1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
// Copyright 2023 Datafuse Labs.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use byteorder::BigEndian;
use byteorder::WriteBytesExt;

use super::constants::*;
use super::jentry::JEntry;
use super::value::Object;
use super::value::Value;

pub struct Encoder<'a> {
    pub buf: &'a mut Vec<u8>,
}

impl<'a> Encoder<'a> {
    pub fn new(buf: &'a mut Vec<u8>) -> Encoder<'a> {
        Self { buf }
    }

    // Encode `JSONB` Value to a sequence of bytes
    pub fn encode(&mut self, value: &Value<'a>) {
        match value {
            Value::Array(array) => self.encode_array(array),
            Value::Object(obj) => self.encode_object(obj),
            _ => self.encode_scalar(value),
        };
    }

    // Encoded `Scalar` consists of a `Header`, a `JEntry` and encoded data
    fn encode_scalar(&mut self, value: &Value<'a>) -> usize {
        self.buf
            .write_u32::<BigEndian>(SCALAR_CONTAINER_TAG)
            .unwrap();

        // Scalar Value only has one JEntry
        let mut scalar_len = 4 + 4;
        let mut jentry_index = self.reserve_jentries(4);

        let jentry = self.encode_value(value);
        scalar_len += jentry.length as usize;
        self.replace_jentry(jentry, &mut jentry_index);

        scalar_len
    }

    // Encoded `Array` consists of a `Header`, N `JEntries` and encoded data
    // N is the number of `Array` inner values
    fn encode_array(&mut self, values: &[Value<'a>]) -> usize {
        let header = ARRAY_CONTAINER_TAG | values.len() as u32;
        self.buf.write_u32::<BigEndian>(header).unwrap();

        // `Array` has N `JEntries`
        let mut array_len = 4 + values.len() * 4;
        let mut jentry_index = self.reserve_jentries(values.len() * 4);

        // encode all values
        for value in values.iter() {
            let jentry = self.encode_value(value);
            array_len += jentry.length as usize;
            self.replace_jentry(jentry, &mut jentry_index);
        }

        array_len
    }

    // Encoded `Object` consists of a `Header`, 2 * N `JEntries` and encoded data
    // N is the number of `Object` inner key value pair
    fn encode_object(&mut self, obj: &Object<'a>) -> usize {
        let header = OBJECT_CONTAINER_TAG | obj.len() as u32;
        self.buf.write_u32::<BigEndian>(header).unwrap();

        // `Object` has 2 * N `JEntries`
        let mut object_len = 4 + obj.len() * 8;
        let mut jentry_index = self.reserve_jentries(obj.len() * 8);

        // encode all keys first
        for (key, _) in obj.iter() {
            let len = key.len();
            object_len += len;
            self.buf.extend_from_slice(key.as_bytes());
            let jentry = JEntry::make_string_jentry(len);
            self.replace_jentry(jentry, &mut jentry_index);
        }
        // encode all values
        for (_, value) in obj.iter() {
            let jentry = self.encode_value(value);
            object_len += jentry.length as usize;
            self.replace_jentry(jentry, &mut jentry_index);
        }

        object_len
    }

    // Reserve space for `JEntries` and fill them later
    // As the length of each `Value` cannot be known until the `Value` encoded
    fn reserve_jentries(&mut self, len: usize) -> usize {
        let old_len = self.buf.len();
        let new_len = old_len + len;
        self.buf.resize(new_len, 0);
        old_len
    }

    // Write encoded `JEntry` to the corresponding index
    fn replace_jentry(&mut self, jentry: JEntry, jentry_index: &mut usize) {
        let jentry_bytes = jentry.encoded().to_be_bytes();
        for (i, b) in jentry_bytes.iter().enumerate() {
            self.buf[*jentry_index + i] = *b;
        }
        *jentry_index += 4;
    }

    // `Null` and `Boolean` only has a `JEntry`
    // `Number` and `String` has a `JEntry` and an encoded data
    // `Array` and `Object` has a container `JEntry` and nested encoded data
    fn encode_value(&mut self, value: &Value<'a>) -> JEntry {
        let jentry = match value {
            Value::Null => JEntry::make_null_jentry(),
            Value::Bool(v) => {
                if *v {
                    JEntry::make_true_jentry()
                } else {
                    JEntry::make_false_jentry()
                }
            }
            Value::Number(v) => {
                let old_off = self.buf.len();
                let _ = v.compact_encode(&mut self.buf).unwrap();
                let len = self.buf.len() - old_off;
                JEntry::make_number_jentry(len)
            }
            Value::String(s) => {
                let len = s.len();
                self.buf.extend_from_slice(s.as_ref().as_bytes());
                JEntry::make_string_jentry(len)
            }
            Value::Array(array) => {
                let len = self.encode_array(array);
                JEntry::make_container_jentry(len)
            }
            Value::Object(obj) => {
                let len = self.encode_object(obj);
                JEntry::make_container_jentry(len)
            }
        };

        jentry
    }
}