1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
// Copyright 2023 Datafuse Labs.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use byteorder::BigEndian;
use byteorder::WriteBytesExt;
use super::constants::*;
use super::jentry::JEntry;
use super::value::Object;
use super::value::Value;
pub struct Encoder<'a> {
    pub buf: &'a mut Vec<u8>,
}
impl<'a> Encoder<'a> {
    pub fn new(buf: &'a mut Vec<u8>) -> Encoder<'a> {
        Self { buf }
    }
    // Encode `JSONB` Value to a sequence of bytes
    pub fn encode(&mut self, value: &Value<'a>) {
        match value {
            Value::Array(array) => self.encode_array(array),
            Value::Object(obj) => self.encode_object(obj),
            _ => self.encode_scalar(value),
        };
    }
    // Encoded `Scalar` consists of a `Header`, a `JEntry` and encoded data
    fn encode_scalar(&mut self, value: &Value<'a>) -> usize {
        self.buf
            .write_u32::<BigEndian>(SCALAR_CONTAINER_TAG)
            .unwrap();
        // Scalar Value only has one JEntry
        let mut scalar_len = 4 + 4;
        let mut jentry_index = self.reserve_jentries(4);
        let jentry = self.encode_value(value);
        scalar_len += jentry.length as usize;
        self.replace_jentry(jentry, &mut jentry_index);
        scalar_len
    }
    // Encoded `Array` consists of a `Header`, N `JEntries` and encoded data
    // N is the number of `Array` inner values
    fn encode_array(&mut self, values: &[Value<'a>]) -> usize {
        let header = ARRAY_CONTAINER_TAG | values.len() as u32;
        self.buf.write_u32::<BigEndian>(header).unwrap();
        // `Array` has N `JEntries`
        let mut array_len = 4 + values.len() * 4;
        let mut jentry_index = self.reserve_jentries(values.len() * 4);
        // encode all values
        for value in values.iter() {
            let jentry = self.encode_value(value);
            array_len += jentry.length as usize;
            self.replace_jentry(jentry, &mut jentry_index);
        }
        array_len
    }
    // Encoded `Object` consists of a `Header`, 2 * N `JEntries` and encoded data
    // N is the number of `Object` inner key value pair
    fn encode_object(&mut self, obj: &Object<'a>) -> usize {
        let header = OBJECT_CONTAINER_TAG | obj.len() as u32;
        self.buf.write_u32::<BigEndian>(header).unwrap();
        // `Object` has 2 * N `JEntries`
        let mut object_len = 4 + obj.len() * 8;
        let mut jentry_index = self.reserve_jentries(obj.len() * 8);
        // encode all keys first
        for (key, _) in obj.iter() {
            let len = key.len();
            object_len += len;
            self.buf.extend_from_slice(key.as_bytes());
            let jentry = JEntry::make_string_jentry(len);
            self.replace_jentry(jentry, &mut jentry_index);
        }
        // encode all values
        for (_, value) in obj.iter() {
            let jentry = self.encode_value(value);
            object_len += jentry.length as usize;
            self.replace_jentry(jentry, &mut jentry_index);
        }
        object_len
    }
    // Reserve space for `JEntries` and fill them later
    // As the length of each `Value` cannot be known until the `Value` encoded
    fn reserve_jentries(&mut self, len: usize) -> usize {
        let old_len = self.buf.len();
        let new_len = old_len + len;
        self.buf.resize(new_len, 0);
        old_len
    }
    // Write encoded `JEntry` to the corresponding index
    fn replace_jentry(&mut self, jentry: JEntry, jentry_index: &mut usize) {
        let jentry_bytes = jentry.encoded().to_be_bytes();
        for (i, b) in jentry_bytes.iter().enumerate() {
            self.buf[*jentry_index + i] = *b;
        }
        *jentry_index += 4;
    }
    // `Null` and `Boolean` only has a `JEntry`
    // `Number` and `String` has a `JEntry` and an encoded data
    // `Array` and `Object` has a container `JEntry` and nested encoded data
    fn encode_value(&mut self, value: &Value<'a>) -> JEntry {
        let jentry = match value {
            Value::Null => JEntry::make_null_jentry(),
            Value::Bool(v) => {
                if *v {
                    JEntry::make_true_jentry()
                } else {
                    JEntry::make_false_jentry()
                }
            }
            Value::Number(v) => {
                let old_off = self.buf.len();
                let _ = v.compact_encode(&mut self.buf).unwrap();
                let len = self.buf.len() - old_off;
                JEntry::make_number_jentry(len)
            }
            Value::String(s) => {
                let len = s.len();
                self.buf.extend_from_slice(s.as_ref().as_bytes());
                JEntry::make_string_jentry(len)
            }
            Value::Array(array) => {
                let len = self.encode_array(array);
                JEntry::make_container_jentry(len)
            }
            Value::Object(obj) => {
                let len = self.encode_object(obj);
                JEntry::make_container_jentry(len)
            }
        };
        jentry
    }
}