llm-toolkit 0.13.0

A low-level, unopinionated Rust toolkit for the LLM last mile problem.
Documentation

llm-toolkit

Basic llm tools for rust

Motivation & Philosophy

High-level LLM frameworks like LangChain, while powerful, can be problematic in Rust. Their heavy abstractions and complex type systems often conflict with Rust's strengths, imposing significant constraints and learning curves on developers.

There is a clear need for a different kind of tool: a low-level, unopinionated, and minimalist toolkit that provides robust "last mile" utilities for LLM integration, much like how candle provides core building blocks for ML without dictating the entire application architecture.

This document proposes the creation of llm-toolkit, a new library crate designed to be the professional's choice for building reliable, high-performance LLM-powered applications in Rust.

Core Design Principles

  1. Minimalist & Unopinionated: The toolkit will NOT impose any specific application architecture. Developers are free to design their own UseCases and Services. llm-toolkit simply provides a set of sharp, reliable "tools" to be called when needed.

  2. Focused on the "Last Mile Problem": The toolkit focuses on solving the most common and frustrating problems that occur at the boundary between a strongly-typed Rust application and the unstructured, often unpredictable string-based responses from LLM APIs.

  3. Minimal Dependencies: The toolkit will have minimal dependencies (primarily serde and minijinja) to ensure it can be added to any Rust project with negligible overhead and maximum compatibility.

Features

Feature Area Description Key Components Status
Content Extraction Safely extracting structured data (like JSON) from unstructured LLM responses. extract module (FlexibleExtractor, extract_json) Implemented
Prompt Generation Building complex prompts from Rust data structures with a powerful templating engine. prompt! macro, #[derive(ToPrompt)], #[derive(ToPromptSet)] Implemented
Multi-Target Prompts Generate multiple prompt formats from a single data structure for different contexts. ToPromptSet trait, #[prompt_for(...)] attributes Implemented
Context-Aware Prompts Generate prompts for a type within the context of another (e.g., a Tool for an Agent). ToPromptFor<T> trait, #[derive(ToPromptFor)] Implemented
Example Aggregation Combine examples from multiple data structures into a single formatted section. examples_section! macro Implemented
External Prompt Templates Load prompt templates from external files to separate prompts from Rust code. #[prompt(template_file = "...")] attribute Implemented
Type-Safe Intent Definition Generate prompt builders and extractors from a single enum definition. #[define_intent] macro Implemented
Intent Extraction Extracting structured intents (e.g., enums) from LLM responses. intent module (IntentFrame, IntentExtractor) Implemented
Agent API Define reusable AI agents with expertise and structured outputs. Agent trait, #[derive(Agent)] macro Implemented
Auto-JSON Enforcement Automatically add JSON schema instructions to agent prompts for better LLM compliance. #[derive(Agent)] with ToPrompt::prompt_schema() integration Implemented
Built-in Retry Automatic retry on transient errors (ParseError, ProcessError, IoError) with configurable attempts. max_retries attribute, AgentError::is_retryable() Implemented
Multi-Modal Payload Pass text and images to agents through a unified Payload interface with backward compatibility. Payload, PayloadContent types Implemented
Multi-Agent Orchestration Coordinate multiple agents to execute complex workflows with adaptive error recovery. Orchestrator, BlueprintWorkflow, StrategyMap Implemented
Resilient Deserialization Deserializing LLM responses into Rust types, handling schema variations. (Planned) Planned

Prompt Generation

llm-toolkit offers three powerful and convenient ways to generate prompts, powered by the minijinja templating engine.

1. Ad-hoc Prompts with prompt! macro

For quick prototyping and flexible prompt creation, the prompt! macro provides a println!-like experience. You can pass any serde::Serialize-able data as context.

use llm_toolkit::prompt::prompt;
use serde::Serialize;

#[derive(Serialize)]
struct User {
    name: &'static str,
    role: &'static str,
}

let user = User { name: "Mai", role: "UX Engineer" };
let task = "designing a new macro";

let p = prompt!(
    "User {{user.name}} ({{user.role}}) is currently {{task}}.",
    user = user,
    task = task
).unwrap();

assert_eq!(p, "User Mai (UX Engineer) is currently designing a new macro.");

2. Structured Prompts with #[derive(ToPrompt)]

For core application logic, you can derive the ToPrompt trait on your structs to generate prompts in a type-safe way.

Setup:

First, enable the derive feature in your Cargo.toml:

[dependencies]
llm-toolkit = { version = "0.1.0", features = ["derive"] }
serde = { version = "1.0", features = ["derive"] }

Usage:

Then, use the #[derive(ToPrompt)] and #[prompt(...)] attributes on your struct. The struct must also derive serde::Serialize.

use llm_toolkit::ToPrompt;
use serde::Serialize;

#[derive(ToPrompt, Serialize)]
#[prompt(template = "USER PROFILE:\nName: {{name}}\nRole: {{role}}")]
struct UserProfile {
    name: &'static str,
    role: &'static str,
}

let user = UserProfile {
    name: "Yui",
    role: "World-Class Pro Engineer",
};

let p = user.to_prompt();
// The following would be printed:
// USER PROFILE:
// Name: Yui
// Role: World-Class Pro Engineer

Default Formatting and Field Attributes

If you omit the #[prompt(template = "...")] attribute on a struct, ToPrompt will automatically generate a key-value representation of the struct's fields. You can control this output with field-level attributes:

Attribute Description
#[prompt(rename = "new_name")] Overrides the key with "new_name".
#[prompt(skip)] Excludes the field from the output.
#[prompt(format_with = "path::to::func")] Uses a custom function to format the field's value.

The key for each field is determined with the following priority:

  1. #[prompt(rename = "...")] attribute.
  2. Doc comment (/// ...) on the field.
  3. The field's name (fallback).

Comprehensive Example:

use llm_toolkit::ToPrompt;
use llm_toolkit_macros::ToPrompt; // Make sure to import the derive macro
use serde::Serialize;

// A custom formatting function
fn format_id(id: &u64) -> String {
    format!("user-{}", id)
}

#[derive(ToPrompt, Serialize)]
struct AdvancedUser {
    /// The user's unique identifier
    id: u64,

    #[prompt(rename = "full_name")]
    name: String,

    // This field will not be included in the prompt
    #[prompt(skip)]
    internal_hash: String,

    // This field will use a custom formatting function for its value
    #[prompt(format_with = "format_id")]
    formatted_id: u64,
}

let user = AdvancedUser {
    id: 123,
    name: "Mai".to_string(),
    internal_hash: "abcdef".to_string(),
    formatted_id: 123,
};

let p = user.to_prompt();
// The following would be generated:
// The user's unique identifier: 123
// full_name: Mai
// formatted_id: user-123

Tip: Handling Special Characters in Templates

When using raw string literals (r#"..."#) for your templates, be aware of a potential parsing issue if your template content includes the # character (e.g., in a hex color code like "#FFFFFF").

The macro parser can sometimes get confused by the inner #. To avoid this, you can use a different number of # symbols for the raw string delimiter.

Problematic Example:

// This might fail to parse correctly
#[prompt(template = r#"{"color": "#FFFFFF"}"#)]
struct Color { /* ... */ }

Solution:

// Use r##"..."## to avoid ambiguity
#[prompt(template = r##"{"color": "#FFFFFF"}"##)]
struct Color { /* ... */ }

Using External Template Files

For larger prompts, you can separate them into external files (.jinja, .txt, etc.) and reference them using the template_file attribute. This improves code readability and makes prompts easier to manage.

You can also enable compile-time validation of your templates with validate = true.

use llm_toolkit::ToPrompt;
use serde::Serialize;

// In templates/user_profile.jinja:
// Name: {{ name }}
// Email: {{ email }}

#[derive(ToPrompt, Serialize)]
#[prompt(
    template_file = "templates/user_profile.jinja",
    validate = true
)]
struct UserFromTemplate {
    name: String,
    email: String,
}

let user = UserFromTemplate {
    name: "Yui".to_string(),
    email: "yui@example.com".to_string(),
};

let p = user.to_prompt();
// The following would be generated from the file:
// Name: Yui
// Email: yui@example.com

3. Enum Documentation with #[derive(ToPrompt)]

For enums, the ToPrompt derive macro provides flexible ways to generate prompts. It distinguishes between instance-level prompts (describing a single variant) and type-level schema (describing all possible variants).

Instance vs. Type-Level Prompts

use llm_toolkit::ToPrompt;

/// Represents different user intents for a chatbot
#[derive(ToPrompt)]
pub enum UserIntent {
    /// User wants to greet or say hello
    Greeting,
    /// User is asking for help or assistance
    Help,
}

// Instance-level: describe the current variant only
let intent = UserIntent::Greeting;
let prompt = intent.to_prompt();
// Output: "Greeting: User wants to greet or say hello"

// Type-level: describe all possible variants
let schema = UserIntent::prompt_schema();
// Output:
// UserIntent: Represents different user intents for a chatbot
//
// Possible values:
// - Greeting: User wants to greet or say hello
// - Help: User is asking for help or assistance

When to use which:

  • value.to_prompt() - When you need to describe a specific enum value to the LLM (e.g., "The user selected: Greeting")
  • Enum::prompt_schema() - When you need to explain all possible options to the LLM (e.g., "Choose one of these intents...")

Advanced Attribute Controls

The ToPrompt derive macro supports powerful attribute-based controls for fine-tuning the generated prompts:

  • #[prompt("...")] - Provide a custom description that overrides the doc comment
  • #[prompt(skip)] - Exclude a variant from the schema (but the variant name is still shown at instance level)
  • No attribute - Variants without doc comments or attributes will show just the variant name

Here's a comprehensive example showcasing all features:

use llm_toolkit::ToPrompt;

/// Represents different actions a user can take in the system
#[derive(ToPrompt)]
pub enum UserAction {
    /// User wants to create a new document
    CreateDocument,

    /// User is searching for existing content
    Search,

    #[prompt("Custom: User is updating their profile settings and preferences")]
    UpdateProfile,

    #[prompt(skip)]
    InternalDebugAction,

    DeleteItem,
}

// Instance-level prompts
let action1 = UserAction::CreateDocument;
assert_eq!(action1.to_prompt(), "CreateDocument: User wants to create a new document");

let action2 = UserAction::InternalDebugAction;
assert_eq!(action2.to_prompt(), "InternalDebugAction");  // Skipped variants show name only

// Type-level schema
let schema = UserAction::prompt_schema();
// Output:
// UserAction: Represents different actions a user can take in the system
//
// Possible values:
// - CreateDocument: User wants to create a new document
// - Search: User is searching for existing content
// - UpdateProfile: Custom: User is updating their profile settings and preferences
// - DeleteItem
//
// Note: InternalDebugAction is excluded from schema due to #[prompt(skip)]

Behavior of #[prompt(skip)]:

  • At instance level (value.to_prompt()): Shows only the variant name
  • At type level (Enum::prompt_schema()): Completely excluded from the schema

4. Multi-Target Prompts with #[derive(ToPromptSet)]

For applications that need to generate different prompt formats from the same data structure for various contexts (e.g., human-readable vs. machine-parsable, or different LLM models), the ToPromptSet derive macro enables powerful multi-target prompt generation.

Basic Multi-Target Setup

use llm_toolkit::ToPromptSet;
use serde::Serialize;

#[derive(ToPromptSet, Serialize)]
#[prompt_for(name = "Visual", template = "## {{title}}\n\n> {{description}}")]
struct Task {
    title: String,
    description: String,

    #[prompt_for(name = "Agent")]
    priority: u8,

    #[prompt_for(name = "Agent", rename = "internal_id")]
    id: u64,

    #[prompt_for(skip)]
    is_dirty: bool,
}

let task = Task {
    title: "Implement feature".to_string(),
    description: "Add new functionality".to_string(),
    priority: 1,
    id: 42,
    is_dirty: false,
};

// Generate visual-friendly prompt using template
let visual_prompt = task.to_prompt_for("Visual")?;
// Output: "## Implement feature\n\n> Add new functionality"

// Generate agent-friendly prompt with key-value format
let agent_prompt = task.to_prompt_for("Agent")?;
// Output: "title: Implement feature\ndescription: Add new functionality\npriority: 1\ninternal_id: 42"

Advanced Features

Custom Formatting Functions:

fn format_priority(priority: &u8) -> String {
    match priority {
        1 => "Low".to_string(),
        2 => "Medium".to_string(),
        3 => "High".to_string(),
        _ => "Unknown".to_string(),
    }
}

#[derive(ToPromptSet, Serialize)]
struct FormattedTask {
    title: String,

    #[prompt_for(name = "Human", format_with = "format_priority")]
    priority: u8,
}

Multimodal Support:

use llm_toolkit::prompt::{PromptPart, ToPrompt};

#[derive(ToPromptSet, Serialize)]
#[prompt_for(name = "Multimodal", template = "Analyzing image: {{caption}}")]
struct ImageTask {
    caption: String,

    #[prompt_for(name = "Multimodal", image)]
    image: ImageData,
}

// Generate multimodal prompt with both text and image
let parts = task.to_prompt_parts_for("Multimodal")?;
// Returns Vec<PromptPart> with both Image and Text parts

Target Configuration Options

Attribute Description Example
#[prompt_for(name = "TargetName")] Include field in specific target #[prompt_for(name = "Debug")]
#[prompt_for(name = "Target", template = "...")] Use template for target (struct-level) #[prompt_for(name = "Visual", template = "{{title}}")]
#[prompt_for(name = "Target", rename = "new_name")] Rename field for specific target #[prompt_for(name = "API", rename = "task_id")]
#[prompt_for(name = "Target", format_with = "func")] Custom formatting function #[prompt_for(name = "Human", format_with = "format_date")]
#[prompt_for(name = "Target", image)] Mark field as image content #[prompt_for(name = "Vision", image)]
#[prompt_for(skip)] Exclude field from all targets #[prompt_for(skip)]

When to use ToPromptSet vs ToPrompt:

  • ToPrompt: Single, consistent prompt format across your application
  • ToPromptSet: Multiple prompt formats needed for different contexts (human vs. machine, different LLM models, etc.)

5. Context-Aware Prompts with #[derive(ToPromptFor)]

Sometimes, the way you want to represent a type in a prompt depends on the context. For example, a Tool might have a different prompt representation when being presented to an Agent versus a human user. The ToPromptFor<T> trait and its derive macro solve this problem.

It allows a struct to generate a prompt for a specific target type, using the target's data in its template.

Usage:

The struct using ToPromptFor must derive Serialize and ToPrompt. The target struct passed to it must also derive Serialize.

use llm_toolkit::{ToPrompt, ToPromptFor};
use serde::Serialize;

#[derive(Serialize)]
struct Agent {
    name: String,
    role: String,
}

#[derive(ToPrompt, ToPromptFor, Serialize, Default)]
#[prompt(mode = "full")] // Enables schema_only, example_only modes for ToPrompt
#[prompt_for(
    target = "Agent",
    template = r#"
Hello, {{ target.name }}. As a {{ target.role }}, you can use the following tool.

### Tool Schema
{self:schema_only}

### Tool Example
{self:example_only}

The tool's name is '{{ self.name }}'.
"#
)]
/// A tool that can be used by an agent.
struct Tool {
    /// The name of the tool.
    #[prompt(example = "file_writer")]
    name: String,
    /// A description of what the tool does.
    #[prompt(example = "Writes content to a file.")]
    description: String,
}

let agent = Agent {
    name: "Yui".to_string(),
    role: "Pro Engineer".to_string(),
};

let tool = Tool {
    name: "file_writer_tool".to_string(),
    ..Default::default()
};

let prompt = tool.to_prompt_for(&agent);
// Generates a detailed prompt using the agent's name and role,
// and the tool's own schema and example.

6. Aggregating Examples with examples_section!

When providing few-shot examples to an LLM, it's often useful to show examples of all the data structures it might need to generate. The examples_section! macro automates this by creating a clean, formatted Markdown block from a list of types.

Usage:

All types passed to the macro must derive ToPrompt and Default, and have #[prompt(mode = "full")] and #[prompt(example = "...")] attributes to provide meaningful examples.

use llm_toolkit::{examples_section, ToPrompt};
use serde::Serialize;

#[derive(ToPrompt, Default, Serialize)]
#[prompt(mode = "full")]
/// Represents a user of the system.
struct User {
    /// A unique identifier for the user.
    #[prompt(example = "user-12345")]
    id: String,
    /// The user's full name.
    #[prompt(example = "Taro Yamada")]
    name: String,
}

#[derive(ToPrompt, Default, Serialize)]
#[prompt(mode = "full")]
/// Defines a concept for image generation.
struct Concept {
    /// The main idea for the art.
    #[prompt(example = "a futuristic city at night")]
    prompt: String,
    /// The desired style.
    #[prompt(example = "anime")]
    style: String,
}

let examples = examples_section!(User, Concept);
// The macro generates the following Markdown string:
//
// ### Examples
//
// Here are examples of the data structures you should use.
//
// ---
// #### `User`
// {
//   "id": "user-12345",
//   "name": "Taro Yamada"
// }
// ---
// #### `Concept`
// {
//   "prompt": "a futuristic city at night",
//   "style": "anime"
// }
// ---

Intent Extraction with IntentFrame

llm-toolkit provides a safe and robust way to extract structured intents (like enums) from an LLM's response. The core component for this is the IntentFrame struct.

It solves a common problem: ensuring the tag you use to frame a query in a prompt (<query>...</query>) and the tag you use to extract the response (<intent>...</intent>) are managed together, preventing typos and mismatches.

Usage:

IntentFrame is used for two things: wrapping your input and extracting the structured response.

use llm_toolkit::{IntentFrame, IntentExtractor, IntentError};
use std::str::FromStr;

// 1. Define your intent enum
#[derive(Debug, PartialEq)]
enum UserIntent {
    Search,
    GetWeather,
}

impl FromStr for UserIntent {
    type Err = ();
    fn from_str(s: &str) -> Result<Self, Self::Err> {
        match s.to_lowercase().as_str() {
            "search" => Ok(UserIntent::Search),
            "getweather" => Ok(UserIntent::GetWeather),
            _ => Err(()),
        }
    }
}

// 2. Create an IntentFrame
// The first tag is for wrapping input, the second is for extracting the response.
let frame = IntentFrame::new("user_query", "intent");

// 3. Wrap your input to create part of your prompt
let user_input = "what is the weather in Tokyo?";
let wrapped_input = frame.wrap(user_input);
// wrapped_input is now "<user_query>what is the weather in Tokyo?</user_query>"

// (Imagine sending a full prompt with wrapped_input to an LLM here)

// 4. Extract the intent from the LLM's response
let llm_response = "Okay, I will get the weather. <intent>GetWeather</intent>";
let intent: UserIntent = frame.extract_intent(llm_response).unwrap();

assert_eq!(intent, UserIntent::GetWeather);

Type-Safe Intents with define_intent!

To achieve the highest level of type safety and developer experience, the #[define_intent] macro automates the entire process of creating and extracting intents.

It solves a critical problem: by defining the prompt, the intent enum, and the extraction logic in a single place, it becomes impossible for the prompt-building code and the response-parsing code to diverge.

Usage:

Simply annotate an enum with #[define_intent] and provide the prompt template and extractor tag in an #[intent(...)] attribute.

use llm_toolkit::{define_intent, IntentExtractor, IntentError};
use std::str::FromStr;

#[define_intent]
#[intent(
    prompt = r#"
Please classify the user's request. The available intents are:
{{ intents_doc }}

User request: <query>{{ user_request }}</query>
"#,
    extractor_tag = "intent"
)]
/// The user's primary intent.
pub enum UserIntent {
    /// The user wants to know the weather.
    GetWeather,
    /// The user wants to send a message.
    SendMessage,
}

// The macro automatically generates:
// 1. A function: `build_user_intent_prompt(user_request: &str) -> String`
// 2. A struct: `pub struct UserIntentExtractor;` which implements `IntentExtractor<UserIntent>`

// --- How to use the generated code ---

// 1. Build the prompt
let prompt = build_user_intent_prompt("what's the weather like in London?");
// The prompt will include the formatted documentation from the enum.

// 2. Use the generated extractor to parse the LLM's response
let llm_response = "Understood. The user wants to know the weather. <intent>GetWeather</intent>";
let extractor = UserIntentExtractor;
let intent = extractor.extract_intent(llm_response).unwrap();

assert_eq!(intent, UserIntent::GetWeather);

This macro provides:

  • Ultimate Type Safety: The prompt and the parser are guaranteed to be in sync.
  • Improved DX: Eliminates boilerplate code for prompt functions and extractors.
  • Single Source of Truth: The enum becomes the single, reliable source for all intent-related logic.

Multi-Tag Mode for Complex Action Extraction

For more complex scenarios where you need to extract multiple action tags from a single LLM response, the define_intent! macro supports a multi_tag mode. This is particularly useful for agent-like applications where the LLM might use multiple XML-style action tags in a single response.

Setup:

To use multi-tag mode, add both dependencies to your Cargo.toml:

[dependencies]
llm-toolkit = { version = "0.8.3", features = ["derive"] }
quick-xml = "0.38"  # Required for multi_tag mode

Then define your actions:

use llm_toolkit::define_intent;

#[define_intent(mode = "multi_tag")]
#[intent(
    prompt = r#"Based on the user request, generate a response using the following available actions.

**Available Actions:**
{{ actions_doc }}

**User Request:**
{{ user_request }}"#
)]
#[derive(Debug, Clone, PartialEq)]
pub enum ChatAction {
    /// Get the current weather
    #[action(tag = "GetWeather")]
    GetWeather,

    /// Show an image to the user
    #[action(tag = "ShowImage")]
    ShowImage {
        /// The URL of the image to display
        #[action(attribute)]
        href: String,
    },

    /// Send a message to someone
    #[action(tag = "SendMessage")]
    SendMessage {
        /// The recipient of the message
        #[action(attribute)]
        to: String,
        /// The content of the message
        #[action(inner_text)]
        content: String,
    },
}

Action Tag Attributes:

  • #[action(tag = "TagName")] - Defines the XML tag name for this action
  • #[action(attribute)] - Maps a field to an XML attribute (e.g., <Tag field="value" />)
  • #[action(inner_text)] - Maps a field to the inner text content (e.g., <Tag>field_value</Tag>)

Generated Functions: The macro generates:

  1. build_chat_action_prompt(user_request: &str) -> String - Builds the prompt with action documentation
  2. ChatActionExtractor struct with methods:
    • extract_actions(&self, text: &str) -> Result<Vec<ChatAction>, IntentError> - Extract all actions from response
    • transform_actions<F>(&self, text: &str, transformer: F) -> String - Transform action tags using a closure
    • strip_actions(&self, text: &str) -> String - Remove all action tags from text

Usage Example:

// 1. Build the prompt
let prompt = build_chat_action_prompt("What's the weather and show me a cat picture?");

// 2. Extract multiple actions from LLM response
let llm_response = r#"
Here's the weather: <GetWeather />
And here's a cat picture: <ShowImage href="https://cataas.com/cat" />
<SendMessage to="user">I've completed both requests!</SendMessage>
"#;

let extractor = ChatActionExtractor;
let actions = extractor.extract_actions(llm_response)?;
// Returns: [ChatAction::GetWeather, ChatAction::ShowImage { href: "https://cataas.com/cat" }, ...]

// 3. Transform action tags to human-readable descriptions
let transformed = extractor.transform_actions(llm_response, |action| match action {
    ChatAction::GetWeather => "[Checking weather...]".to_string(),
    ChatAction::ShowImage { href } => format!("[Displaying image from {}]", href),
    ChatAction::SendMessage { to, content } => format!("[Message to {}: {}]", to, content),
});
// Result: "Here's the weather: [Checking weather...]\nAnd here's a cat picture: [Displaying image from https://cataas.com/cat]\n[Message to user: I've completed both requests!]"

// 4. Strip all action tags for clean text output
let clean_text = extractor.strip_actions(llm_response);
// Result: "Here's the weather: \nAnd here's a cat picture: \n"

When to Use Multi-Tag Mode:

  • Agent Applications: When building AI agents that perform multiple actions per response
  • Rich LLM Interactions: When you need structured actions mixed with natural language
  • Action Processing Pipelines: When you need to extract, transform, or clean action-based responses

Agent API and Multi-Agent Orchestration

llm-toolkit provides a powerful agent framework for building multi-agent LLM systems with a clear separation of concerns.

Agent API: Capability and Intent Separation

The Agent API follows the principle of capability and intent separation:

  • Capability: An agent declares what it can do (expertise) and what it produces (Output)
  • Intent: The orchestrator provides what needs to be done as a Payload (multi-modal content)

This separation enables maximum reusability and flexibility.

Multi-Modal Agent Communication with Payload

The execute() method accepts a Payload type that supports multi-modal content including text and images. This enables agents to process both textual instructions and visual inputs.

Basic Usage (Text Only):

use llm_toolkit::agent::Agent;

// String automatically converts to Payload for backward compatibility
let result = agent.execute("Analyze this text".to_string().into()).await?;

// Or use Payload explicitly
use llm_toolkit::agent::Payload;
let payload = Payload::text("Analyze this text");
let result = agent.execute(payload).await?;

Multi-Modal Usage (Text + Images):

use llm_toolkit::agent::Payload;
use std::path::PathBuf;

// Combine text and images
let payload = Payload::text("What's in this image?")
    .with_image(PathBuf::from("/path/to/image.png"));

let result = agent.execute(payload).await?;

// Or from raw image data
let image_bytes = std::fs::read("/path/to/image.png")?;
let payload = Payload::text("Describe this screenshot")
    .with_image_data(image_bytes);

Backward Compatibility:

All existing code using String continues to work thanks to automatic conversion:

// This still works unchanged
let result = agent.execute("Simple text intent".to_string().into()).await?;

Note: While the Payload type supports images, not all agent backends currently process them. ClaudeCodeAgent and GeminiAgent will log a warning if images are included but not yet supported by the CLI integration.

Defining Agents: Two Approaches

llm-toolkit provides two ways to define agents, each optimized for different use cases:

1. Simple Agents with #[derive(Agent)] (Recommended for Prototyping)

For quick prototyping and simple use cases, use the derive macro:

use llm_toolkit::Agent;
use serde::{Deserialize, Serialize};

#[derive(Serialize, Deserialize, Debug)]
struct ArticleDraft {
    title: String,
    body: String,
    references: Vec<String>,
}

// Simple stateless agent
#[derive(Agent)]
#[agent(
    expertise = "Research topics and generate well-structured article drafts with citations",
    output = "ArticleDraft"
)]
struct ContentSynthesizerAgent;

// Usage - extremely simple
#[tokio::main]
async fn main() {
    let agent = ContentSynthesizerAgent;
    let result: ArticleDraft = agent.execute("Write about Rust async/await".to_string().into()).await.unwrap();
    println!("Generated: {}", result.title);
}

Features:

  • ✅ Simplest possible interface
  • ✅ Minimal boilerplate
  • ✅ Perfect for prototyping
  • ⚠️ Creates internal agent on each execute() call (stateless)

Automatic JSON Schema Enforcement:

When using #[derive(Agent)] with a structured output type (non-String), the macro automatically adds JSON schema instructions to the agent's expertise. This dramatically improves LLM compliance and reduces parse errors.

use llm_toolkit::{Agent, ToPrompt};
use serde::{Deserialize, Serialize};

#[derive(Serialize, Deserialize, Debug, ToPrompt)]
#[prompt(mode = "full")]
struct ReviewResult {
    /// Overall quality score from 0 to 100
    quality_score: u8,

    /// List of identified issues
    issues: Vec<String>,

    /// Actionable recommendations for improvement
    recommendations: Vec<String>,
}

#[derive(Agent)]
#[agent(
    expertise = "Review code quality and provide detailed feedback",
    output = "ReviewResult"
)]
struct CodeReviewAgent;

// The agent's expertise() method automatically returns:
// "Review code quality and provide detailed feedback
//
// IMPORTANT: Respond with valid JSON matching this schema:
//
// ### Schema for `ReviewResult`
// {
//   "quality_score": "number", // Overall quality score from 0 to 100,
//   "issues": "string[]", // List of identified issues,
//   "recommendations": "string[]" // Actionable recommendations for improvement
// }"

Schema Generation Strategy (3-Tier Auto-Inference):

  1. With ToPrompt + doc comments → Detailed schema with field descriptions

    • Requires: #[derive(ToPrompt)] + #[prompt(mode = "full")]
    • Best experience: Full field-level documentation
  2. With ToPrompt (no doc comments) → Basic schema with field names

    • Requires: #[derive(ToPrompt)] + #[prompt(mode = "full")]
    • Good: Type-safe field names
  3. String output → No JSON enforcement

    • For plain text responses

Recommendation: Always use #[derive(ToPrompt)] with #[prompt(mode = "full")] for structured outputs to get the best LLM compliance.

Automatic Retry on Transient Errors:

All agents automatically retry on transient errors (ParseError, ProcessError, IoError) without any configuration:

#[derive(Agent)]
#[agent(
    expertise = "Extract data from documents",
    output = "ExtractedData"
)]
struct DataExtractorAgent;

// Automatically retries up to 3 times on:
// - ParseError: LLM output malformed
// - ProcessError: Process communication issues
// - IoError: Temporary I/O failures
//
// Behavior:
// - Attempt 1 fails → wait 100ms → retry
// - Attempt 2 fails → wait 200ms → retry
// - Attempt 3 fails → wait 300ms → retry
// - All attempts exhausted → return error

Customizing Retry Behavior:

// Increase retry attempts for critical operations
#[agent(
    expertise = "...",
    output = "MyOutput",
    max_retries = 5  // Default is 3
)]
struct ResilientAgent;

// Disable retry for fast-fail scenarios
#[agent(
    expertise = "...",
    output = "MyOutput",
    max_retries = 0  // No retry
)]
struct NoRetryAgent;

Design Philosophy:

Agent-level retries are intentionally simple and limited (2-3 attempts, fixed delay):

  • Fail fast: Quickly report errors to the orchestrator
  • Orchestrator is smarter: Has broader context for complex error recovery
    • Try different agents
    • Redesign strategy
    • Escalate to human
  • System stability: Simple local retries + complex orchestration at the top = robust system

This design aligns with the Orchestrator's 3-stage error recovery (Tactical → Full Redesign → Human Escalation).

2. Advanced Agents with #[agent(...)] (Recommended for Production)

For production use, testing, and when you need agent injection:

use llm_toolkit::agent::impls::ClaudeCodeAgent;
use serde::{Deserialize, Serialize};

#[derive(Serialize, Deserialize, Debug)]
struct ArticleDraft {
    title: String,
    body: String,
    references: Vec<String>,
}

// Advanced agent with Generic support
#[llm_toolkit_macros::agent(
    expertise = "Research topics and generate well-structured article drafts with citations",
    output = "ArticleDraft"
)]
struct ContentSynthesizerAgent;

#[tokio::main]
async fn main() {
    // Method 1: Using Default
    let agent = ContentSynthesizerAgent::default();

    // Method 2: Convenience constructor with specific model
    let agent = ContentSynthesizerAgent::with_claude_model("opus-4");

    // Method 3: Inject custom agent
    let custom_claude = ClaudeCodeAgent::new().with_model_str("sonnet-4.5");
    let agent = ContentSynthesizerAgent::new(custom_claude);

    let result: ArticleDraft = agent.execute("Write about Rust async/await".to_string().into()).await.unwrap();
    println!("Generated: {}", result.title);
}

Practical Injection Examples:

use llm_toolkit::agent::impls::{ClaudeCodeAgent, GeminiAgent};

// Example 1: Environment-based agent selection
fn create_agent(env: &str) -> ContentSynthesizerAgent {
    match env {
        "production" => {
            let claude = ClaudeCodeAgent::new().with_model_str("opus-4");
            ContentSynthesizerAgent::new(claude)
        },
        "development" => {
            let claude = ClaudeCodeAgent::new().with_model_str("sonnet-4.5");
            ContentSynthesizerAgent::new(claude)
        },
        _ => ContentSynthesizerAgent::default()
    }
}

// Example 2: Switching between different LLM providers
fn create_agent_with_provider(provider: &str) -> ContentSynthesizerAgent {
    match provider {
        "claude" => {
            let inner = ClaudeCodeAgent::new().with_model_str("sonnet-4.5");
            ContentSynthesizerAgent::new(inner)
        },
        "gemini" => {
            let inner = GeminiAgent::new().with_model_str("gemini-2.0-flash");
            ContentSynthesizerAgent::new(inner)
        },
        _ => ContentSynthesizerAgent::default()
    }
}

// Example 3: Custom configuration injection
fn create_configured_agent() -> ContentSynthesizerAgent {
    let claude = ClaudeCodeAgent::new()
        .with_model_str("opus-4")
        .with_system_prompt("You are an expert technical writer focused on clarity and accuracy.");
    ContentSynthesizerAgent::new(claude)
}

Features:

  • ✅ Agent injection support (great for testing with mocks)
  • ✅ Reuses internal agent (efficient)
  • ✅ Static dispatch (compile-time optimization)
  • ✅ Multiple constructor patterns
  • ✅ Suitable for production use

Testing Example:

Agent injection makes testing simple and deterministic:

#[cfg(test)]
mod tests {
    use super::*;
    use llm_toolkit::agent::{Agent, AgentError, Payload};

    // Define a mock agent for testing
    struct MockAgent {
        response: String,
        call_count: std::cell::RefCell<usize>,
    }

    #[async_trait::async_trait]
    impl Agent for MockAgent {
        type Output = String;
        fn expertise(&self) -> &str { "mock" }
        async fn execute(&self, _: Payload) -> Result<String, AgentError> {
            *self.call_count.borrow_mut() += 1;
            Ok(self.response.clone())
        }
    }

    #[tokio::test]
    async fn test_with_mock() {
        // Inject deterministic mock for testing
        let mock = MockAgent {
            response: r#"{"title": "Test Article", "body": "Test content", "references": ["source1"]}"#.to_string(),
            call_count: std::cell::RefCell::new(0),
        };
        let agent = ContentSynthesizerAgent::new(mock);

        // Execute and verify
        let result = agent.execute("test".to_string().into()).await.unwrap();
        assert_eq!(result.title, "Test Article");
        assert_eq!(result.references.len(), 1);
    }

    #[tokio::test]
    async fn test_error_handling() {
        // Mock that returns an error
        struct ErrorAgent;

        #[async_trait::async_trait]
        impl Agent for ErrorAgent {
            type Output = String;
            fn expertise(&self) -> &str { "error mock" }
            async fn execute(&self, _: Payload) -> Result<String, AgentError> {
                Err(AgentError::ExecutionError("Simulated failure".to_string()))
            }
        }

        let agent = ContentSynthesizerAgent::new(ErrorAgent);
        let result = agent.execute("test".to_string().into()).await;
        assert!(result.is_err());
    }
}

Using Custom Agent Backends:

You can specify custom agent implementations (like Olama, local models, etc.) using default_inner:

// Define your custom agent
#[derive(Default, Clone)]
struct OlamaAgent {
    model: String,
}

impl OlamaAgent {
    fn new() -> Self { /* ... */ }
    fn with_model(self, model: &str) -> Self { /* ... */ }
}

use llm_toolkit::agent::Payload;

#[async_trait::async_trait]
impl Agent for OlamaAgent {
    type Output = String;
    fn expertise(&self) -> &str { "Olama agent" }
    async fn execute(&self, intent: Payload) -> Result<String, AgentError> {
        // Call Olama API
    }
}

// Create specialized agents using OlamaAgent as backend
#[llm_toolkit_macros::agent(
    expertise = "Writing technical articles",
    output = "ArticleDraft",
    default_inner = "OlamaAgent"  // Custom backend!
)]
struct ArticleWriterAgent;

#[llm_toolkit_macros::agent(
    expertise = "Reviewing Rust code",
    output = "CodeReview",
    default_inner = "OlamaAgent"  // Same backend, different expertise!
)]
struct CodeReviewerAgent;

// Usage:
let olama = OlamaAgent::new().with_model("llama3.1");
let writer = ArticleWriterAgent::new(olama.clone());
let reviewer = CodeReviewerAgent::new(olama);

This pattern lets you:

  • ✅ Reuse one backend (Olama, etc.) for multiple specialized agents
  • ✅ Each agent has unique expertise
  • ✅ Share configuration or customize per-agent
  • ✅ Easy testing with mock backends

When to use which:

  • #[derive(Agent)]: Quick scripts, prototyping, simple tools
  • #[agent(...)] with backend: Production with Claude/Gemini
  • #[agent(...)] with default_inner: Custom backends (Olama, local models, mocks)

Multi-Agent Orchestration

For complex workflows requiring multiple agents, the Orchestrator coordinates execution with adaptive error recovery.

Core Concepts

  • BlueprintWorkflow: A natural language description of your workflow (no rigid types needed)
  • StrategyMap: An ad-hoc execution plan generated by LLM based on available agents
  • Adaptive Redesign: Three-stage error recovery (Retry → Tactical → Full Regenerate)

Basic Orchestrator Usage

use llm_toolkit::orchestrator::{BlueprintWorkflow, Orchestrator};
use llm_toolkit::agent::impls::ClaudeCodeAgent;

#[tokio::main]
async fn main() {
    // Define workflow in natural language
    let blueprint = BlueprintWorkflow::new(r#"
        Technical Article Workflow:
        1. Analyze the topic and create an outline
        2. Research key concepts
        3. Write the main content
        4. Generate title and summary
        5. Review and refine
    "#.to_string());

    // Create orchestrator and add agents
    let mut orchestrator = Orchestrator::new(blueprint);
    orchestrator.add_agent(Box::new(ClaudeCodeAgent::new()));

    // Execute workflow - the orchestrator will:
    // - Generate an optimal execution strategy
    // - Assign agents to each step
    // - Handle errors with adaptive redesign
    let result = orchestrator.execute(
        "Write a beginner-friendly article about Rust ownership"
    ).await;

    match result.status {
        llm_toolkit::orchestrator::OrchestrationStatus::Success => {
            println!("✅ Workflow completed!");
            println!("Steps executed: {}", result.steps_executed);
            println!("Redesigns triggered: {}", result.redesigns_triggered);
            if let Some(output) = result.final_output {
                println!("\nFinal output:\n{}", output);
            }
        }
        llm_toolkit::orchestrator::OrchestrationStatus::Failure => {
            eprintln!("❌ Workflow failed: {:?}", result.error_message);
        }
    }
}

Advanced: Custom Agents with Orchestrator

You can combine custom agents (defined with #[derive(Agent)]) with the orchestrator:

#[derive(Serialize, Deserialize)]
struct ResearchData {
    sources: Vec<String>,
    key_points: Vec<String>,
}

#[derive(Agent)]
#[agent(
    expertise = "Deep research on technical topics with source citations",
    output = "ResearchData"
)]
struct ResearchAgent;

#[derive(Agent)]
#[agent(
    expertise = "Writing clear, beginner-friendly technical content",
    output = "ArticleDraft"
)]
struct WriterAgent;

// Add both to orchestrator
let mut orchestrator = Orchestrator::new(blueprint);
orchestrator.add_agent(Box::new(ResearchAgent));
orchestrator.add_agent(Box::new(WriterAgent));

// The orchestrator will automatically select the best agent for each step

Orchestrator Features

  • Natural Language Blueprints: Define workflows in plain English
  • Ad-hoc Strategy Generation: LLM generates execution plans based on available agents
  • 3-Stage Error Recovery:
    • Retry: For transient errors
    • Tactical Redesign: Modify failed steps and continue
    • Full Regenerate: Start over with a new strategy
  • Built-in Validation: Optional validation steps with InnerValidatorAgent
  • Smart Context Management: Automatic passing of outputs between steps with ToPrompt support

Smart Context Management with ToPrompt

The orchestrator automatically manages context between agent steps. When an agent produces output, the orchestrator stores it and makes it available to subsequent steps. If the output type implements ToPrompt, the orchestrator intelligently uses the human-readable prompt representation instead of raw JSON.

Why This Matters:

When you have complex output types (like enums with variant descriptions, or structs with rich formatting), you want the orchestrator to pass them to the next agent in a readable, LLM-friendly format—not as opaque JSON.

Example: Enum with ToPrompt

use llm_toolkit::{ToPrompt, Agent};
use serde::{Serialize, Deserialize};

// Define an enum with rich documentation
#[derive(ToPrompt, Serialize, Deserialize)]
pub enum AnalysisResult {
    /// The topic is technically sound and ready to proceed
    Approved,
    /// The topic needs revision due to technical inaccuracies
    NeedsRevision { reasons: Vec<String> },
    /// The topic is rejected as out of scope
    Rejected,
}

// Agent that produces this enum
#[derive(Agent)]
#[agent(
    expertise = "Analyze technical topics for accuracy and scope",
    output = "AnalysisResult"
)]
struct AnalyzerAgent;

How it works:

  1. Step 1: AnalyzerAgent produces AnalysisResult::NeedsRevision { reasons: [...] }
  2. Orchestrator stores two versions:
    • step_1_output: JSON representation {"NeedsRevision": {"reasons": [...]}}
    • step_1_output_prompt: ToPrompt representation with full descriptions
  3. Step 2: When building intent for the next agent, the orchestrator prefers the _prompt version
  4. Result: Next agent receives rich, human-readable context instead of cryptic JSON

Setup:

To enable ToPrompt support for your agent outputs, use AgentAdapter::with_to_prompt:

use llm_toolkit::agent::AgentAdapter;

let agent = MyAnalyzerAgent::new();
let adapter = AgentAdapter::with_to_prompt(
    agent,
    |output: &AnalysisResult| output.to_prompt()
);

orchestrator.add_agent(adapter);

Benefits:

  • Better LLM Understanding: Complex types are presented in natural language, not JSON
  • Automatic Fallback: If ToPrompt is not implemented, JSON is used (backward compatible)
  • Type-Safe: The conversion is compile-time verified through the type system
  • Zero Overhead: Only computed once per step and cached in context

Run the example:

cargo run --example orchestrator_basic --features agent,derive

Future Directions

Image Handling Abstraction

A planned feature is to introduce a unified interface for handling image inputs across different LLM providers. This would abstract away the complexities of dealing with various data formats (e.g., Base64, URLs, local file paths) and model-specific requirements, providing a simple and consistent API for multimodal applications.