1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
use num_traits::{One, Zero};
use std::fmt;
use std::iter::FromIterator;
use std::ops::RangeInclusive;
use crate::Position;
/// A range on a board.
///
/// This range consists of four pieces of information: the minimum and maximum x-coordinate values and the minimum and maximum y-coordinate values.
/// The type parameter `T` is used as the type of the x- and y-coordinate values.
///
/// # Examples
///
/// ```
/// use life_backend::{BoardRange, Position};
/// let positions = [Position(0, 0), Position(1, 0), Position(2, 0), Position(1, 1)];
/// let range: BoardRange<_> = positions.iter().collect();
/// let min_x = range.x().start();
/// let max_x = range.x().end();
/// let min_y = range.y().start();
/// let max_y = range.y().end();
/// assert_eq!(min_x, &0);
/// assert_eq!(max_x, &2);
/// assert_eq!(min_y, &0);
/// assert_eq!(max_y, &1);
/// ```
///
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct BoardRange<T>(RangeInclusive<T>, RangeInclusive<T>);
// Inherent methods
impl<T> BoardRange<T> {
/// Creates an empty range.
///
/// # Examples
///
/// ```
/// use life_backend::BoardRange;
/// let range = BoardRange::<i32>::new();
/// assert!(range.is_empty());
/// ```
///
pub fn new() -> Self
where
T: Zero + One,
{
Self(T::one()..=T::zero(), T::one()..=T::zero())
}
// Implementation of public extend().
fn extend<U>(self, iter: U) -> Self
where
T: Copy + PartialOrd + Zero + One,
U: Iterator<Item = Position<T>>,
{
iter.fold(self, |acc, Position(x, y)| {
if acc.is_empty() {
Self(x..=x, y..=y)
} else {
let (range_x, range_y) = acc.into_inner();
let (x_start, x_end) = range_x.into_inner();
let (y_start, y_end) = range_y.into_inner();
Self(
(if x_start < x { x_start } else { x })..=(if x_end > x { x_end } else { x }),
(if y_start < y { y_start } else { y })..=(if y_end > y { y_end } else { y }),
)
}
})
}
// Implementation of public from_iter().
fn from_iter<U>(iter: U) -> Self
where
T: Copy + PartialOrd + Zero + One,
U: Iterator<Item = Position<T>>,
{
Self::new().extend(iter)
}
/// Returns the range on the x-coordinate.
///
/// # Examples
///
/// ```
/// use life_backend::{BoardRange, Position};
/// let positions = [Position(0, 0), Position(1, 0), Position(2, 0), Position(1, 1)];
/// let range: BoardRange<_> = positions.iter().collect();
/// assert_eq!(range.x(), &(0..=2));
/// ```
///
#[inline]
pub const fn x(&self) -> &RangeInclusive<T> {
&self.0
}
/// Returns the range on the y-coordinate.
///
/// # Examples
///
/// ```
/// use life_backend::{BoardRange, Position};
/// let positions = [Position(0, 0), Position(1, 0), Position(2, 0), Position(1, 1)];
/// let range: BoardRange<_> = positions.iter().collect();
/// assert_eq!(range.y(), &(0..=1));
/// ```
///
#[inline]
pub const fn y(&self) -> &RangeInclusive<T> {
&self.1
}
/// Destructures [`BoardRange`] into (range-x, range-y).
///
/// # Examples
///
/// ```
/// use life_backend::{BoardRange, Position};
/// let positions = [Position(0, 0), Position(1, 0), Position(2, 0), Position(1, 1)];
/// let range: BoardRange<_> = positions.iter().collect();
/// let (range_x, range_y) = range.into_inner();
/// assert_eq!(range_x, 0..=2);
/// assert_eq!(range_y, 0..=1);
/// ```
///
#[inline]
pub fn into_inner(self) -> (RangeInclusive<T>, RangeInclusive<T>) {
(self.0, self.1)
}
/// Returns `true` if the range contains no area.
///
/// If the range is empty, return values of methods are defined as the following:
///
/// - `range.is_empty()` is `true`
/// - `range.x().is_empty()` and `range.y().is_empty()` are `true`
/// - `range.x().start()`, `range.x().end()`, `range.y().start()` and `range.y().end()` are unspecified
///
/// # Examples
///
/// ```
/// use life_backend::{BoardRange, Position};
/// let positions = [Position(0, 0), Position(1, 0), Position(2, 0), Position(1, 1)];
/// let range: BoardRange<_> = positions.iter().collect();
/// assert!(!range.is_empty());
/// ```
///
#[inline]
pub fn is_empty(&self) -> bool
where
T: PartialOrd,
{
self.x().is_empty()
}
}
// Trait implementations
impl<T> Default for BoardRange<T>
where
T: Zero + One,
{
/// Returns the default value of the type, same as the return value of [`new()`].
///
/// [`new()`]: #method.new
///
#[inline]
fn default() -> Self {
Self::new()
}
}
impl<T> fmt::Display for BoardRange<T>
where
T: PartialOrd + fmt::Display,
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
if self.is_empty() {
write!(f, "(empty)")?;
} else {
write!(
f,
"(x:[{}, {}], y:[{}, {}])",
self.x().start(),
self.x().end(),
self.y().start(),
self.y().end()
)?;
}
Ok(())
}
}
impl<'a, T> FromIterator<&'a Position<T>> for BoardRange<T>
where
T: Copy + PartialOrd + Zero + One + 'a,
{
/// Creates a value from a non-owning iterator over a series of [`&Position<T>`].
/// Each item in the series represents an immutable reference of a position to be contained to the range.
///
/// [`&Position<T>`]: Position
///
/// # Examples
///
/// ```
/// use life_backend::{BoardRange, Position};
/// let positions = [Position(0, 0), Position(1, 0), Position(2, 0), Position(1, 1)];
/// let range: BoardRange<_> = positions.iter().collect();
/// assert!(!range.is_empty());
/// assert_eq!(range.x(), &(0..=2));
/// assert_eq!(range.y(), &(0..=1));
/// ```
///
#[inline]
fn from_iter<U>(iter: U) -> Self
where
U: IntoIterator<Item = &'a Position<T>>,
{
Self::from_iter(iter.into_iter().copied())
}
}
impl<T> FromIterator<Position<T>> for BoardRange<T>
where
T: Copy + PartialOrd + Zero + One,
{
/// Creates a value from an owning iterator over a series of [`Position<T>`].
/// Each item in the series represents a moved position to be contained to the range.
///
/// [`Position<T>`]: Position
///
/// # Examples
///
/// ```
/// use life_backend::{BoardRange, Position};
/// let positions = [Position(0, 0), Position(1, 0), Position(2, 0), Position(1, 1)];
/// let range: BoardRange<_> = positions.into_iter().collect();
/// assert!(!range.is_empty());
/// assert_eq!(range.x(), &(0..=2));
/// assert_eq!(range.y(), &(0..=1));
/// ```
///
#[inline]
fn from_iter<U>(iter: U) -> Self
where
U: IntoIterator<Item = Position<T>>,
{
Self::from_iter(iter.into_iter())
}
}
impl<'a, T> Extend<&'a Position<T>> for BoardRange<T>
where
T: Copy + PartialOrd + Zero + One + 'a,
{
/// Extends the range with the contents of the specified non-owning iterator over the series of [`&Position<T>`].
/// Each item in the series represents an immutable reference of a position.
///
/// [`&Position<T>`]: Position
///
/// # Examples
///
/// ```
/// use life_backend::{BoardRange, Position};
/// let positions = [Position(0, 0), Position(1, 0), Position(2, 0), Position(1, 1)];
/// let mut range = BoardRange::new();
/// range.extend(positions.iter());
/// assert!(!range.is_empty());
/// assert_eq!(range.x(), &(0..=2));
/// assert_eq!(range.y(), &(0..=1));
/// ```
///
fn extend<U>(&mut self, iter: U)
where
U: IntoIterator<Item = &'a Position<T>>,
{
*self = self.clone().extend(iter.into_iter().copied())
}
}
impl<T> Extend<Position<T>> for BoardRange<T>
where
T: Copy + PartialOrd + Zero + One,
{
/// Extends the range with the contents of the specified owning iterator over the series of [`Position<T>`].
/// Each item in the series represents a moved position.
///
/// [`Position<T>`]: Position
///
/// # Examples
///
/// ```
/// use life_backend::{BoardRange, Position};
/// let positions = [Position(0, 0), Position(1, 0), Position(2, 0), Position(1, 1)];
/// let mut range = BoardRange::new();
/// range.extend(positions.into_iter());
/// assert!(!range.is_empty());
/// assert_eq!(range.x(), &(0..=2));
/// assert_eq!(range.y(), &(0..=1));
/// ```
///
fn extend<U>(&mut self, iter: U)
where
U: IntoIterator<Item = Position<T>>,
{
*self = self.clone().extend(iter.into_iter())
}
}
// Unit tests
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn default() {
let target = BoardRange::<i32>::default();
let expected = BoardRange::<i32>::new();
assert_eq!(target, expected);
}
#[test]
fn display_empty() {
let target = BoardRange::<i32>::new();
assert_eq!(format!("{target}"), "(empty)".to_string());
}
#[test]
fn display_notempty() {
let positions = [Position(0, 0), Position(1, 0), Position(2, 0), Position(1, 1)];
let target: BoardRange<_> = positions.iter().collect();
assert_eq!(format!("{target}"), "(x:[0, 2], y:[0, 1])".to_string());
}
}