# IPFRS TensorLogic Integration Guide
This guide provides comprehensive documentation for integrating and using the IPFRS TensorLogic system.
## Table of Contents
1. [Overview](#overview)
2. [Core Concepts](#core-concepts)
3. [Getting Started](#getting-started)
4. [Zero-Copy Tensor Operations](#zero-copy-tensor-operations)
5. [Distributed Reasoning](#distributed-reasoning)
6. [Gradient Management](#gradient-management)
7. [Model Version Control](#model-version-control)
8. [Performance Optimization](#performance-optimization)
9. [Device-Aware Operations](#device-aware-operations)
10. [Memory Profiling](#memory-profiling)
11. [Best Practices](#best-practices)
12. [Troubleshooting](#troubleshooting)
## Overview
IPFRS TensorLogic is a comprehensive system that integrates logic programming with tensor operations, providing:
- **Content-Addressed Storage**: All logical terms and tensor data are stored using IPFS CIDs
- **Zero-Copy Operations**: Efficient tensor access using Apache Arrow and Safetensors
- **Distributed Reasoning**: Query caching, goal decomposition, and proof assembly across nodes
- **Federated Learning**: Gradient compression, aggregation, and differential privacy
- **Version Control**: Git-like versioning for ML models with commit, branch, and merge
- **Performance Tools**: FFI profiling, allocation optimization, and memory tracking
## Core Concepts
### Terms and Predicates
Terms are the basic building blocks:
```rust
use ipfrs_tensorlogic::{Term, Constant};
// Constants
let alice = Term::Const(Constant::String("Alice".to_string()));
let age = Term::Const(Constant::Int(30));
let score = Term::Const(Constant::Float(0.95));
// Variables
let x = Term::Var("X".to_string());
```
Predicates represent relationships:
```rust
use ipfrs_tensorlogic::Predicate;
// person(Alice, 30)
let pred = Predicate::new(
"person".to_string(),
vec![alice, age]
);
```
### Knowledge Base
Store facts and rules:
```rust
use ipfrs_tensorlogic::{KnowledgeBase, Rule};
let mut kb = KnowledgeBase::new();
// Add facts
kb.add_fact(Predicate::new("parent".to_string(), vec![alice, bob]));
// Add rules: ancestor(X, Y) :- parent(X, Y)
kb.add_rule(Rule::new(
Predicate::new("ancestor".to_string(), vec![x.clone(), y.clone()]),
vec![Predicate::new("parent".to_string(), vec![x, y])]
));
```
### Inference Engine
Query the knowledge base:
```rust
use ipfrs_tensorlogic::InferenceEngine;
let engine = InferenceEngine::new();
let query = Predicate::new("ancestor".to_string(), vec![alice, Term::Var("Y".to_string())]);
let results = engine.query(&query, &kb).unwrap();
```
## Getting Started
### Installation
Add to your `Cargo.toml`:
```toml
[dependencies]
ipfrs-tensorlogic = "0.1"
```
### Basic Example
```rust
use ipfrs_tensorlogic::{
KnowledgeBase, Predicate, Term, Constant, InferenceEngine, Rule
};
fn main() {
let mut kb = KnowledgeBase::new();
// Add facts
kb.add_fact(Predicate::new(
"parent".to_string(),
vec![
Term::Const(Constant::String("Alice".to_string())),
Term::Const(Constant::String("Bob".to_string()))
]
));
// Add rule
kb.add_rule(Rule::new(
Predicate::new(
"ancestor".to_string(),
vec![Term::Var("X".to_string()), Term::Var("Y".to_string())]
),
vec![Predicate::new(
"parent".to_string(),
vec![Term::Var("X".to_string()), Term::Var("Y".to_string())]
)]
));
// Query
let engine = InferenceEngine::new();
let query = Predicate::new(
"ancestor".to_string(),
vec![
Term::Const(Constant::String("Alice".to_string())),
Term::Var("Y".to_string())
]
);
let results = engine.query(&query, &kb).unwrap();
println!("Found {} results", results.len());
}
```
## Zero-Copy Tensor Operations
### Apache Arrow Integration
Create tensors with zero-copy access:
```rust
use ipfrs_tensorlogic::{ArrowTensor, ArrowTensorStore};
// Create tensor from f32 data
let data: Vec<f32> = vec![1.0, 2.0, 3.0, 4.0];
let tensor = ArrowTensor::from_slice_f32("weights", vec![2, 2], &data);
// Zero-copy access
let slice = tensor.as_slice_f32().unwrap();
assert_eq!(slice[0], 1.0);
// Store multiple tensors
let mut store = ArrowTensorStore::new();
store.insert(tensor);
// Serialize to IPC format
let bytes = store.to_bytes().unwrap();
// Deserialize
let loaded_store = ArrowTensorStore::from_bytes(&bytes).unwrap();
```
### Safetensors Support
Work with Safetensors format:
```rust
use ipfrs_tensorlogic::{SafetensorsWriter, SafetensorsReader};
use bytes::Bytes;
// Write tensors
let mut writer = SafetensorsWriter::new();
writer.add_f32("layer1.weight", vec![128, 64], &vec![0.1; 8192]);
writer.add_f32("layer1.bias", vec![64], &vec![0.01; 64]);
let bytes = writer.serialize().unwrap();
// Read tensors
let reader = SafetensorsReader::from_bytes(Bytes::from(bytes)).unwrap();
let weight_tensor = reader.load_as_arrow("layer1.weight").unwrap();
// Zero-copy access
let weights = weight_tensor.as_slice_f32().unwrap();
```
### Shared Memory
Share tensors across processes:
```rust
use ipfrs_tensorlogic::{SharedTensorBuffer, SharedMemoryPool};
// Create shared buffer
let data: Vec<f32> = vec![1.0; 1000];
let buffer = SharedTensorBuffer::create("my_tensor", vec![10, 100], &data).unwrap();
// In another process, open read-only
let readonly = SharedTensorBuffer::open_readonly("my_tensor").unwrap();
let shared_data = readonly.as_slice_f32().unwrap();
```
## Distributed Reasoning
### Query Caching
Cache query results for performance:
```rust
use ipfrs_tensorlogic::{QueryCache, QueryKey};
let cache = QueryCache::new(1000); // Capacity 1000
// Cache a query result
let key = QueryKey {
predicate_name: "ancestor".to_string(),
ground_args: vec![],
};
cache.insert(key.clone(), results);
// Retrieve from cache
if let Some(cached) = cache.get(&key) {
// Use cached results
}
```
### Remote Fact Caching
Cache facts from remote sources:
```rust
use ipfrs_tensorlogic::{RemoteFactCache, CacheManager};
use std::time::Duration;
// Create cache with TTL
let fact_cache = RemoteFactCache::new(1000, Duration::from_secs(300));
// Cache facts from a predicate
fact_cache.insert("parent".to_string(), facts);
// Retrieve cached facts
if let Some(cached) = fact_cache.get("parent") {
// Use cached facts
}
```
### Goal Decomposition
Decompose complex queries:
```rust
use ipfrs_tensorlogic::GoalDecomposition;
let decomposition = GoalDecomposition::new(goal.clone(), rule_id.clone());
decomposition.add_subgoal(subgoal1, vec!["X"]);
decomposition.add_subgoal(subgoal2, vec!["Y"]);
// Mark subgoals as solved
decomposition.mark_solved(0);
```
### Proof Assembly
Assemble distributed proofs:
```rust
use ipfrs_tensorlogic::{ProofAssembler, ProofFragmentStore};
let store = ProofFragmentStore::new();
let assembler = ProofAssembler::new(store);
// Assemble proof from fragments
let proof_tree = assembler.assemble(&conclusion_predicate).await.unwrap();
// Verify proof
assert!(assembler.verify_proof(&proof_tree).unwrap());
```
## Gradient Management
### Gradient Compression
Compress gradients for efficient transmission:
```rust
use ipfrs_tensorlogic::GradientCompressor;
let gradient: Vec<f32> = vec![0.1, 0.5, 0.01, 0.8, 0.02];
// Top-k compression (keep largest k values)
let sparse = GradientCompressor::top_k(&gradient, vec![5], 2).unwrap();
println!("Compression ratio: {:.2}x", sparse.compression_ratio());
// Threshold compression (keep values above threshold)
let sparse2 = GradientCompressor::threshold(&gradient, vec![5], 0.1);
// Quantization to int8
let quantized = GradientCompressor::quantize(&gradient, vec![5]);
```
### Gradient Aggregation
Aggregate gradients from multiple sources:
```rust
use ipfrs_tensorlogic::GradientAggregator;
let grad1 = vec![1.0, 2.0, 3.0];
let grad2 = vec![0.5, 1.5, 2.5];
let gradients = vec![grad1, grad2];
// Simple averaging
let avg = GradientAggregator::average(&gradients).unwrap();
// Weighted aggregation
let weights = vec![0.6, 0.4];
let weighted = GradientAggregator::weighted(&gradients, &weights).unwrap();
// With momentum
let momentum = vec![0.1, 0.1, 0.1];
let with_momentum = GradientAggregator::with_momentum(&avg, &momentum, 0.9).unwrap();
```
### Differential Privacy
Add privacy guarantees:
```rust
use ipfrs_tensorlogic::{DifferentialPrivacy, DPMechanism, PrivacyBudget};
// Create DP mechanism
let mut dp = DifferentialPrivacy::new(
1.0, // epsilon
1e-5, // delta
DPMechanism::Gaussian,
);
// Add noise to gradient
let mut gradient = vec![1.0, 2.0, 3.0];
dp.add_gaussian_noise(&mut gradient).unwrap();
// Check privacy budget
let budget = dp.privacy_budget();
println!("Remaining budget: ε={}, δ={}", budget.epsilon, budget.delta);
```
### Federated Learning
Coordinate federated learning rounds:
```rust
use ipfrs_tensorlogic::{ModelSyncProtocol, ClientInfo, ConvergenceDetector};
let mut protocol = ModelSyncProtocol::new(10, 5); // 10 clients, min 5
// Register clients
protocol.register_client(ClientInfo {
client_id: "client1".to_string(),
device_type: DeviceType::Consumer,
});
// Start round
let round_id = protocol.start_round().unwrap();
// Submit gradient
protocol.submit_gradient(&round_id, "client1", gradient).unwrap();
// Finalize when enough clients submitted
if protocol.can_finalize_round(&round_id) {
let aggregated = protocol.finalize_round(&round_id).unwrap();
}
```
## Model Version Control
### Commits and Checkouts
Version your models:
```rust
use ipfrs_tensorlogic::{ModelRepository, ModelCommit};
use std::collections::HashMap;
let mut repo = ModelRepository::init("my_model").unwrap();
// Create initial commit
let mut layers = HashMap::new();
layers.insert("layer1".to_string(), vec![0.1; 1000]);
let commit1 = repo.commit(layers.clone(), "Initial model").unwrap();
// Make changes
layers.insert("layer2".to_string(), vec![0.2; 500]);
let commit2 = repo.commit(layers, "Add layer2").unwrap();
// Checkout previous version
repo.checkout(&commit1).unwrap();
```
### Branching
Create and manage branches:
```rust
// Create branch
repo.create_branch("experiment", Some(commit1.clone())).unwrap();
// Switch to branch
repo.checkout_branch("experiment").unwrap();
// List branches
let branches = repo.list_branches();
```
### Merging
Merge branches:
```rust
// Fast-forward merge
if repo.can_fast_forward("main", "experiment").unwrap() {
repo.merge_fast_forward("experiment").unwrap();
}
```
### Diffing
Compare model versions:
```rust
use ipfrs_tensorlogic::ModelDiffer;
let differ = ModelDiffer::new();
let diff = differ.diff(&old_layers, &new_layers);
println!("Added layers: {:?}", diff.added);
println!("Modified layers: {:?}", diff.modified);
println!("Removed layers: {:?}", diff.removed);
```
## Performance Optimization
### Buffer Pooling
Reuse buffers to reduce allocations:
```rust
use ipfrs_tensorlogic::BufferPool;
let pool = BufferPool::new(4096, 16); // 4KB buffers, max 16 pooled
// Acquire buffer
let mut buffer = pool.acquire();
buffer.as_mut().extend_from_slice(&[1, 2, 3, 4]);
// Buffer returned to pool when dropped
```
### Zero-Copy Conversions
Convert between types without copying:
```rust
use ipfrs_tensorlogic::ZeroCopyConverter;
let floats: Vec<f32> = vec![1.0, 2.0, 3.0];
// Zero-copy to bytes
let bytes = ZeroCopyConverter::slice_to_bytes(&floats);
// Zero-copy back
let floats_back: &[f32] = ZeroCopyConverter::bytes_to_slice(bytes);
```
### Query Optimization
Optimize query execution:
```rust
use ipfrs_tensorlogic::QueryOptimizer;
let optimizer = QueryOptimizer::new();
// Collect statistics
optimizer.update_stats("parent", 1000);
optimizer.update_stats("sibling", 500);
// Plan query
let goals = vec![goal1, goal2];
let plan = optimizer.plan_query(&goals, &kb);
// Use optimized order
for node in plan.nodes {
// Execute in optimized order
}
```
### Materialized Views
Cache common query patterns:
```rust
use ipfrs_tensorlogic::MaterializedViewManager;
use std::time::Duration;
let mut manager = MaterializedViewManager::new();
// Create view with TTL
let view_id = manager.create_view(
"common_ancestors",
query.clone(),
results,
Duration::from_secs(300)
);
// Query view
if let Some(cached) = manager.get_view(&query) {
// Use cached results
} else {
// Execute query and cache
}
```
## Device-Aware Operations
### Device Capabilities
Detect device capabilities:
```rust
use ipfrs_tensorlogic::DeviceCapabilities;
let caps = DeviceCapabilities::detect().unwrap();
println!("Device: {:?}", caps.device_type);
println!("CPU cores: {}", caps.cpu_info.total_cores);
println!("Memory: {} GB", caps.memory.total_bytes / 1024 / 1024 / 1024);
println!("GPU available: {}", caps.gpu_info.is_some());
```
### Adaptive Batch Sizing
Adjust batch sizes based on device:
```rust
use ipfrs_tensorlogic::AdaptiveBatchSizer;
use std::sync::Arc;
let caps = DeviceCapabilities::detect().unwrap();
let sizer = AdaptiveBatchSizer::new(Arc::new(caps))
.with_min_batch_size(1)
.with_max_batch_size(256);
// Calculate optimal batch size
let model_size = 500 * 1024 * 1024; // 500MB
let item_size = 256 * 1024; // 256KB per item
let batch_size = sizer.calculate(item_size, model_size);
println!("Optimal batch size: {}", batch_size);
```
## Memory Profiling
### Track Memory Usage
Profile memory consumption:
```rust
use ipfrs_tensorlogic::MemoryProfiler;
let profiler = MemoryProfiler::new();
{
let _guard = profiler.start_tracking("tensor_creation");
let data: Vec<f32> = vec![0.0; 1000000];
// ... use data
}
let stats = profiler.get_stats("tensor_creation").unwrap();
println!("Peak memory: {} bytes", stats.peak_bytes);
println!("Avg duration: {:?}", stats.avg_duration);
```
### Generate Reports
Create comprehensive memory reports:
```rust
let report = profiler.generate_report();
report.print();
// Output:
// === Memory Profiling Report ===
// Total operations: 5
// Total bytes: 12345678 (11.77 MB)
// Max peak: 5242880 (5.00 MB)
```
## Best Practices
### 1. Use Zero-Copy When Possible
```rust
// Good: Zero-copy access
let tensor = ArrowTensor::from_slice_f32("data", vec![1000], &data);
let slice = tensor.as_slice_f32().unwrap();
// Avoid: Copying data unnecessarily
let copied: Vec<f32> = tensor.as_slice_f32().unwrap().to_vec();
```
### 2. Cache Frequently Used Queries
```rust
// Use query cache for repeated queries
let cache = QueryCache::new(1000);
if let Some(cached) = cache.get(&key) {
return cached;
}
let result = engine.query(&query, &kb)?;
cache.insert(key, result.clone());
```
### 3. Use Buffer Pools for Repeated Allocations
```rust
// Good: Reuse buffers
let pool = BufferPool::new(4096, 16);
for _ in 0..1000 {
let mut buf = pool.acquire();
// Use buffer
} // Automatically returned
// Avoid: Creating new buffers each time
for _ in 0..1000 {
let mut buf = Vec::with_capacity(4096);
// Use buffer
}
```
### 4. Profile Before Optimizing
```rust
// Always profile to find real bottlenecks
let profiler = MemoryProfiler::new();
let _guard = profiler.start_tracking("operation");
// Your code here
let report = profiler.generate_report();
report.print(); // Identify actual hotspots
```
### 5. Use Appropriate Data Types
```rust
// Choose the right dtype for your use case
writer.add_f32("weights", shape, &weights); // Standard precision
writer.add_f64("high_precision", shape, &data); // High precision
writer.add_i32("indices", shape, &indices); // Integer data
```
## Troubleshooting
### Common Issues
#### Out of Memory
```rust
// Symptom: OOM errors during tensor operations
// Solution: Use streaming or chunked processing
let chunked = ChunkedModelStorage::new(1024 * 1024 * 100); // 100MB chunks
chunked.add_model("model", tensors).unwrap();
```
#### Slow Inference
```rust
// Symptom: Queries take too long
// Solution: Use query optimization and caching
let optimizer = QueryOptimizer::new();
let plan = optimizer.plan_query(&goals, &kb);
// Execute optimized plan
let cache = QueryCache::new(1000);
// Cache frequent queries
```
#### Type Mismatches
```rust
// Symptom: Type errors when accessing tensors
// Solution: Check dtype before access
if let Some(slice) = tensor.as_slice_f32() {
// Use f32 slice
} else if let Some(slice) = tensor.as_slice_f64() {
// Use f64 slice
}
```
### Performance Tips
1. **Use profiling tools**: Start with `MemoryProfiler` and `FfiProfiler`
2. **Enable LTO**: Add to `Cargo.toml` for release builds:
```toml
[profile.release]
lto = true
```
3. **Use appropriate capacities**: Size caches based on your workload
4. **Batch operations**: Group operations when possible
5. **Monitor memory**: Use shared memory for large tensors across processes
## Additional Resources
- [Examples Directory](./examples/) - Complete working examples
- [API Documentation](https://docs.rs/ipfrs-tensorlogic) - Full API reference
- [Benchmarks](./benches/) - Performance benchmarks
- [Integration Tests](./tests/) - Comprehensive test suite
## License
Licensed under MIT or Apache-2.0, at your option.