# ipfrs-tensorlogic
TensorLogic integration layer for IPFRS.
## Overview
`ipfrs-tensorlogic` bridges IPFRS with the TensorLogic AI language:
- **Zero-Copy Binding**: Direct memory sharing via Apache Arrow
- **Distributed Reasoning**: Network-wide backward chaining
- **Gradient Storage**: Version-controlled learning history
- **Proof Provenance**: Merkle DAG for inference traces
## Key Features
### Native TensorLogic Support
Seamless integration with TensorLogic runtime:
- **IR Serialization**: Convert `tensorlogic::ir::Term` to IPLD
- **Lazy Loading**: Stream large models on-demand
- **Computation Graph**: Store Einsum graphs as DAG
- **Rule Distribution**: Share inference rules across network
### Zero-Copy Interface
Direct memory access without serialization overhead:
- **Apache Arrow**: Columnar memory format
- **Safetensors**: PyTorch-compatible tensor storage
- **Shared Buffers**: mmap-based data sharing
- **FFI Boundary**: Optimized Rust-to-Rust calls
### Distributed Inference
Split computation across IPFRS network:
- **Remote Knowledge**: Fetch missing facts from peers
- **Proof Synthesis**: Assemble proofs from distributed fragments
- **Goal Decomposition**: Break queries into subgoals
- **Result Caching**: Store intermediate inference results
### Differentiable Storage
Git-like version control for neural models:
- **Gradient Tracking**: Store update deltas
- **Checkpoint Management**: Save training snapshots
- **Provenance Graph**: Track data lineage
- **Rollback Support**: Restore previous states
## Architecture
```
TensorLogic Runtime
↓
Zero-Copy FFI (Apache Arrow)
↓
ipfrs-tensorlogic
├── ir/ # TensorLogic IR codec
├── inference/ # Distributed reasoning
├── gradient/ # Gradient storage & tracking
└── ffi/ # Foreign function interface
↓
ipfrs-core (Blocks & CID)
```
## Design Principles
- **Performance Critical**: No unnecessary copies or allocations
- **Type Safe**: Leverage Rust's type system
- **Composable**: Work with standard IPFRS blocks
- **Explainable**: Full provenance for XAI
## Usage Example
```rust
use ipfrs_tensorlogic::{TensorLogicNode, InferenceEngine};
use tensorlogic::ir::Term;
// Initialize node with TensorLogic support
let node = TensorLogicNode::new(config).await?;
// Store logic term
let term = Term::from_str("knows(alice, bob)")?;
let cid = node.put_term(term).await?;
// Distributed inference
let query = Term::from_str("knows(alice, ?X)")?;
let solutions = node.infer(query).await?;
// Access tensor data (zero-copy)
let weights = node.get_tensor(cid).await?;
let array: ArrayView2<f32> = weights.as_arrow_array()?;
```
## Integration Points
### With TensorLogic
- Share memory space via FFI
- Use TensorLogic types directly
- Support inference callbacks
- Integrate with learning loop
### With IPFRS Core
- Store terms as IPLD blocks
- Content-address by hash
- Version control via CID links
- Network distribution
## Dependencies
- `tensorlogic` - Core AI language runtime
- `arrow` - Columnar data format
- `safetensors` - Tensor serialization
- `ipfrs-core` - IPFRS primitives
## References
- IPFRS v0.2.0 Whitepaper (Neural-Symbolic Storage)
- IPFRS v0.3.0 Whitepaper (Zero-Copy Tensor Transport)
- TensorLogic Paper: arXiv:2510.12269