lapack-sys 0.15.0

The package provides bindings to LAPACK (Fortran).
Documentation
*> \brief \b IPARMQ
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download IPARMQ + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/iparmq.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/iparmq.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/iparmq.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       INTEGER FUNCTION IPARMQ( ISPEC, NAME, OPTS, N, ILO, IHI, LWORK )
*
*       .. Scalar Arguments ..
*       INTEGER            IHI, ILO, ISPEC, LWORK, N
*       CHARACTER          NAME*( * ), OPTS*( * )
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*>      This program sets problem and machine dependent parameters
*>      useful for xHSEQR and related subroutines for eigenvalue
*>      problems. It is called whenever
*>      IPARMQ is called with 12 <= ISPEC <= 16
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] ISPEC
*> \verbatim
*>          ISPEC is INTEGER
*>              ISPEC specifies which tunable parameter IPARMQ should
*>              return.
*>
*>              ISPEC=12: (INMIN)  Matrices of order nmin or less
*>                        are sent directly to xLAHQR, the implicit
*>                        double shift QR algorithm.  NMIN must be
*>                        at least 11.
*>
*>              ISPEC=13: (INWIN)  Size of the deflation window.
*>                        This is best set greater than or equal to
*>                        the number of simultaneous shifts NS.
*>                        Larger matrices benefit from larger deflation
*>                        windows.
*>
*>              ISPEC=14: (INIBL) Determines when to stop nibbling and
*>                        invest in an (expensive) multi-shift QR sweep.
*>                        If the aggressive early deflation subroutine
*>                        finds LD converged eigenvalues from an order
*>                        NW deflation window and LD > (NW*NIBBLE)/100,
*>                        then the next QR sweep is skipped and early
*>                        deflation is applied immediately to the
*>                        remaining active diagonal block.  Setting
*>                        IPARMQ(ISPEC=14) = 0 causes TTQRE to skip a
*>                        multi-shift QR sweep whenever early deflation
*>                        finds a converged eigenvalue.  Setting
*>                        IPARMQ(ISPEC=14) greater than or equal to 100
*>                        prevents TTQRE from skipping a multi-shift
*>                        QR sweep.
*>
*>              ISPEC=15: (NSHFTS) The number of simultaneous shifts in
*>                        a multi-shift QR iteration.
*>
*>              ISPEC=16: (IACC22) IPARMQ is set to 0, 1 or 2 with the
*>                        following meanings.
*>                        0:  During the multi-shift QR/QZ sweep,
*>                            blocked eigenvalue reordering, blocked
*>                            Hessenberg-triangular reduction,
*>                            reflections and/or rotations are not
*>                            accumulated when updating the
*>                            far-from-diagonal matrix entries.
*>                        1:  During the multi-shift QR/QZ sweep,
*>                            blocked eigenvalue reordering, blocked
*>                            Hessenberg-triangular reduction,
*>                            reflections and/or rotations are
*>                            accumulated, and matrix-matrix
*>                            multiplication is used to update the
*>                            far-from-diagonal matrix entries.
*>                        2:  During the multi-shift QR/QZ sweep,
*>                            blocked eigenvalue reordering, blocked
*>                            Hessenberg-triangular reduction,
*>                            reflections and/or rotations are
*>                            accumulated, and 2-by-2 block structure
*>                            is exploited during matrix-matrix
*>                            multiplies.
*>                        (If xTRMM is slower than xGEMM, then
*>                        IPARMQ(ISPEC=16)=1 may be more efficient than
*>                        IPARMQ(ISPEC=16)=2 despite the greater level of
*>                        arithmetic work implied by the latter choice.)
*> \endverbatim
*>
*> \param[in] NAME
*> \verbatim
*>          NAME is CHARACTER string
*>               Name of the calling subroutine
*> \endverbatim
*>
*> \param[in] OPTS
*> \verbatim
*>          OPTS is CHARACTER string
*>               This is a concatenation of the string arguments to
*>               TTQRE.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>               N is the order of the Hessenberg matrix H.
*> \endverbatim
*>
*> \param[in] ILO
*> \verbatim
*>          ILO is INTEGER
*> \endverbatim
*>
*> \param[in] IHI
*> \verbatim
*>          IHI is INTEGER
*>               It is assumed that H is already upper triangular
*>               in rows and columns 1:ILO-1 and IHI+1:N.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*>          LWORK is INTEGER
*>               The amount of workspace available.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup OTHERauxiliary
*
*> \par Further Details:
*  =====================
*>
*> \verbatim
*>
*>       Little is known about how best to choose these parameters.
*>       It is possible to use different values of the parameters
*>       for each of CHSEQR, DHSEQR, SHSEQR and ZHSEQR.
*>
*>       It is probably best to choose different parameters for
*>       different matrices and different parameters at different
*>       times during the iteration, but this has not been
*>       implemented --- yet.
*>
*>
*>       The best choices of most of the parameters depend
*>       in an ill-understood way on the relative execution
*>       rate of xLAQR3 and xLAQR5 and on the nature of each
*>       particular eigenvalue problem.  Experiment may be the
*>       only practical way to determine which choices are most
*>       effective.
*>
*>       Following is a list of default values supplied by IPARMQ.
*>       These defaults may be adjusted in order to attain better
*>       performance in any particular computational environment.
*>
*>       IPARMQ(ISPEC=12) The xLAHQR vs xLAQR0 crossover point.
*>                        Default: 75. (Must be at least 11.)
*>
*>       IPARMQ(ISPEC=13) Recommended deflation window size.
*>                        This depends on ILO, IHI and NS, the
*>                        number of simultaneous shifts returned
*>                        by IPARMQ(ISPEC=15).  The default for
*>                        (IHI-ILO+1) <= 500 is NS.  The default
*>                        for (IHI-ILO+1) > 500 is 3*NS/2.
*>
*>       IPARMQ(ISPEC=14) Nibble crossover point.  Default: 14.
*>
*>       IPARMQ(ISPEC=15) Number of simultaneous shifts, NS.
*>                        a multi-shift QR iteration.
*>
*>                        If IHI-ILO+1 is ...
*>
*>                        greater than      ...but less    ... the
*>                        or equal to ...      than        default is
*>
*>                                0               30       NS =   2+
*>                               30               60       NS =   4+
*>                               60              150       NS =  10
*>                              150              590       NS =  **
*>                              590             3000       NS =  64
*>                             3000             6000       NS = 128
*>                             6000             infinity   NS = 256
*>
*>                    (+)  By default matrices of this order are
*>                         passed to the implicit double shift routine
*>                         xLAHQR.  See IPARMQ(ISPEC=12) above.   These
*>                         values of NS are used only in case of a rare
*>                         xLAHQR failure.
*>
*>                    (**) The asterisks (**) indicate an ad-hoc
*>                         function increasing from 10 to 64.
*>
*>       IPARMQ(ISPEC=16) Select structured matrix multiply.
*>                        (See ISPEC=16 above for details.)
*>                        Default: 3.
*> \endverbatim
*>
*  =====================================================================
      INTEGER FUNCTION IPARMQ( ISPEC, NAME, OPTS, N, ILO, IHI, LWORK )
*
*  -- LAPACK auxiliary routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      INTEGER            IHI, ILO, ISPEC, LWORK, N
      CHARACTER          NAME*( * ), OPTS*( * )
*
*  ================================================================
*     .. Parameters ..
      INTEGER            INMIN, INWIN, INIBL, ISHFTS, IACC22
      PARAMETER          ( INMIN = 12, INWIN = 13, INIBL = 14,
     $                   ISHFTS = 15, IACC22 = 16 )
      INTEGER            NMIN, K22MIN, KACMIN, NIBBLE, KNWSWP
      PARAMETER          ( NMIN = 75, K22MIN = 14, KACMIN = 14,
     $                   NIBBLE = 14, KNWSWP = 500 )
      REAL               TWO
      PARAMETER          ( TWO = 2.0 )
*     ..
*     .. Local Scalars ..
      INTEGER            NH, NS
      INTEGER            I, IC, IZ
      CHARACTER          SUBNAM*6
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          LOG, MAX, MOD, NINT, REAL
*     ..
*     .. Executable Statements ..
      IF( ( ISPEC.EQ.ISHFTS ) .OR. ( ISPEC.EQ.INWIN ) .OR.
     $    ( ISPEC.EQ.IACC22 ) ) THEN
*
*        ==== Set the number simultaneous shifts ====
*
         NH = IHI - ILO + 1
         NS = 2
         IF( NH.GE.30 )
     $      NS = 4
         IF( NH.GE.60 )
     $      NS = 10
         IF( NH.GE.150 )
     $      NS = MAX( 10, NH / NINT( LOG( REAL( NH ) ) / LOG( TWO ) ) )
         IF( NH.GE.590 )
     $      NS = 64
         IF( NH.GE.3000 )
     $      NS = 128
         IF( NH.GE.6000 )
     $      NS = 256
         NS = MAX( 2, NS-MOD( NS, 2 ) )
      END IF
*
      IF( ISPEC.EQ.INMIN ) THEN
*
*
*        ===== Matrices of order smaller than NMIN get sent
*        .     to xLAHQR, the classic double shift algorithm.
*        .     This must be at least 11. ====
*
         IPARMQ = NMIN
*
      ELSE IF( ISPEC.EQ.INIBL ) THEN
*
*        ==== INIBL: skip a multi-shift qr iteration and
*        .    whenever aggressive early deflation finds
*        .    at least (NIBBLE*(window size)/100) deflations. ====
*
         IPARMQ = NIBBLE
*
      ELSE IF( ISPEC.EQ.ISHFTS ) THEN
*
*        ==== NSHFTS: The number of simultaneous shifts =====
*
         IPARMQ = NS
*
      ELSE IF( ISPEC.EQ.INWIN ) THEN
*
*        ==== NW: deflation window size.  ====
*
         IF( NH.LE.KNWSWP ) THEN
            IPARMQ = NS
         ELSE
            IPARMQ = 3*NS / 2
         END IF
*
      ELSE IF( ISPEC.EQ.IACC22 ) THEN
*
*        ==== IACC22: Whether to accumulate reflections
*        .     before updating the far-from-diagonal elements
*        .     and whether to use 2-by-2 block structure while
*        .     doing it.  A small amount of work could be saved
*        .     by making this choice dependent also upon the
*        .     NH=IHI-ILO+1.
*
*
*        Convert NAME to upper case if the first character is lower case.
*
         IPARMQ = 0
         SUBNAM = NAME
         IC = ICHAR( SUBNAM( 1: 1 ) )
         IZ = ICHAR( 'Z' )
         IF( IZ.EQ.90 .OR. IZ.EQ.122 ) THEN
*
*           ASCII character set
*
            IF( IC.GE.97 .AND. IC.LE.122 ) THEN
               SUBNAM( 1: 1 ) = CHAR( IC-32 )
               DO I = 2, 6
                  IC = ICHAR( SUBNAM( I: I ) )
                  IF( IC.GE.97 .AND. IC.LE.122 )
     $               SUBNAM( I: I ) = CHAR( IC-32 )
               END DO
            END IF
*
         ELSE IF( IZ.EQ.233 .OR. IZ.EQ.169 ) THEN
*
*           EBCDIC character set
*
            IF( ( IC.GE.129 .AND. IC.LE.137 ) .OR.
     $          ( IC.GE.145 .AND. IC.LE.153 ) .OR.
     $          ( IC.GE.162 .AND. IC.LE.169 ) ) THEN
               SUBNAM( 1: 1 ) = CHAR( IC+64 )
               DO I = 2, 6
                  IC = ICHAR( SUBNAM( I: I ) )
                  IF( ( IC.GE.129 .AND. IC.LE.137 ) .OR.
     $                ( IC.GE.145 .AND. IC.LE.153 ) .OR.
     $                ( IC.GE.162 .AND. IC.LE.169 ) )SUBNAM( I:
     $                I ) = CHAR( IC+64 )
               END DO
            END IF
*
         ELSE IF( IZ.EQ.218 .OR. IZ.EQ.250 ) THEN
*
*           Prime machines:  ASCII+128
*
            IF( IC.GE.225 .AND. IC.LE.250 ) THEN
               SUBNAM( 1: 1 ) = CHAR( IC-32 )
               DO I = 2, 6
                  IC = ICHAR( SUBNAM( I: I ) )
                  IF( IC.GE.225 .AND. IC.LE.250 )
     $               SUBNAM( I: I ) = CHAR( IC-32 )
               END DO
            END IF
         END IF
*
         IF( SUBNAM( 2:6 ).EQ.'GGHRD' .OR.
     $       SUBNAM( 2:6 ).EQ.'GGHD3' ) THEN
            IPARMQ = 1
            IF( NH.GE.K22MIN )
     $         IPARMQ = 2
         ELSE IF ( SUBNAM( 4:6 ).EQ.'EXC' ) THEN
            IF( NH.GE.KACMIN )
     $         IPARMQ = 1
            IF( NH.GE.K22MIN )
     $         IPARMQ = 2
         ELSE IF ( SUBNAM( 2:6 ).EQ.'HSEQR' .OR.
     $             SUBNAM( 2:5 ).EQ.'LAQR' ) THEN
            IF( NS.GE.KACMIN )
     $         IPARMQ = 1
            IF( NS.GE.K22MIN )
     $         IPARMQ = 2
         END IF
*
      ELSE
*        ===== invalid value of ispec =====
         IPARMQ = -1
*
      END IF
*
*     ==== End of IPARMQ ====
*
      END