryAgent) Immediate retry (linear backoff)
Agent capability mismatch Orchestrator Try different agent (step remediation)
Strategy design flaw Orchestrator Redesign workflow (tactical/full)

Per-Agent Customization:

You can customize retry behavior for each agent based on importance:

// Critical agent: More retries
let writer = WriterAgent::default();
let retry_writer = RetryAgent::new(writer, 5);  // 5 retries

// Lightweight agent: Fewer retries
let validator = ValidatorAgent::default();
let retry_validator = RetryAgent::new(validator, 2);  // 2 retries

orchestrator.add_agent(Box::new(retry_writer));
orchestrator.add_agent(Box::new(retry_validator));

Cost Control:

Worst case: Agent retries × Orchestrator remediations

  • Agent: 3 attempts (1 initial + 2 retries)
  • Orchestrator: 3 remediations
  • Maximum: 3 × 3 = 9 agent calls per step

This is intentional design:

  • Agent retries handle transient errors (network, API)
  • Orchestrator remediations handle structural errors (strategy, capability)
  • Both limits are independently configurable for cost control

Why This Pattern Works:

  • Clear Separation: Transient vs structural errors handled at appropriate levels
  • DRY Principle: Same retry logic (RetryAgent) used everywhere
  • Flexible Control: Independent configuration of agent and orchestrator retries
  • No Additional Code: Uses existing RetryAgent decorator
  • Production-Ready: 429 rate limiting, Full Jitter, retry_after support

When NOT to use RetryAgent:

If you want the Orchestrator to immediately try a different agent on first failure (no agent-level retry), add agents directly without wrapping:

// Direct agent addition - no agent-level retry
orchestrator.add_agent(Box::new(ClaudeCodeAgent::new()));

// First error → Orchestrator immediately tries different agent or redesigns

Placeholder Syntax in Intent Templates

Intent templates use Mustache/Jinja2-style double curly braces {{ }} for placeholder substitution. This is not a typo - single braces { } are not recognized.

Correct Syntax:

"Create an outline for: {{ task }}"           // ✅ Correct
"Based on {{ previous_output }}, continue"    // ✅ Correct
"Transform {{ step_3_output }}"               // ✅ Correct

Incorrect Syntax:

"Create an outline for: {task}"               // ❌ Will NOT be recognized
"Based on {previous_output}, continue"        // ❌ Will NOT be recognized

Important Notes:

  • Always use double curly braces with spaces: {{ name }} (not {{name}})
  • This matches the Mustache/Jinja2 templating convention
  • The orchestrator's extract_placeholders only detects {{ }} format
  • LLM-generated intent templates follow this convention from prompts.rs

Common Placeholders:

  • {{ task }} - The original user task
  • {{ previous_output }} - Output from the immediately previous step
  • {{ step_N_output }} - Output from a specific step (e.g., {{ step_3_output }})
  • Custom semantic names (e.g., {{ concept_content }}, {{ emblem_design }})

Using Predefined Strategies

By default, the orchestrator automatically generates execution strategies from your blueprint using an internal LLM. However, you can also provide a predefined strategy to:

  • Reuse known-good strategies that have been validated
  • Test specific execution paths with deterministic workflows
  • Implement custom strategy generation logic outside the orchestrator
  • Skip strategy generation costs when you already know the optimal plan

Basic Usage:

use llm_toolkit::orchestrator::{Orchestrator, StrategyMap, StrategyStep};

// Create orchestrator
let mut orchestrator = Orchestrator::new(blueprint);
orchestrator.add_agent(ClaudeCodeAgent::new());

// Define a custom strategy manually
let mut strategy = StrategyMap::new("Write a technical article".to_string());

// Step 1: Create outline
let mut step1 = StrategyStep::new(
    "step_1".to_string(),
    "Create article outline".to_string(),
    "ClaudeCodeAgent".to_string(),
    "Create an outline for: {{ task }}".to_string(),
    "Article outline".to_string(),
);
step1.output_key = Some("outline".to_string());  // Custom alias
strategy.add_step(step1);

// Step 2: Write introduction - can reference using custom alias
let mut step2 = StrategyStep::new(
    "step_2".to_string(),
    "Write introduction".to_string(),
    "ClaudeCodeAgent".to_string(),
    "Based on {{ outline }}, write an introduction".to_string(),  // Using custom alias
    "Introduction paragraph".to_string(),
);
step2.output_key = Some("introduction".to_string());
strategy.add_step(step2);

// Set the predefined strategy
orchestrator.set_strategy_map(strategy);

// Execute - strategy generation is skipped
let result = orchestrator.execute("Rust ownership system").await;

Retrieving Current Strategy:

// Check if strategy is set
if let Some(strategy) = orchestrator.strategy_map() {
    println!("Strategy has {} steps", strategy.steps.len());
    for (i, step) in strategy.steps.iter().enumerate() {
        println!("Step {}: {}", i + 1, step.description);
    }
}

Backward Compatibility:

When no predefined strategy is set, the orchestrator behaves exactly as before - automatically generating strategies from the blueprint:

// Traditional usage - automatic strategy generation
let mut orchestrator = Orchestrator::new(blueprint);
orchestrator.add_agent(ClaudeCodeAgent::new());
let result = orchestrator.execute(task).await; // Auto-generates strategy

When to Use Predefined Strategies:

Scenario Use Auto-Generation Use Predefined Strategy
Exploring new workflows ✅ Yes ❌ No
Production with validated flows ❌ No ✅ Yes
Testing specific error scenarios ❌ No ✅ Yes
Cost optimization (reuse strategies) ❌ No ✅ Yes
Prototyping and experimentation ✅ Yes ❌ No

Generating Strategies Without Execution:

If you want to generate a strategy but not execute it immediately (e.g., to save it as a template), use generate_strategy_only():

// Generate strategy without executing
let strategy = orchestrator.generate_strategy_only("Process documents").await?;

// Save to file for reuse
let json = serde_json::to_string_pretty(&strategy)?;
std::fs::write("my_workflow.json", json)?;

// Later: Load and execute
let json = std::fs::read_to_string("my_workflow.json")?;
let strategy: StrategyMap = serde_json::from_str(&json)?;
orchestrator.set_strategy_map(strategy);
orchestrator.execute("Process documents").await?;

This is useful for creating workflow templates that can be reused across multiple runs.

Example Code:

See the complete example at examples/orchestrator_with_predefined_strategy.rs:

cargo run --example orchestrator_with_predefined_strategy --features agent,derive

Smart Context Management with ToPrompt

The orchestrator automatically manages context between agent steps. When an agent produces output, the orchestrator stores it and makes it available to subsequent steps. If the output type implements ToPrompt, the orchestrator intelligently uses the human-readable prompt representation instead of raw JSON.

Why This Matters:

When you have complex output types (like enums with variant descriptions, or structs with rich formatting), you want the orchestrator to pass them to the next agent in a readable, LLM-friendly format—not as opaque JSON.

Example: Enum with ToPrompt

use llm_toolkit::{ToPrompt, Agent};
use serde::{Serialize, Deserialize};

// Define an enum with rich documentation
#[derive(ToPrompt, Serialize, Deserialize)]
pub enum AnalysisResult {
    /// The topic is technically sound and ready to proceed
    Approved,
    /// The topic needs revision due to technical inaccuracies
    NeedsRevision { reasons: Vec<String> },
    /// The topic is rejected as out of scope
    Rejected,
}

// Agent that produces this enum
#[derive(Agent)]
#[agent(
    expertise = "Analyze technical topics for accuracy and scope",
    output = "AnalysisResult"
)]
struct AnalyzerAgent;

How it works:

  1. Step 1: AnalyzerAgent produces AnalysisResult::NeedsRevision { reasons: [...] }
  2. Orchestrator stores two versions:
    • step_1_output: JSON representation {"NeedsRevision": {"reasons": [...]}}
    • step_1_output_prompt: ToPrompt representation with full descriptions
  3. Step 2: When building intent for the next agent, the orchestrator prefers the _prompt version
  4. Result: Next agent receives rich, human-readable context instead of cryptic JSON

Setup:

To enable ToPrompt support for your agent outputs, use add_agent_with_to_prompt:

// ✅ Correct: Use add_agent_with_to_prompt for types implementing ToPrompt
orchestrator.add_agent_with_to_prompt(MyAnalyzerAgent::new());

// ❌ Common Mistake: Using add_agent() - ToPrompt won't be used!
// orchestrator.add_agent(MyAnalyzerAgent::new());

Benefits:

  • Better LLM Understanding: Complex types are presented in natural language, not JSON
  • Automatic Fallback: If ToPrompt is not implemented, JSON is used (backward compatible)
  • Type-Safe: The conversion is compile-time verified through the type system
  • Zero Overhead: Only computed once per step and cached in context

Template-Based Context Access with Jinja2

The orchestrator uses minijinja template rendering to make context data available to agents through intent templates.

How It Works:

// Step 3's intent template (generated by strategy LLM)
"Create a character profile using:
- Concept: {{ step_1_output.concept }}
- Design: {{ step_2_output.emblem }}
- World: {{ user_request.world_seed.aesthetics }}"

When executing Step 3, the orchestrator:

  1. Passes full context to minijinja: All step_N_output, user_request, and other context data
  2. Minijinja resolves placeholders: Only referenced fields are extracted and rendered
  3. Agent receives rendered intent: Clean, readable text with all placeholders expanded

Available Context Keys:

The orchestrator maintains these keys in context:

  • step_{step_id}_output - JSON output from each step (e.g., step_1_output, step_2_output)
    • Automatic key: Always created with step_ prefix + step_id + _output suffix
    • Example: If step_id is "step_1", the key becomes "step_step_1_output"
  • {output_key} - Custom alias for step output (if output_key is specified in strategy)
    • User-defined key: Set via the output_key field in StrategyStep
    • Example: "output_key": "world_concept" creates key "world_concept"
    • Preferred for better readability (e.g., {{ world_concept.theme }} instead of {{ step_step_1_output.theme }})
  • step_{step_id}_output_prompt - ToPrompt version (human-readable string)
  • {output_key}_prompt - ToPrompt version with custom alias (if output_key is specified)
  • previous_output - Convenience reference to the immediately previous step's output
  • user_request - External input data added via context_mut().insert()
  • Custom keys - Any data added before execution

Dot Notation for Nested Access:

// Access nested JSON fields
{{ step_1_output.concept }}                     // Simple field
{{ step_2_output.data.items }}                  // Nested object
{{ user_request.world_seed.aesthetics }}        // Deep nesting
{{ step_3_output.results[0].name }}             // Array indexing (if supported)

Benefits:

  • Simple & Standard: Uses standard Jinja2 templating, familiar to many developers
  • No Semantic Matching: Direct key resolution—no LLM calls for placeholder mapping
  • Full Information: Complete step outputs available, minijinja extracts what's needed
  • Type Safety: Dot notation errors are caught at template render time
  • Automatic: Strategy generation LLM creates appropriate placeholder references

Common Pitfall:

Manually extracting intermediate results:

// DON'T DO THIS - Orchestrator handles it automatically!
let result = orchestrator.execute(task).await;
let concept = extract_from_context("step_1_output")?; // Not accessible!
let emblem = extract_from_context("step_2_output")?;  // Not accessible!

Correct approach - Design the final agent to aggregate:

// The LAST agent's intent template should request all needed data
"Generate final output including:
- Concept: {{ concept_content }}
- Emblem: {{ emblem_design }}
- Profile: {{ character_profile }}"

// Then final_output contains everything
let result = orchestrator.execute(task).await;
let complete_data = result.final_output; // All data aggregated by final agent

Understanding Context Keys and Placeholder Resolution:

Intent templates reference context data using Jinja2-style placeholders. The orchestrator stores all data in a context HashMap and passes it to minijinja for template rendering.

How Context Keys Work:

  1. Step outputs are automatically stored:

    • step_{step_id}_output - JSON version (e.g., step_1_output, step_world_concept_generation_output)
      • Note: The step_ prefix is automatically added. If your step_id is "step_1", the key becomes "step_step_1_output".
    • {output_key} - Custom alias (e.g., world_concept if output_key: "world_concept" is specified)
    • step_{step_id}_output_prompt - ToPrompt version (if available)
    • {output_key}_prompt - ToPrompt version with custom alias (if available)
    • previous_output - Updated after each step to reference the most recent output
  2. Placeholder resolution is direct:

    • {{ step_1_output }} → Looks up step_1_output key in context
    • {{ world_concept.theme }} → Looks up world_concept (custom output_key) then accesses .theme field
    • {{ step_1_output.concept }} → Looks up step_1_output then accesses .concept field
    • {{ user_request.world_seed.aesthetics }} → Looks up user_request then navigates nested fields
    • No semantic matching or alias resolution—just direct key lookup
  3. Accessing nested fields with dot notation:

    • Intent templates support Jinja2-style dot notation
    • Example: {{ step_3_output.user.profile.role }} accesses nested JSON fields
    • Works for any depth of nesting in JSON objects

Adding External Context:

You can add custom context before execution using context_mut():

orchestrator.context_mut().insert(
    "user_request".to_string(),
    serde_json::json!({"name": "Alice", "world_seed": {"aesthetics": "Gothic"}})
);

This data is immediately available in intent templates:

// Intent template can directly reference it
"Create a profile for {{ user_request.name }} with {{ user_request.world_seed.aesthetics }} aesthetics"

Best Practice:

Use direct, explicit placeholder references in intent templates:

// ✅ Recommended: Direct step references with dot notation
// Intent: "Process {{ step_1_output.concept }} and {{ step_2_output.design.colors }}"

// ✅ Also good: External context references
// Intent: "Use world seed: {{ user_request.world_seed.aesthetics }}"

// ✅ Convenience: previous_output for simple sequential workflows
// Intent: "Refine {{ previous_output }}"

Why? The orchestrator's context was internal. But now you can access it!

Accessing Intermediate Results (v0.13.6+)

You can now access intermediate step results using the context accessor methods:

let result = orchestrator.execute(task).await;

// Option 1: Get specific step output
if let Some(concept) = orchestrator.get_step_output("step_1") {
    // Deserialize to your type
    let concept: HighConceptResponse = serde_json::from_value(concept.clone())?;
    println!("Concept: {:?}", concept);
}

// Option 2: Get human-readable version (if ToPrompt was used)
if let Some(prompt) = orchestrator.get_step_output_prompt("step_1") {
    println!("Concept (readable):\n{}", prompt);
}

// Option 3: Get all step outputs
for (step_id, output) in orchestrator.get_all_step_outputs() {
    println!("Step {}: {:?}", step_id, output);
}

// Option 4: Access raw context
let context = orchestrator.context();
println!("Full context: {:?}", context);

Available methods:

  • context() - Returns full context HashMap
  • get_step_output(step_id) - Get JSON output of a specific step
  • get_step_output_prompt(step_id) - Get ToPrompt version (human-readable)
  • get_all_step_outputs() - Get all step outputs as HashMap

Note: These methods are available after execute() completes. The context is preserved until the next execute() call.

Type-Based Output Retrieval with TypeMarker (v0.13.9+)

Problem: The orchestrator's strategy LLM generates non-deterministic step IDs (step_1, world_generation, analysis_phase, etc.), making it difficult to retrieve specific outputs by step ID. You want to retrieve outputs by type, not by guessing step names.

Solution: Use the TypeMarker pattern to retrieve outputs based on their type, regardless of which step produced them.

How It Works:

There are two ways to add __type field for type-based retrieval:

Method 1: Using #[type_marker] attribute macro (Recommended)

use llm_toolkit::{type_marker, ToPrompt};
use serde::{Deserialize, Serialize};

// IMPORTANT: #[type_marker] must be placed BEFORE #[derive(...)]
#[type_marker]
#[derive(Serialize, Deserialize, Debug, Clone, ToPrompt)]
#[prompt(mode = "full")]
pub struct HighConceptResponse {
    pub reasoning: String,
    pub high_concept: String,
}

The #[type_marker] attribute macro automatically:

  • Adds __type: String field with #[serde(default = "default_high_concept_response_type")]
  • Generates the default function that returns the struct name
  • Implements the TypeMarker trait
  • The __type field is automatically excluded from LLM schema (ToPrompt skips fields named __type)

Method 2: Manual __type field definition (For custom configurations)

Use this method when you need special configurations:

  • Custom field name or type
  • Complex default function logic
  • Integration with existing code
use llm_toolkit::{TypeMarker, ToPrompt};
use serde::{Deserialize, Serialize};

#[derive(Serialize, Deserialize, Debug, Clone, ToPrompt, TypeMarker)]
#[prompt(mode = "full", type_marker)]  // 👈 Optional marker to document TypeMarker usage
pub struct HighConceptResponse {
    #[serde(default = "default_high_concept_type")]
    __type: String,  // Manually defined for custom configuration
    pub reasoning: String,
    pub high_concept: String,
}

fn default_high_concept_type() -> String {
    "HighConceptResponse".to_string()
}

Note: The #[prompt(type_marker)] parameter is optional and serves as documentation/marker. The __type field will be automatically excluded from LLM schema regardless.

Complete Example:

use llm_toolkit::{type_marker, ToPrompt, Agent};
use serde::{Deserialize, Serialize};

// Define your response types
#[type_marker]
#[derive(Serialize, Deserialize, Debug, Clone, ToPrompt)]
#[prompt(mode = "full")]
pub struct HighConceptResponse {
    pub reasoning: String,
    pub high_concept: String,
}

#[type_marker]
#[derive(Serialize, Deserialize, Debug, Clone, ToPrompt)]
#[prompt(mode = "full")]
pub struct ProfileResponse {
    pub name: String,
    pub role: String,
}

// Define agents
#[derive(Agent)]
#[agent(
    expertise = "Generate high-level concepts",
    output = "HighConceptResponse"
)]
struct ConceptAgent;

#[derive(Agent)]
#[agent(
    expertise = "Create character profiles",
    output = "ProfileResponse"
)]
struct ProfileAgent;

// Register agents and execute
orchestrator.add_agent_with_to_prompt(ConceptAgent::default());
orchestrator.add_agent_with_to_prompt(ProfileAgent::default());

let result = orchestrator.execute(&intent).await?;

// Retrieve outputs by type - no need to know step IDs!
let concept: HighConceptResponse = orchestrator.get_typed_output()?;
let profile: ProfileResponse = orchestrator.get_typed_output()?;

println!("Concept: {}", concept.high_concept);
println!("Profile: {} - {}", profile.name, profile.role);

Key Points:

  • #[type_marker]: Attribute macro that automatically adds __type field and implements TypeMarker
    • ⚠️ Must be placed FIRST (before #[derive(...)]) due to Rust macro processing order
    • Generates: field, default function, and trait implementation
    • The __type field is excluded from the JSON schema sent to LLMs (prevents confusion)
  • #[derive(TypeMarker)]: Only implements the trait (use with manual __type field)
  • get_typed_output<T>(): Type-safe retrieval that returns Result<T, OrchestratorError>
  • Schema exclusion: ToPrompt automatically skips fields named __type (Line 154 in macro implementation)

Benefits:

  • No Step ID Guessing: Retrieve outputs by type, not by unpredictable step names
  • Type-Safe: Compile-time verification of output types
  • Clean Schema: __type is excluded from schema to prevent LLM confusion
  • Automatic Deserialization: __type is added during JSON parsing via #[serde(default)]
  • DRY Principle: No manual field definition or JSON schema duplication needed
  • Works with Dynamic Workflows: Strategy LLM can name steps anything; your code still works

Common Pattern:

// 1. Execute orchestrated workflow
let result = orchestrator.execute(&intent).await?;

// 2. Retrieve all needed outputs by type
let world_concept: WorldConceptResponse = orchestrator.get_typed_output()?;
let high_concept: HighConceptResponse = orchestrator.get_typed_output()?;
let emblem: EmblemResponse = orchestrator.get_typed_output()?;
let profile: ProfileResponse = orchestrator.get_typed_output()?;

// 3. Assemble final result
let spirit = Spirit {
    world_concept: world_concept.into(),
    high_concept: high_concept.high_concept,
    emblems: vec![emblem.obvious_emblem, emblem.creative_emblem],
    profile: profile.into(),
};

Comparison with Step-Based Retrieval:

// ❌ Step-based retrieval (fragile)
let concept_json = orchestrator.get_step_output("step_1")?; // What if it's "concept_generation"?
let concept: HighConceptResponse = serde_json::from_value(concept_json.clone())?;

// ✅ Type-based retrieval (robust)
let concept: HighConceptResponse = orchestrator.get_typed_output()?; // Always works!

Run the examples:

# See TypeMarker schema generation in action
cargo run --example type_marker_schema_test --features agent,derive

# Full orchestrator example
cargo run --example orchestrator_basic --features agent,derive

High-Performance Parallel Execution with ParallelOrchestrator

For workflows with independent tasks (e.g., multiple research steps) that can be run concurrently, llm-toolkit offers a high-performance ParallelOrchestrator. It analyzes the dependencies between steps in a StrategyMap and executes independent steps in parallel "waves," significantly reducing total execution time.

Key Benefits:

  • Performance: Drastically speeds up workflows with high degrees of parallelism.
  • Robustness: Supports per-step timeouts and concurrency limits to prevent stalls and manage resources.
  • Observability: Integrates with the tracing crate to provide clear, correlated logs for concurrent operations.

Example Usage:

The API is nearly identical to the sequential Orchestrator, but requires a pre-defined StrategyMap as it does not generate strategies on its own.

use llm_toolkit::orchestrator::{ParallelOrchestrator, StrategyMap, StrategyStep, ParallelOrchestratorConfig};
use llm_toolkit::agent::Agent;
use std::sync::Arc;
use std::time::Duration;

// Assume ResearchAgent and WriterAgent are defined and implement Agent + Send + Sync.
// For example:
// #[derive(Clone)]
// struct ResearchAgent;
// #[async_trait::async_trait]
// impl Agent for ResearchAgent { /* ... */ type Output = String; }
//
// struct WriterAgent;
// #[async_trait::async_trait]
// impl Agent for WriterAgent { /* ... */ type Output = String; }


#[tokio::main]
async fn main() {
    // Define a strategy where step 1 and 2 can run in parallel.
    let mut strategy = StrategyMap::new("Write article based on parallel research");

    strategy.add_step(StrategyStep::new(
        "step_1", "Research Topic A", "ResearchAgent",
        "Research the benefits of Rust for systems programming.", "topic_a_research",
    ));
    strategy.add_step(StrategyStep::new(
        "step_2", "Research Topic B", "ResearchAgent",
        "Research the benefits of Rust for web assembly.", "topic_b_research",
    ));

    // Step 3 depends on the outputs of step 1 and 2.
    strategy.add_step(StrategyStep::new(
        "step_3", "Write Article", "WriterAgent",
        r#"Write a comprehensive article based on the following research:
Topic A: {{ topic_a_research }}
Topic B: {{ topic_b_research }}"#,
        "final_article",
    ));

    // Configure the orchestrator with a 5-minute timeout per step.
    let config = ParallelOrchestratorConfig::new()
        .with_step_timeout(Duration::from_secs(300));

    let mut orchestrator = ParallelOrchestrator::with_config(strategy, config);

    // IMPORTANT: Agents MUST be thread-safe (Send + Sync).
    // orchestrator.add_agent("ResearchAgent", Arc::new(ResearchAgent));
    // orchestrator.add_agent("WriterAgent", Arc::new(WriterAgent));

    // let result = orchestrator.execute("Write an article about Rust's versatility.").await.unwrap();
    // assert!(result.success);
    // println!("Final article: {:?}", result.context.get("final_article"));
}

⚠️ Important: Agent Thread-Safety (Send + Sync)

To ensure thread safety, any agent added to the ParallelOrchestrator must implement the Send and Sync traits. The add_agent method enforces this at compile time, so you will get a clear error if you try to add a non-thread-safe agent.

This is necessary because the orchestrator may need to share agents across multiple threads to execute them concurrently. For agents that share internal state, use thread-safe primitives like Arc and Mutex.

Parallel Orchestrator with Human-in-the-Loop (HIL)

The ParallelOrchestrator supports a Human-in-the-Loop (HIL) capability, allowing agents to pause execution and explicitly request human approval before proceeding with critical, ambiguous, or safety-sensitive tasks. This feature transforms the orchestrator from a purely automated workflow engine into a collaborative partner that can safely wait for human guidance at key decision points.

Overview

The ParallelOrchestrator executes workflows based on dependency graphs, running independent steps concurrently in "waves" to maximize performance. The HIL feature builds upon the orchestrator's existing interrupt and resume (save/load state) functionality to provide a robust, auditable approval workflow.

Human-in-the-Loop is essential for scenarios where:

  • Safety-critical operations require explicit confirmation (e.g., deploying to production, deleting data)
  • Ambiguous decisions need human judgment (e.g., selecting the best approach from multiple options)
  • Compliance requirements mandate human oversight for certain actions
  • Trust boundaries exist between automated and manual processes

HIL Workflow

The Human-in-the-Loop workflow follows these steps:

  1. Agent Requests Approval: An agent reaches a point requiring human input and returns AgentOutput::RequiresApproval instead of a standard result.

  2. Orchestrator Pauses: The orchestrator receives the approval request, transitions the corresponding step into a PausedForApproval state, and gracefully stops execution.

  3. State Persistence: Before stopping, the orchestrator automatically saves the complete OrchestrationState (including the paused step, approval message, and context) to a file using the existing save_state_to mechanism.

  4. Human Review: The application notifies the user that approval is needed. The user inspects the saved state file, which contains:

    • The approval message explaining what needs review
    • The current payload/context from the agent
    • The complete workflow state
  5. Approval & State Modification: To approve, the user (or an external tool) modifies the saved state file:

    • Changes the step's status from PausedForApproval to Completed
    • Optionally injects approved data into the shared context for downstream steps
  6. Orchestrator Resumes: The application re-invokes the orchestrator using the resume_from parameter, pointing to the modified state file. The orchestrator loads the state and seamlessly continues execution from the now-approved step.

Implementing an Agent with Approval Requests

To enable an agent to request approval, implement the DynamicAgent trait and return AgentOutput::RequiresApproval:

use llm_toolkit::agent::{Agent, AgentError, AgentOutput, DynamicAgent, Payload};
use serde_json::{json, Value as JsonValue};

#[derive(Clone)]
struct DeploymentAgent;

#[async_trait::async_trait]
impl Agent for DeploymentAgent {
    type Output = JsonValue;

    fn expertise(&self) -> &str {
        "Handles production deployments with human approval"
    }

    async fn execute(&self, _input: Payload) -> Result<Self::Output, AgentError> {
        unreachable!("DeploymentAgent uses execute_dynamic")
    }
}

#[async_trait::async_trait]
impl DynamicAgent for DeploymentAgent {
    fn name(&self) -> String {
        "DeploymentAgent".to_string()
    }

    fn expertise(&self) -> &str {
        "Handles production deployments with human approval"
    }

    async fn execute_dynamic(&self, input: Payload) -> Result<AgentOutput, AgentError> {
        // Prepare deployment plan
        let deployment_plan = json!({
            "target": "production",
            "service": "user-api",
            "version": "v2.1.0",
            "estimated_downtime": "30 seconds"
        });

        // Request human approval before proceeding
        Ok(AgentOutput::RequiresApproval {
            message_for_human: "Please review and approve deployment to production: user-api v2.1.0".to_string(),
            current_payload: deployment_plan,
        })
    }
}

Using HIL in Workflows

Here's a complete example showing how to handle the pause-approve-resume cycle:

use llm_toolkit::orchestrator::{
    ParallelOrchestrator, StrategyMap, StrategyStep, OrchestrationState,
    parallel::StepState
};
use std::sync::Arc;
use std::path::Path;
use tokio_util::sync::CancellationToken;

#[tokio::main]
async fn main() {
    // Define workflow with approval step
    let mut strategy = StrategyMap::new("Production Deployment");

    strategy.add_step(StrategyStep::new(
        "validate_changes",
        "Validate code changes",
        "ValidationAgent",
        "Validate changes for {{ service }}",
        "validation_result",
    ));

    strategy.add_step(StrategyStep::new(
        "deploy",
        "Deploy to production",
        "DeploymentAgent",
        "Deploy {{ service }} with validation: {{ validation_result }}",
        "deployment_result",
    ));

    // Create orchestrator and register agents
    let mut orchestrator = ParallelOrchestrator::new(strategy.clone());
    orchestrator.add_agent("ValidationAgent", Arc::new(ValidationAgent));
    orchestrator.add_agent("DeploymentAgent", Arc::new(DeploymentAgent));

    let state_file = Path::new("/tmp/deployment_state.json");

    // First execution: run until pause
    let result = orchestrator
        .execute(
            "Deploy user-api service",
            CancellationToken::new(),
            None,                    // No resume (fresh start)
            Some(state_file),        // Save state on pause
        )
        .await
        .unwrap();

    if result.paused {
        println!("Workflow paused for approval:");
        println!("Reason: {}", result.pause_reason.unwrap());
        println!("State saved to: {:?}", state_file);

        // ================================================================
        // Human intervention: Review and approve
        // ================================================================

        // Read the saved state
        let state_json = std::fs::read_to_string(state_file)
            .expect("Failed to read state file");
        let mut saved_state: OrchestrationState =
            serde_json::from_str(&state_json)
                .expect("Failed to deserialize state");

        // Find the paused step
        let step_state = saved_state
            .execution_manager
            .get_state("deploy")
            .expect("Deploy step not found");

        // Inspect the approval request
        if let StepState::PausedForApproval { message, payload } = step_state {
            println!("Approval message: {}", message);
            println!("Deployment plan: {}", serde_json::to_string_pretty(&payload).unwrap());

            // User reviews and approves...
            // Modify the state: mark step as completed
            saved_state
                .execution_manager
                .set_state("deploy", StepState::Completed);

            // Inject approved deployment result into context
            saved_state.context.insert(
                "deployment_result".to_string(),
                json!({
                    "status": "approved_and_deployed",
                    "approved_by": "user@example.com",
                    "timestamp": "2024-01-15T10:30:00Z"
                })
            );
        }

        // Write modified state back
        let modified_json = serde_json::to_string_pretty(&saved_state)
            .expect("Failed to serialize state");
        std::fs::write(state_file, modified_json)
            .expect("Failed to write state");

        println!("Approval granted. Resuming workflow...");

        // ================================================================
        // Resume execution with approved state
        // ================================================================

        let mut orchestrator_resumed = ParallelOrchestrator::new(strategy);
        orchestrator_resumed.add_agent("ValidationAgent", Arc::new(ValidationAgent));
        orchestrator_resumed.add_agent("DeploymentAgent", Arc::new(DeploymentAgent));

        let final_result = orchestrator_resumed
            .execute(
                "Deploy user-api service",
                CancellationToken::new(),
                Some(state_file),    // Resume from modified state
                None,                // No need to save again
            )
            .await
            .unwrap();

        assert!(final_result.success, "Workflow should complete successfully");
        assert!(!final_result.paused, "Workflow should not pause again");

        println!("Deployment completed successfully!");
        println!("Final result: {:?}", final_result.context.get("deployment_result"));
    }
}

Key Features

  • Explicit Approval Contract: Agents use AgentOutput::RequiresApproval to clearly signal when human input is needed.
  • State Transparency: The saved state file contains all information needed for the user to make an informed decision.
  • Flexible Approval Process: Users can approve by simply editing the JSON state file, or build custom approval workflows (web UIs, CLI tools, etc.) that modify the state programmatically.
  • Seamless Resumption: The orchestrator resumes exactly where it left off, with no duplicate work or lost context.
  • Audit Trail: The state file serves as a complete record of what was requested, what was approved, and when.

Return Values

When an agent requests approval, the orchestrator returns a ParallelOrchestrationResult with:

  • paused = true: Indicates execution was paused
  • success = true: The pause is intentional and successful, not an error
  • pause_reason = Some(message): Contains the approval message from the agent
  • steps_executed = 0 (typically): No steps complete when pausing for approval
  • The state is saved to the file specified in save_state_to

After resuming with an approved state:

  • paused = false: Execution completed normally
  • success = true: Workflow completed successfully
  • steps_executed: Count of steps executed during resume (excludes already-completed steps)
  • context: Contains all outputs, including injected approval data

Future Directions

Image Handling Abstraction

A planned feature is to introduce a unified interface for handling image inputs across different LLM providers. This would abstract away the complexities of dealing with various data formats (e.g., Base64, URLs, local file paths) and model-specific requirements, providing a simple and consistent API for multimodal applications.