1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
use super::typ::{BasicDetail, BasicInfo, BasicType};
use goscript_parser::token::Token;
use num_bigint::{BigInt, Sign};
use num_rational::BigRational;
use num_traits::cast::FromPrimitive;
use num_traits::cast::ToPrimitive;
use num_traits::sign::Signed;
use num_traits::Num;
use ordered_float;
use std::borrow::Borrow;
use std::borrow::Cow;
use std::fmt;
type F32 = ordered_float::OrderedFloat<f32>;
type F64 = ordered_float::OrderedFloat<f64>;
/// constant implements Values representing untyped
/// Go constants and their corresponding operations.
///
/// A special Unknown value may be used when a value
/// is unknown due to an error. Operations on unknown
/// values produce unknown values unless specified
/// otherwise.
///
/// Because BigFloat library is not available at the moment(2020/5)
/// float numbers arbitrary precision is not supported for now
/// float numbers is simply represented as f64
/// todo: This is against the Go specs.
/// All the values involved in the evaluation
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub enum Value {
Unknown,
Bool(bool),
Str(String),
Int(BigInt),
Rat(BigRational),
Float(F64),
Complex(Box<Value>, Box<Value>),
}
impl fmt::Display for Value {
/// For numeric values, the result may be an approximation;
/// for String values the result may be a shortened string.
/// Use ExactString for a string representing a value exactly.
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Value::Unknown => write!(f, "unknown"),
Value::Bool(b) => {
//f.write_str("bool: ")?;
b.fmt(f)
}
Value::Str(s) => {
//f.write_str("string: ")?;
write!(f, "{}", short_quote_str(s, 72))
}
Value::Int(s) => {
//f.write_str("int: ")?;
s.fmt(f)
}
Value::Rat(r) => {
//f.write_str("rat: ")?;
r.fmt(f)
}
Value::Float(s) => {
//f.write_str("float: ")?;
s.fmt(f)
}
Value::Complex(r, i) => {
//f.write_str("complex: ")?;
write!(f, "({} + {}i)", r, i)
}
}
}
}
impl Value {
pub fn with_bool(b: bool) -> Value {
Value::Bool(b)
}
pub fn with_str(s: String) -> Value {
Value::Str(s)
}
pub fn with_i64(i: i64) -> Value {
Value::Int(BigInt::from_i64(i).unwrap())
}
pub fn with_u64(u: u64) -> Value {
Value::Int(BigInt::from_u64(u).unwrap())
}
pub fn with_f64(f: f64) -> Value {
Value::Float(f.into())
}
pub fn with_literal(tok: &Token) -> Value {
match tok {
Token::INT(ilit) => int_from_literal(ilit.as_str()),
Token::FLOAT(flit) => float_from_literal(flit.as_str()),
Token::IMAG(imlit) => {
let s = imlit.as_str();
let v = float_from_literal(&s[..(s.len() - 1)]);
if let Value::Float(_) = &v {
Value::Complex(Box::new(Value::with_f64(0.0)), Box::new(v))
} else {
Value::Unknown
}
}
Token::CHAR(clit) => {
let (_, ch) = clit.as_str_char();
Value::with_i64(*ch as i64)
}
Token::STRING(slit) => {
let (_, s) = slit.as_str_str();
Value::with_str(s.clone())
}
_ => Value::Unknown,
}
}
pub fn is_int(&self) -> bool {
match self {
Value::Int(_) => true,
Value::Rat(r) => r.is_integer(),
_ => false,
}
}
pub fn representable(&self, base: &BasicDetail, rounded: Option<&mut Value>) -> bool {
if let Value::Unknown = self {
return true; // avoid follow-up errors
}
let float_representable =
|val: &Value, btype: BasicType, rounded: Option<&mut Value>| -> bool {
match val.to_float() {
Value::Float(f) => match btype {
BasicType::Float64 => true,
BasicType::Float32 => {
let f32_ = *f as f32;
let ok = !f32_.is_infinite();
if let Some(r) = rounded {
*r = Value::Float(((*f as f32) as f64).into());
}
ok
}
BasicType::UntypedFloat => true,
_ => unreachable!(),
},
_ => false,
}
};
match base.info() {
BasicInfo::IsInteger => match self.to_int().borrow() {
Value::Int(ival) => {
if let Some(r) = rounded {
*r = Value::Int(ival.clone())
}
match base.typ() {
BasicType::Int => ival.to_isize().is_some(),
BasicType::Int8 => ival.to_i8().is_some(),
BasicType::Int16 => ival.to_i16().is_some(),
BasicType::Int32 | BasicType::Rune => ival.to_i32().is_some(),
BasicType::Int64 => ival.to_i64().is_some(),
BasicType::Uint | BasicType::Uintptr => ival.to_usize().is_some(),
BasicType::Uint8 | BasicType::Byte => ival.to_u8().is_some(),
BasicType::Uint16 => ival.to_u16().is_some(),
BasicType::Uint32 => ival.to_u32().is_some(),
BasicType::Uint64 => ival.to_u64().is_some(),
BasicType::UntypedInt => true,
_ => unreachable!(),
}
}
_ => false,
},
BasicInfo::IsFloat => float_representable(self, base.typ(), rounded),
BasicInfo::IsComplex => {
let ty = match base.typ() {
BasicType::Complex64 => BasicType::Float32,
BasicType::Complex128 => BasicType::Float64,
BasicType::UntypedComplex => BasicType::UntypedFloat,
_ => unreachable!(),
};
match self.to_complex() {
Value::Complex(r, i) => {
let (rrounded, irounded): (Option<&mut Value>, Option<&mut Value>) =
match rounded {
Some(val) => {
*val = Value::Complex(
Box::new(Value::with_f64(0.0)),
Box::new(Value::with_f64(0.0)),
);
if let Value::Complex(r, i) = &mut *val {
(Some(r.as_mut()), Some(i.as_mut()))
} else {
unreachable!()
}
}
None => (None, None),
};
let rok = float_representable(&r, ty, rrounded);
let iok = float_representable(&i, ty, irounded);
rok && iok
}
_ => false,
}
}
BasicInfo::IsBoolean => match self {
Value::Bool(_) => true,
_ => false,
},
BasicInfo::IsString => match self {
Value::Str(_) => true,
_ => false,
},
_ => false,
}
}
pub fn to_int(&self) -> Cow<Value> {
let f64_to_int = |x| -> Cow<Value> {
match BigRational::from_f64(x) {
Some(v) => {
if v.is_integer() {
Cow::Owned(Value::Int(v.to_integer()))
} else {
Cow::Owned(Value::Unknown)
}
}
None => Cow::Owned(Value::Unknown),
}
};
match self {
Value::Int(_) => Cow::Borrowed(self),
Value::Rat(r) => {
if r.is_integer() {
Cow::Owned(Value::Int(r.to_integer()))
} else {
Cow::Owned(Value::Unknown)
}
}
Value::Float(f) => f64_to_int(**f),
Value::Complex(r, i) => {
let (ival, ok) = i.to_int().int_as_i64();
if ok && ival == 0 {
r.to_int()
} else {
Cow::Owned(Value::Unknown)
}
}
_ => Cow::Owned(Value::Unknown),
}
}
pub fn to_float(&self) -> Value {
let v = match self {
Value::Int(i) => i.to_f64(),
Value::Rat(r) => rat_to_f64(r),
Value::Float(f) => Some(**f),
Value::Complex(r, i) => {
let (ival, ok) = i.to_float().num_as_f64();
if ok && ival == 0.0 {
let (rval, ok) = r.to_float().num_as_f64();
if ok {
Some(*rval)
} else {
None
}
} else {
None
}
}
_ => None,
};
v.map_or(Value::Unknown, |x| Value::Float(x.into()))
}
pub fn to_complex(&self) -> Value {
match self {
Value::Int(_) | Value::Rat(_) | Value::Float(_) => {
Value::Complex(Box::new(self.clone()), Box::new(Value::with_f64(0.0)))
}
Value::Complex(_, _) => self.clone(),
_ => Value::Unknown,
}
}
// make_imag returns the Complex value x*i;
// x must be Int, Float, or Unknown.
// If x is Unknown, the result is Unknown.
pub fn make_imag(&self) -> Value {
match self {
Value::Int(_) | Value::Float(_) | Value::Rat(_) => {
Value::Complex(Box::new(Value::with_f64(0.0)), Box::new(self.clone()))
}
Value::Unknown => Value::Unknown,
_ => panic!("{} not Int or Float", self),
}
}
/// real returns the real part of x, which must be a numeric or unknown value.
/// If x is Unknown, the result is Unknown.
pub fn real(&self) -> Value {
match self {
Value::Int(_) | Value::Float(_) | Value::Rat(_) | Value::Unknown => self.clone(),
Value::Complex(r, _) => *r.clone(),
_ => panic!("{} not numeric", self),
}
}
/// imag returns the imaginary part of x, which must be a numeric or unknown value.
/// If x is Unknown, the result is Unknown.
pub fn imag(&self) -> Value {
match self {
Value::Int(_) | Value::Float(_) | Value::Rat(_) => Value::with_f64(0.0),
Value::Complex(_, i) => *i.clone(),
Value::Unknown => Value::Unknown,
_ => panic!("{} not numeric", self),
}
}
/// sign returns -1, 0, or 1 depending on whether x < 0, x == 0, or x > 0;
/// x must be numeric or Unknown. For complex values x, the sign is 0 if x == 0,
/// otherwise it is != 0. If x is Unknown, the result is 1.
pub fn sign(&self) -> isize {
match self {
Value::Int(i) => match i.sign() {
Sign::Plus => 1,
Sign::Minus => -1,
Sign::NoSign => 0,
},
Value::Rat(r) => {
if r.is_positive() {
1
} else if r.is_negative() {
-1
} else {
0
}
}
Value::Float(v) => {
let f: f64 = **v;
if f > 0.0 {
1
} else if f < 0.0 {
-1
} else {
0
}
}
Value::Complex(r, i) => r.sign() | i.sign(),
Value::Unknown => 1, // avoid spurious division by zero errors
_ => panic!("{} not numeric", self),
}
}
/// binary_op returns the result of the binary expression x op y.
/// The operation must be defined for the operands. If one of the
/// operands is Unknown, the result is Unknown.
/// binary_op doesn't handle comparisons or shifts; use compare
/// or shift instead.
///
/// To force integer division of Int operands, use op == Token::QUO_ASSIGN
/// instead of Token::QUO; the result is guaranteed to be Int in this case.
/// Division by zero leads to a run-time panic.
pub fn binary_op(x: &Value, op: &Token, y: &Value) -> Value {
let add = |x, y| Value::binary_op(x, &Token::ADD, y);
let sub = |x, y| Value::binary_op(x, &Token::SUB, y);
let mul = |x, y| Value::binary_op(x, &Token::MUL, y);
let div = |x, y| Value::binary_op(x, &Token::QUO, y);
let bx = |x| Box::new(x);
let (x, y) = Value::match_type(Cow::Borrowed(x), Cow::Borrowed(y));
match (&*x, &*y) {
(Value::Unknown, Value::Unknown) => Value::Unknown,
(Value::Bool(a), Value::Bool(b)) => match op {
Token::LAND => Value::Bool(*a && *b),
Token::LOR => Value::Bool(*a || *b),
_ => unreachable!(),
},
(Value::Int(a), Value::Int(b)) => {
match op {
Token::ADD => Value::Int(a + b),
Token::SUB => Value::Int(a - b),
Token::MUL => Value::Int(a * b),
Token::QUO => Value::Rat(BigRational::new(a.clone(), b.clone())),
Token::QUO_ASSIGN => Value::Int(a / b), // force integer division
Token::REM => Value::Int(a % b),
Token::AND => Value::Int(a & b),
Token::OR => Value::Int(a | b),
Token::XOR => Value::Int(a ^ b),
Token::AND_NOT => Value::Int(a & !b),
_ => unreachable!(),
}
}
(Value::Rat(a), Value::Rat(b)) => match op {
Token::ADD => Value::Rat(a + b),
Token::SUB => Value::Rat(a - b),
Token::MUL => Value::Rat(a * b),
Token::QUO => Value::Rat(a / b),
_ => unreachable!(),
},
(Value::Float(a), Value::Float(b)) => match op {
Token::ADD => Value::Float(*a + *b),
Token::SUB => Value::Float(*a - *b),
Token::MUL => Value::Float(*a * *b),
Token::QUO => Value::Float(*a / *b),
_ => unreachable!(),
},
(Value::Complex(ar, ai), Value::Complex(br, bi)) => match op {
Token::ADD => Value::Complex(bx(add(ar, br)), bx(add(ai, bi))),
Token::SUB => Value::Complex(bx(sub(ar, br)), bx(sub(ai, bi))),
Token::MUL => {
let (a, b, c, d) = (ar, ai, br, bi);
let ac = mul(&a, &c);
let bd = mul(&b, &d);
let bc = mul(&b, &c);
let ad = mul(&a, &d);
Value::Complex(bx(sub(&ac, &bd)), bx(add(&bc, &ad)))
}
Token::QUO => {
// (ac+bd)/s + i(bc-ad)/s, with s = cc + dd
let (a, b, c, d) = (ar, ai, br, bi);
let cc = mul(&c, &c);
let dd = mul(&d, &d);
let s = add(&cc, &dd);
let ac = mul(&a, &c);
let bd = mul(&b, &d);
let acbd = add(&ac, &bd);
let bc = mul(&b, &c);
let ad = mul(&a, &d);
let bcad = sub(&bc, &ad);
Value::Complex(bx(div(&acbd, &s)), bx(div(&bcad, &s)))
}
_ => unreachable!(),
},
(Value::Str(a), Value::Str(b)) => match op {
Token::ADD => Value::Str(format!("{}{}", a, b)),
_ => unreachable!(),
},
_ => unreachable!(),
}
}
/// unary_op returns the result of the unary expression op y.
/// The operation must be defined for the operand.
/// If prec > 0 it specifies the ^ (xor) result size in bits.
/// If y is Unknown, the result is Unknown.
pub fn unary_op(op: &Token, y: &Value, prec: usize) -> Value {
match op {
Token::ADD => match y {
Value::Str(_) => unreachable!(),
_ => y.clone(),
},
Token::SUB => match y {
Value::Unknown => Value::Unknown,
Value::Int(i) => Value::Int(-i),
Value::Rat(r) => Value::Rat(-r),
Value::Float(f) => Value::Float(-(*f)),
Value::Complex(r, i) => Value::Complex(
Box::new(Value::unary_op(op, r, 0)),
Box::new(Value::unary_op(op, i, 0)),
),
_ => unreachable!(),
},
Token::XOR => match y {
Value::Unknown => Value::Unknown,
Value::Int(i) => {
let mut v = !i;
if prec > 0 {
v = v & (!(BigInt::from_i64(-1).unwrap() << prec * 8));
}
Value::Int(v)
}
_ => unreachable!(),
},
Token::NOT => match y {
Value::Unknown => Value::Unknown,
Value::Bool(b) => Value::Bool(!b),
_ => unreachable!(),
},
_ => unreachable!(),
}
}
/// compare returns the result of the comparison x op y.
/// The comparison must be defined for the operands.
/// If one of the operands is Unknown, the result is
/// false.
pub fn compare(x: &Value, op: &Token, y: &Value) -> bool {
let (x, y) = Value::match_type(Cow::Borrowed(x), Cow::Borrowed(y));
match (&*x, &*y) {
(Value::Unknown, _) | (_, Value::Unknown) => false,
(Value::Bool(a), Value::Bool(b)) => match op {
Token::EQL => a == b,
Token::NEQ => a != b,
_ => unreachable!(),
},
(Value::Int(a), Value::Int(b)) => match op {
Token::EQL => a == b,
Token::NEQ => a != b,
Token::LSS => a < b,
Token::LEQ => a <= b,
Token::GTR => a > b,
Token::GEQ => a >= b,
_ => unreachable!(),
},
(Value::Rat(a), Value::Rat(b)) => match op {
Token::EQL => a == b,
Token::NEQ => a != b,
Token::LSS => a < b,
Token::LEQ => a <= b,
Token::GTR => a > b,
Token::GEQ => a >= b,
_ => unreachable!(),
},
(Value::Float(a), Value::Float(b)) => match op {
Token::EQL => a == b,
Token::NEQ => a != b,
Token::LSS => a < b,
Token::LEQ => a <= b,
Token::GTR => a > b,
Token::GEQ => a >= b,
_ => unreachable!(),
},
(Value::Complex(ar, ai), Value::Complex(br, bi)) => {
let r = Value::compare(ar, op, br);
let i = Value::compare(ai, op, bi);
match op {
Token::EQL => r && i,
Token::NEQ => !r || !i,
_ => unreachable!(),
}
}
(Value::Str(a), Value::Str(b)) => match op {
Token::EQL => a == b,
Token::NEQ => a != b,
Token::LSS => a < b,
Token::LEQ => a <= b,
Token::GTR => a > b,
Token::GEQ => a >= b,
_ => unreachable!(),
},
_ => unreachable!(),
}
}
// shift returns the result of the shift expression x op s
// with op == Token::SHL or Token::SHR (<< or >>). x must be
// an Int or an Unknown. If x is Unknown, the result is Unknown.
pub fn shift(x: &Value, op: &Token, s: usize) -> Value {
match x {
Value::Unknown => Value::Unknown,
Value::Int(i) => match op {
Token::SHL => Value::Int(i << s),
Token::SHR => Value::Int(i >> s),
_ => unreachable!(),
},
_ => unreachable!(),
}
}
pub fn bool_as_bool(&self) -> bool {
match self {
Value::Bool(b) => *b,
Value::Unknown => false,
_ => panic!("not a bool"),
}
}
pub fn str_as_string(&self) -> String {
match self {
Value::Str(s) => s.to_string(), //quote_str(s)
Value::Unknown => "".to_string(),
_ => panic!("not a string"),
}
}
/// int_as_u64 returns the Go uint64 value and whether the result is exact;
pub fn int_as_u64(&self) -> (u64, bool) {
match self {
Value::Int(i) => match i.to_u64() {
Some(v) => (v, true),
_ => (std::u64::MAX, false),
},
Value::Unknown => (0, false),
_ => panic!("not an integer"),
}
}
/// int_as_i64 returns the Go int64 value and whether the result is exact;
pub fn int_as_i64(&self) -> (i64, bool) {
match self {
Value::Int(i) => match i.to_i64() {
Some(v) => (v, true),
_ => (
if self.sign() > 0 {
std::i64::MAX
} else {
std::i64::MIN
},
false,
),
},
Value::Unknown => (0, false),
_ => panic!("not an integer"),
}
}
/// num_as_f64 returns the nearest Go float64 value of x and whether the result is exact;
/// x must be numeric or an Unknown, but not Complex. For values too small (too close to 0)
/// to represent as float64, num_as_f64 silently underflows to 0. The result sign always
/// matches the sign of x, even for 0.
/// If x is Unknown, the result is (0, false).
pub fn num_as_f64(&self) -> (F64, bool) {
match self {
Value::Int(_) | Value::Rat(_) => {
let vf = self.to_float();
if vf == Value::Unknown {
(
if self.sign() > 0 {
std::f64::MAX.into()
} else {
std::f64::MIN.into()
},
false,
)
} else {
vf.num_as_f64()
}
}
Value::Float(f) => (*f, true),
Value::Unknown => (0.0.into(), false),
_ => panic!("not a number"),
}
}
/// num_as_f32 is like num_as_f64 but for float32 instead of float64.
pub fn num_as_f32(&self) -> (F32, bool) {
match self {
Value::Int(_) | Value::Rat(_) => {
let vf = self.to_float();
if vf == Value::Unknown {
(
if self.sign() > 0 {
std::f32::MAX.into()
} else {
std::f32::MIN.into()
},
false,
)
} else {
vf.num_as_f32()
}
}
Value::Float(v) => {
let min: f64 = std::f32::MIN as f64;
let max: f64 = std::f32::MAX as f64;
let f: f64 = v.into_inner();
if f > min && f < max {
((f as f32).into(), true)
} else if f < min {
(std::f32::MIN.into(), false)
} else {
(std::f32::MAX.into(), false)
}
}
Value::Unknown => (0.0.into(), false),
_ => panic!("not a number"),
}
}
pub fn complex_as_complex64(&self) -> (F32, F32, bool) {
match self {
Value::Complex(r, i) => {
let (num_r, exact_r) = r.num_as_f32();
let (num_i, exact_i) = i.num_as_f32();
(num_r, num_i, exact_r && exact_i)
}
_ => panic!("not a complex"),
}
}
pub fn complex_as_complex128(&self) -> (F64, F64, bool) {
match self {
Value::Complex(r, i) => {
let (num_r, exact_r) = r.num_as_f64();
let (num_i, exact_i) = i.num_as_f64();
(num_r, num_i, exact_r && exact_i)
}
_ => panic!("not a complex"),
}
}
fn ord(&self) -> usize {
match self {
Value::Unknown => 0,
Value::Bool(_) | Value::Str(_) => 1,
Value::Int(_) => 2,
Value::Rat(_) => 3,
Value::Float(_) => 4,
Value::Complex(_, _) => 5,
}
}
/// match_type returns the matching representation (same type) with the
/// smallest complexity for two values x and y. If one of them is
/// numeric, both of them must be numeric. If one of them is Unknown
/// both results are Unknown
fn match_type<'a>(x: Cow<'a, Value>, y: Cow<'a, Value>) -> (Cow<'a, Value>, Cow<'a, Value>) {
if x.ord() > y.ord() {
let (y, x) = Value::match_type(y, x);
return (x, y);
}
match &*x {
Value::Bool(_) | Value::Str(_) | Value::Complex(_, _) => (x, y),
Value::Int(iv) => match &*y {
Value::Int(_) => (x, y),
Value::Rat(_) => (
Cow::Owned(Value::Rat(BigRational::new(iv.clone(), 1.into()))),
y,
),
Value::Float(_) => match iv.to_f64() {
Some(f) => (Cow::Owned(Value::Float(f.into())), y),
None => (Cow::Owned(Value::Unknown), Cow::Owned(Value::Unknown)),
},
Value::Complex(_, _) => (
Cow::Owned(Value::Complex(
Box::new(x.into_owned()),
Box::new(Value::with_f64(0.0)),
)),
y,
),
Value::Unknown => (x.clone(), x),
_ => unreachable!(),
},
Value::Rat(rv) => match &*y {
Value::Rat(_) => (x, y),
Value::Float(_) => match rat_to_f64(rv) {
Some(f) => (Cow::Owned(Value::Float(f.into())), y),
None => (Cow::Owned(Value::Unknown), Cow::Owned(Value::Unknown)),
},
Value::Complex(_, _) => (
Cow::Owned(Value::Complex(
Box::new(x.into_owned()),
Box::new(Value::with_f64(0.0)),
)),
y,
),
Value::Unknown => (x.clone(), x),
_ => unreachable!(),
},
Value::Float(_) => match &*y {
Value::Float(_) => (x, y),
Value::Complex(_, _) => (
Cow::Owned(Value::Complex(
Box::new(x.into_owned()),
Box::new(Value::with_f64(0.0)),
)),
y,
),
Value::Unknown => (x.clone(), x),
_ => unreachable!(),
},
Value::Unknown => (x.clone(), x),
}
}
}
// ----------------------------------------------------------------------------
// utilities
pub fn short_quote_str(s: &str, max: usize) -> String {
let result = s.escape_default().collect();
shorten_with_ellipsis(result, max)
}
pub fn int_from_literal(lit: &str) -> Value {
let result = if lit.starts_with("0x") {
BigInt::from_str_radix(&lit[2..], 16)
} else if lit.starts_with("0o") {
BigInt::from_str_radix(&lit[2..], 10)
} else if lit.starts_with("0b") {
BigInt::from_str_radix(&lit[2..], 2)
} else {
BigInt::from_str_radix(lit, 10)
};
match result {
Ok(i) => Value::Int(i),
Err(_) => Value::Unknown,
}
}
pub fn float_from_literal(lit: &str) -> Value {
match lit.parse::<f64>() {
Ok(f) => Value::with_f64(f),
Err(_) => Value::Unknown,
}
}
fn shorten_with_ellipsis(s: String, max: usize) -> String {
if s.len() <= max {
s
} else {
let mut buf: Vec<char> = s.chars().collect();
buf = buf[0..(buf.len() - 3)].to_vec();
buf.append(&mut "...".to_owned().chars().collect());
buf.into_iter().collect()
}
}
fn rat_to_f64(r: &BigRational) -> Option<f64> {
match (r.numer().to_f64(), r.denom().to_f64()) {
(Some(n), Some(d)) => Some(n / d),
_ => None,
}
}
#[cfg(test)]
mod test {
#[test]
fn test_str_unquote() {
let s = "\\111";
dbg!(s);
}
}