lapack-sys 0.15.0

The package provides bindings to LAPACK (Fortran).
Documentation
*> \brief \b CHBGV
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CHBGV + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chbgv.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chbgv.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chbgv.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE CHBGV( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z,
*                         LDZ, WORK, RWORK, INFO )
*
*       .. Scalar Arguments ..
*       CHARACTER          JOBZ, UPLO
*       INTEGER            INFO, KA, KB, LDAB, LDBB, LDZ, N
*       ..
*       .. Array Arguments ..
*       REAL               RWORK( * ), W( * )
*       COMPLEX            AB( LDAB, * ), BB( LDBB, * ), WORK( * ),
*      $                   Z( LDZ, * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CHBGV computes all the eigenvalues, and optionally, the eigenvectors
*> of a complex generalized Hermitian-definite banded eigenproblem, of
*> the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian
*> and banded, and B is also positive definite.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] JOBZ
*> \verbatim
*>          JOBZ is CHARACTER*1
*>          = 'N':  Compute eigenvalues only;
*>          = 'V':  Compute eigenvalues and eigenvectors.
*> \endverbatim
*>
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          = 'U':  Upper triangles of A and B are stored;
*>          = 'L':  Lower triangles of A and B are stored.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrices A and B.  N >= 0.
*> \endverbatim
*>
*> \param[in] KA
*> \verbatim
*>          KA is INTEGER
*>          The number of superdiagonals of the matrix A if UPLO = 'U',
*>          or the number of subdiagonals if UPLO = 'L'. KA >= 0.
*> \endverbatim
*>
*> \param[in] KB
*> \verbatim
*>          KB is INTEGER
*>          The number of superdiagonals of the matrix B if UPLO = 'U',
*>          or the number of subdiagonals if UPLO = 'L'. KB >= 0.
*> \endverbatim
*>
*> \param[in,out] AB
*> \verbatim
*>          AB is COMPLEX array, dimension (LDAB, N)
*>          On entry, the upper or lower triangle of the Hermitian band
*>          matrix A, stored in the first ka+1 rows of the array.  The
*>          j-th column of A is stored in the j-th column of the array AB
*>          as follows:
*>          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
*>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka).
*>
*>          On exit, the contents of AB are destroyed.
*> \endverbatim
*>
*> \param[in] LDAB
*> \verbatim
*>          LDAB is INTEGER
*>          The leading dimension of the array AB.  LDAB >= KA+1.
*> \endverbatim
*>
*> \param[in,out] BB
*> \verbatim
*>          BB is COMPLEX array, dimension (LDBB, N)
*>          On entry, the upper or lower triangle of the Hermitian band
*>          matrix B, stored in the first kb+1 rows of the array.  The
*>          j-th column of B is stored in the j-th column of the array BB
*>          as follows:
*>          if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
*>          if UPLO = 'L', BB(1+i-j,j)    = B(i,j) for j<=i<=min(n,j+kb).
*>
*>          On exit, the factor S from the split Cholesky factorization
*>          B = S**H*S, as returned by CPBSTF.
*> \endverbatim
*>
*> \param[in] LDBB
*> \verbatim
*>          LDBB is INTEGER
*>          The leading dimension of the array BB.  LDBB >= KB+1.
*> \endverbatim
*>
*> \param[out] W
*> \verbatim
*>          W is REAL array, dimension (N)
*>          If INFO = 0, the eigenvalues in ascending order.
*> \endverbatim
*>
*> \param[out] Z
*> \verbatim
*>          Z is COMPLEX array, dimension (LDZ, N)
*>          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
*>          eigenvectors, with the i-th column of Z holding the
*>          eigenvector associated with W(i). The eigenvectors are
*>          normalized so that Z**H*B*Z = I.
*>          If JOBZ = 'N', then Z is not referenced.
*> \endverbatim
*>
*> \param[in] LDZ
*> \verbatim
*>          LDZ is INTEGER
*>          The leading dimension of the array Z.  LDZ >= 1, and if
*>          JOBZ = 'V', LDZ >= N.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX array, dimension (N)
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*>          RWORK is REAL array, dimension (3*N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
*>          > 0:  if INFO = i, and i is:
*>             <= N:  the algorithm failed to converge:
*>                    i off-diagonal elements of an intermediate
*>                    tridiagonal form did not converge to zero;
*>             > N:   if INFO = N + i, for 1 <= i <= N, then CPBSTF
*>                    returned INFO = i: B is not positive definite.
*>                    The factorization of B could not be completed and
*>                    no eigenvalues or eigenvectors were computed.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complexOTHEReigen
*
*  =====================================================================
      SUBROUTINE CHBGV( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z,
     $                  LDZ, WORK, RWORK, INFO )
*
*  -- LAPACK driver routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      CHARACTER          JOBZ, UPLO
      INTEGER            INFO, KA, KB, LDAB, LDBB, LDZ, N
*     ..
*     .. Array Arguments ..
      REAL               RWORK( * ), W( * )
      COMPLEX            AB( LDAB, * ), BB( LDBB, * ), WORK( * ),
     $                   Z( LDZ, * )
*     ..
*
*  =====================================================================
*
*     .. Local Scalars ..
      LOGICAL            UPPER, WANTZ
      CHARACTER          VECT
      INTEGER            IINFO, INDE, INDWRK
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           CHBGST, CHBTRD, CPBSTF, CSTEQR, SSTERF, XERBLA
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      WANTZ = LSAME( JOBZ, 'V' )
      UPPER = LSAME( UPLO, 'U' )
*
      INFO = 0
      IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
         INFO = -1
      ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( KA.LT.0 ) THEN
         INFO = -4
      ELSE IF( KB.LT.0 .OR. KB.GT.KA ) THEN
         INFO = -5
      ELSE IF( LDAB.LT.KA+1 ) THEN
         INFO = -7
      ELSE IF( LDBB.LT.KB+1 ) THEN
         INFO = -9
      ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
         INFO = -12
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CHBGV ', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
*     Form a split Cholesky factorization of B.
*
      CALL CPBSTF( UPLO, N, KB, BB, LDBB, INFO )
      IF( INFO.NE.0 ) THEN
         INFO = N + INFO
         RETURN
      END IF
*
*     Transform problem to standard eigenvalue problem.
*
      INDE = 1
      INDWRK = INDE + N
      CALL CHBGST( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Z, LDZ,
     $             WORK, RWORK( INDWRK ), IINFO )
*
*     Reduce to tridiagonal form.
*
      IF( WANTZ ) THEN
         VECT = 'U'
      ELSE
         VECT = 'N'
      END IF
      CALL CHBTRD( VECT, UPLO, N, KA, AB, LDAB, W, RWORK( INDE ), Z,
     $             LDZ, WORK, IINFO )
*
*     For eigenvalues only, call SSTERF.  For eigenvectors, call CSTEQR.
*
      IF( .NOT.WANTZ ) THEN
         CALL SSTERF( N, W, RWORK( INDE ), INFO )
      ELSE
         CALL CSTEQR( JOBZ, N, W, RWORK( INDE ), Z, LDZ,
     $                RWORK( INDWRK ), INFO )
      END IF
      RETURN
*
*     End of CHBGV
*
      END