glam 0.11.3

A simple and fast 3D math library for games and graphics
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
#[cfg(feature = "num-traits")]
use num_traits::Float;

#[inline]
pub(crate) fn scalar_sin_cos(x: f32) -> (f32, f32) {
    // // expect sse2 to be available on all x86 builds
    // #[cfg(target_feature = "sse2")]
    // unsafe {
    //     let (sinx, cosx) = sin_cos_sse2(_mm_set1_ps(x));
    //     (_mm_cvtss_f32(sinx), _mm_cvtss_f32(cosx))
    // }
    // #[cfg(not(target_feature = "sse2"))]
    x.sin_cos()
}

#[inline]
pub fn scalar_acos(value: f32) -> f32 {
    // Based on https://github.com/microsoft/DirectXMath `XMScalarAcos`
    // Clamp input to [-1,1].
    let nonnegative = value >= 0.0;
    let x = value.abs();
    let mut omx = 1.0 - x;
    if omx < 0.0 {
        omx = 0.0;
    }
    let root = omx.sqrt();

    // 7-degree minimax approximation
    #[allow(clippy::approx_constant)]
    let mut result =
        ((((((-0.001_262_491_1 * x + 0.006_670_09) * x - 0.017_088_126) * x + 0.030_891_88) * x
            - 0.050_174_303)
            * x
            + 0.088_978_99)
            * x
            - 0.214_598_8)
            * x
            + 1.570_796_3;
    result *= root;

    // acos(x) = pi - acos(-x) when x < 0
    if nonnegative {
        result
    } else {
        core::f32::consts::PI - result
    }
}

#[cfg(vec4_sse2)]
#[allow(clippy::excessive_precision)]
pub(crate) mod sse2 {
    #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
    use crate::f32::cast::UnionCast;
    #[cfg(target_arch = "x86")]
    use core::arch::x86::*;
    #[cfg(target_arch = "x86_64")]
    use core::arch::x86_64::*;

    macro_rules! _ps_const_ty {
        ($name:ident, $field:ident, $x:expr) => {
            #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
            const $name: UnionCast = UnionCast {
                $field: [$x, $x, $x, $x],
            };
        };

        ($name:ident, $field:ident, $x:expr, $y:expr, $z:expr, $w:expr) => {
            #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
            const $name: UnionCast = UnionCast {
                $field: [$x, $y, $z, $w],
            };
        };
    }

    _ps_const_ty!(PS_INV_SIGN_MASK, u32x4, !0x8000_0000);
    _ps_const_ty!(PS_SIGN_MASK, u32x4, 0x8000_0000);
    _ps_const_ty!(PS_NO_FRACTION, f32x4, 8388608.0);

    // _ps_const_ty!(PS_1_0, f32x4, 1.0);
    // _ps_const_ty!(PS_0_5, f32x4, 0.5);

    // _ps_const_ty!(PI32_1, i32x4, 1);
    // _ps_const_ty!(PI32_INV_1, i32x4, !1);
    // _ps_const_ty!(PI32_2, i32x4, 2);
    // _ps_const_ty!(PI32_4, i32x4, 4);

    // _ps_const_ty!(PS_MINUS_CEPHES_DP1, f32x4, -0.785_156_25);
    // _ps_const_ty!(PS_MINUS_CEPHES_DP2, f32x4, -2.418_756_5e-4);
    // _ps_const_ty!(PS_MINUS_CEPHES_DP3, f32x4, -3.774_895e-8);
    // _ps_const_ty!(PS_SINCOF_P0, f32x4, -1.951_529_6e-4);
    // _ps_const_ty!(PS_SINCOF_P1, f32x4, 8.332_161e-3);
    // _ps_const_ty!(PS_SINCOF_P2, f32x4, -1.666_665_5e-1);
    // _ps_const_ty!(PS_COSCOF_P0, f32x4, 2.443_315_7e-5);
    // _ps_const_ty!(PS_COSCOF_P1, f32x4, -1.388_731_6E-3);
    // _ps_const_ty!(PS_COSCOF_P2, f32x4, 4.166_664_6e-2);
    // _ps_const_ty!(PS_CEPHES_FOPI, f32x4, 1.273_239_5); // 4 / M_PI

    _ps_const_ty!(PS_NEGATIVE_ZERO, u32x4, 0x80000000);
    _ps_const_ty!(PS_PI, f32x4, core::f32::consts::PI);
    _ps_const_ty!(PS_HALF_PI, f32x4, core::f32::consts::FRAC_PI_2);
    _ps_const_ty!(
        PS_SIN_COEFFICIENTS0,
        f32x4,
        -0.16666667,
        0.0083333310,
        -0.00019840874,
        2.7525562e-06
    );
    _ps_const_ty!(
        PS_SIN_COEFFICIENTS1,
        f32x4,
        -2.3889859e-08,
        -0.16665852,    /*Est1*/
        0.0083139502,   /*Est2*/
        -0.00018524670  /*Est3*/
    );
    _ps_const_ty!(PS_ONE, f32x4, 1.0);
    _ps_const_ty!(PS_TWO_PI, f32x4, core::f32::consts::PI * 2.0);
    _ps_const_ty!(PS_RECIPROCAL_TWO_PI, f32x4, 0.159154943);

    #[cfg(target_feature = "fma")]
    macro_rules! m128_mul_add {
        ($a:expr, $b:expr, $c:expr) => {
            _mm_fmadd_ps($a, $b, $c)
        };
    }

    #[cfg(not(target_feature = "fma"))]
    macro_rules! m128_mul_add {
        ($a:expr, $b:expr, $c:expr) => {
            _mm_add_ps(_mm_mul_ps($a, $b), $c)
        };
    }

    #[cfg(target_feature = "fma")]
    macro_rules! m128_neg_mul_sub {
        ($a:expr, $b:expr, $c:expr) => {
            _mm_fnmadd_ps($a, $b, $c)
        };
    }

    #[cfg(not(target_feature = "fma"))]
    macro_rules! m128_neg_mul_sub {
        ($a:expr, $b:expr, $c:expr) => {
            _mm_sub_ps($c, _mm_mul_ps($a, $b))
        };
    }

    #[inline]
    pub(crate) unsafe fn m128_round(v: __m128) -> __m128 {
        // Based on https://github.com/microsoft/DirectXMath `XMVectorRound`
        let sign = _mm_and_ps(v, PS_SIGN_MASK.m128);
        let s_magic = _mm_or_ps(PS_NO_FRACTION.m128, sign);
        let r1 = _mm_add_ps(v, s_magic);
        let r1 = _mm_sub_ps(r1, s_magic);
        let r2 = _mm_and_ps(v, PS_INV_SIGN_MASK.m128);
        let mask = _mm_cmple_ps(r2, PS_NO_FRACTION.m128);
        let r2 = _mm_andnot_ps(mask, v);
        let r1 = _mm_and_ps(r1, mask);
        _mm_xor_ps(r1, r2)
    }

    #[inline]
    pub(crate) unsafe fn m128_floor(v: __m128) -> __m128 {
        // Based on https://github.com/microsoft/DirectXMath `XMVectorFloor`
        // To handle NAN, INF and numbers greater than 8388608, use masking
        let test = _mm_and_si128(_mm_castps_si128(v), PS_INV_SIGN_MASK.m128i);
        let test = _mm_cmplt_epi32(test, PS_NO_FRACTION.m128i);
        // Truncate
        let vint = _mm_cvttps_epi32(v);
        let result = _mm_cvtepi32_ps(vint);
        let larger = _mm_cmpgt_ps(result, v);
        // 0 -> 0, 0xffffffff -> -1.0f
        let larger = _mm_cvtepi32_ps(_mm_castps_si128(larger));
        let result = _mm_add_ps(result, larger);
        // All numbers less than 8388608 will use the round to int
        let result = _mm_and_ps(result, _mm_castsi128_ps(test));
        // All others, use the ORIGINAL value
        let test = _mm_andnot_si128(test, _mm_castps_si128(v));
        _mm_or_ps(result, _mm_castsi128_ps(test))
    }

    #[inline]
    pub(crate) unsafe fn m128_ceil(v: __m128) -> __m128 {
        // Based on https://github.com/microsoft/DirectXMath `XMVectorCeil`
        // To handle NAN, INF and numbers greater than 8388608, use masking
        let test = _mm_and_si128(_mm_castps_si128(v), PS_INV_SIGN_MASK.m128i);
        let test = _mm_cmplt_epi32(test, PS_NO_FRACTION.m128i);
        // Truncate
        let vint = _mm_cvttps_epi32(v);
        let result = _mm_cvtepi32_ps(vint);
        let smaller = _mm_cmplt_ps(result, v);
        // 0 -> 0, 0xffffffff -> -1.0f
        let smaller = _mm_cvtepi32_ps(_mm_castps_si128(smaller));
        let result = _mm_sub_ps(result, smaller);
        // All numbers less than 8388608 will use the round to int
        let result = _mm_and_ps(result, _mm_castsi128_ps(test));
        // All others, use the ORIGINAL value
        let test = _mm_andnot_si128(test, _mm_castps_si128(v));
        _mm_or_ps(result, _mm_castsi128_ps(test))
    }

    /// Returns a vector whose components are the corresponding components of Angles modulo 2PI.
    #[inline]
    pub(crate) unsafe fn m128_mod_angles(angles: __m128) -> __m128 {
        // Based on https://github.com/microsoft/DirectXMath `XMVectorModAngles`
        let v = _mm_mul_ps(angles, PS_RECIPROCAL_TWO_PI.m128);
        let v = m128_round(v);
        m128_neg_mul_sub!(PS_TWO_PI.m128, v, angles)
    }

    /// Computes the sine of the angle in each lane of `v`. Values outside
    /// the bounds of PI may produce an increasing error as the input angle
    /// drifts from `[-PI, PI]`.
    #[inline]
    pub(crate) unsafe fn m128_sin(v: __m128) -> __m128 {
        // Based on https://github.com/microsoft/DirectXMath `XMVectorSin`

        // 11-degree minimax approximation

        // Force the value within the bounds of pi
        let mut x = m128_mod_angles(v);

        // Map in [-pi/2,pi/2] with sin(y) = sin(x).
        let sign = _mm_and_ps(x, PS_NEGATIVE_ZERO.m128);
        // pi when x >= 0, -pi when x < 0
        let c = _mm_or_ps(PS_PI.m128, sign);
        // |x|
        let absx = _mm_andnot_ps(sign, x);
        let rflx = _mm_sub_ps(c, x);
        let comp = _mm_cmple_ps(absx, PS_HALF_PI.m128);
        let select0 = _mm_and_ps(comp, x);
        let select1 = _mm_andnot_ps(comp, rflx);
        x = _mm_or_ps(select0, select1);

        let x2 = _mm_mul_ps(x, x);

        // Compute polynomial approximation
        const SC1: __m128 = unsafe { PS_SIN_COEFFICIENTS1.m128 };
        let v_constants_b = _mm_shuffle_ps(SC1, SC1, 0b00_00_00_00);

        const SC0: __m128 = unsafe { PS_SIN_COEFFICIENTS0.m128 };
        let mut v_constants = _mm_shuffle_ps(SC0, SC0, 0b11_11_11_11);
        let mut result = m128_mul_add!(v_constants_b, x2, v_constants);

        v_constants = _mm_shuffle_ps(SC0, SC0, 0b10_10_10_10);
        result = m128_mul_add!(result, x2, v_constants);

        v_constants = _mm_shuffle_ps(SC0, SC0, 0b01_01_01_01);
        result = m128_mul_add!(result, x2, v_constants);

        v_constants = _mm_shuffle_ps(SC0, SC0, 0b00_00_00_00);
        result = m128_mul_add!(result, x2, v_constants);

        result = m128_mul_add!(result, x2, PS_ONE.m128);
        result = _mm_mul_ps(result, x);

        result
    }

    // Based on http://gruntthepeon.free.fr/ssemath/sse_mathfun.h
    // #[cfg(target_feature = "sse2")]
    // unsafe fn sin_cos_sse2(x: __m128) -> (__m128, __m128) {
    //     let mut sign_bit_sin = x;
    //     // take the absolute value
    //     let mut x = _mm_and_ps(x, PS_INV_SIGN_MASK.m128);
    //     // extract the sign bit (upper one)
    //     sign_bit_sin = _mm_and_ps(sign_bit_sin, PS_SIGN_MASK.m128);

    //     // scale by 4/Pi
    //     let mut y = _mm_mul_ps(x, PS_CEPHES_FOPI.m128);

    //     // store the integer part of y in emm2
    //     let mut emm2 = _mm_cvttps_epi32(y);

    //     // j=(j+1) & (~1) (see the cephes sources)
    //     emm2 = _mm_add_epi32(emm2, PI32_1.m128i);
    //     emm2 = _mm_and_si128(emm2, PI32_INV_1.m128i);
    //     y = _mm_cvtepi32_ps(emm2);

    //     let mut emm4 = emm2;

    //     /* get the swap sign flag for the sine */
    //     let mut emm0 = _mm_and_si128(emm2, PI32_4.m128i);
    //     emm0 = _mm_slli_epi32(emm0, 29);
    //     let swap_sign_bit_sin = _mm_castsi128_ps(emm0);

    //     /* get the polynom selection mask for the sine*/
    //     emm2 = _mm_and_si128(emm2, PI32_2.m128i);
    //     emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128());
    //     let poly_mask = _mm_castsi128_ps(emm2);

    //     /* The magic pass: "Extended precision modular arithmetic"
    //     x = ((x - y * DP1) - y * DP2) - y * DP3; */
    //     let mut xmm1 = PS_MINUS_CEPHES_DP1.m128;
    //     let mut xmm2 = PS_MINUS_CEPHES_DP2.m128;
    //     let mut xmm3 = PS_MINUS_CEPHES_DP3.m128;
    //     xmm1 = _mm_mul_ps(y, xmm1);
    //     xmm2 = _mm_mul_ps(y, xmm2);
    //     xmm3 = _mm_mul_ps(y, xmm3);
    //     x = _mm_add_ps(x, xmm1);
    //     x = _mm_add_ps(x, xmm2);
    //     x = _mm_add_ps(x, xmm3);

    //     emm4 = _mm_sub_epi32(emm4, PI32_2.m128i);
    //     emm4 = _mm_andnot_si128(emm4, PI32_4.m128i);
    //     emm4 = _mm_slli_epi32(emm4, 29);
    //     let sign_bit_cos = _mm_castsi128_ps(emm4);

    //     sign_bit_sin = _mm_xor_ps(sign_bit_sin, swap_sign_bit_sin);

    //     // Evaluate the first polynom  (0 <= x <= Pi/4)
    //     let z = _mm_mul_ps(x, x);
    //     y = PS_COSCOF_P0.m128;

    //     y = _mm_mul_ps(y, z);
    //     y = _mm_add_ps(y, PS_COSCOF_P1.m128);
    //     y = _mm_mul_ps(y, z);
    //     y = _mm_add_ps(y, PS_COSCOF_P2.m128);
    //     y = _mm_mul_ps(y, z);
    //     y = _mm_mul_ps(y, z);
    //     let tmp = _mm_mul_ps(z, PS_0_5.m128);
    //     y = _mm_sub_ps(y, tmp);
    //     y = _mm_add_ps(y, PS_1_0.m128);

    //     // Evaluate the second polynom  (Pi/4 <= x <= 0)
    //     let mut y2 = PS_SINCOF_P0.m128;
    //     y2 = _mm_mul_ps(y2, z);
    //     y2 = _mm_add_ps(y2, PS_SINCOF_P1.m128);
    //     y2 = _mm_mul_ps(y2, z);
    //     y2 = _mm_add_ps(y2, PS_SINCOF_P2.m128);
    //     y2 = _mm_mul_ps(y2, z);
    //     y2 = _mm_mul_ps(y2, x);
    //     y2 = _mm_add_ps(y2, x);

    //     // select the correct result from the two polynoms
    //     xmm3 = poly_mask;
    //     let ysin2 = _mm_and_ps(xmm3, y2);
    //     let ysin1 = _mm_andnot_ps(xmm3, y);
    //     y2 = _mm_sub_ps(y2, ysin2);
    //     y = _mm_sub_ps(y, ysin1);

    //     xmm1 = _mm_add_ps(ysin1, ysin2);
    //     xmm2 = _mm_add_ps(y, y2);

    //     // update the sign
    //     (
    //         _mm_xor_ps(xmm1, sign_bit_sin),
    //         _mm_xor_ps(xmm2, sign_bit_cos),
    //     )
    // }
}

#[cfg(test)]
macro_rules! assert_approx_eq {
    ($a:expr, $b:expr) => {{
        assert_approx_eq!($a, $b, core::f32::EPSILON);
    }};
    ($a:expr, $b:expr, $eps:expr) => {{
        let (a, b) = (&$a, &$b);
        let eps = $eps;
        assert!(
            (a - b).abs() <= eps,
            "assertion failed: `(left !== right)` \
             (left: `{:?}`, right: `{:?}`, expect diff: `{:?}`, real diff: `{:?}`)",
            *a,
            *b,
            eps,
            (a - b).abs()
        );
    }};
}

#[cfg(test)]
macro_rules! assert_relative_eq {
    ($a:expr, $b:expr) => {{
        assert_relative_eq!($a, $b, core::f32::EPSILON);
    }};
    ($a:expr, $b:expr, $eps:expr) => {{
        let (a, b) = (&$a, &$b);
        let eps = $eps;
        let diff = (a - b).abs();
        let largest = a.abs().max(b.abs());
        assert!(
            diff <= largest * eps,
            "assertion failed: `(left !== right)` \
             (left: `{:?}`, right: `{:?}`, expect diff: `{:?}`, real diff: `{:?}`)",
            *a,
            *b,
            largest * eps,
            diff
        );
    }};
}

#[test]
fn test_scalar_acos() {
    fn test_scalar_acos_angle(a: f32) {
        // 1e-6 is the lowest epsilon that will pass
        assert_relative_eq!(scalar_acos(a), a.acos(), 1e-6);
        // assert_approx_eq!(scalar_acos(a), a.acos(), 1e-6);
    }

    // test 1024 floats between -1.0 and 1.0 inclusive
    const MAX_TESTS: u32 = 1024 / 2;
    const SIGN: u32 = 0x80_00_00_00;
    const PTVE_ONE: u32 = 0x3f_80_00_00; // 1.0_f32.to_bits();
    const NGVE_ONE: u32 = SIGN | PTVE_ONE;
    const STEP_SIZE: usize = (PTVE_ONE / MAX_TESTS) as usize;
    for f in (SIGN..=NGVE_ONE)
        .step_by(STEP_SIZE)
        .map(|i| f32::from_bits(i))
    {
        test_scalar_acos_angle(f);
    }
    for f in (0..=PTVE_ONE).step_by(STEP_SIZE).map(|i| f32::from_bits(i)) {
        test_scalar_acos_angle(f);
    }

    // input is clamped to -1.0..1.0
    assert_approx_eq!(scalar_acos(2.0), 0.0);
    assert_approx_eq!(scalar_acos(-2.0), core::f32::consts::PI);
}

#[test]
fn test_scalar_sin_cos() {
    fn test_scalar_sin_cos_angle(a: f32) {
        let (s1, c1) = scalar_sin_cos(a);
        let (s2, c2) = a.sin_cos();
        // dbg!(a);
        assert_approx_eq!(s1, s2);
        assert_approx_eq!(c1, c2);
    }

    // test 1024 floats between -PI and PI inclusive
    const MAX_TESTS: u32 = 1024 / 2;
    const SIGN: u32 = 0x80_00_00_00;
    let ptve_pi = core::f32::consts::PI.to_bits();
    let ngve_pi = SIGN | ptve_pi;
    let step_pi = (ptve_pi / MAX_TESTS) as usize;
    for f in (SIGN..=ngve_pi).step_by(step_pi).map(|i| f32::from_bits(i)) {
        test_scalar_sin_cos_angle(f);
    }
    for f in (0..=ptve_pi).step_by(step_pi).map(|i| f32::from_bits(i)) {
        test_scalar_sin_cos_angle(f);
    }

    // test 1024 floats between -INF and +INF exclusive
    let ptve_inf = core::f32::INFINITY.to_bits();
    let ngve_inf = core::f32::NEG_INFINITY.to_bits();
    let step_inf = (ptve_inf / MAX_TESTS) as usize;
    for f in (SIGN..ngve_inf)
        .step_by(step_inf)
        .map(|i| f32::from_bits(i))
    {
        test_scalar_sin_cos_angle(f);
    }
    for f in (0..ptve_inf).step_by(step_inf).map(|i| f32::from_bits(i)) {
        test_scalar_sin_cos_angle(f);
    }

    // +inf and -inf should return NaN
    let (s, c) = scalar_sin_cos(core::f32::INFINITY);
    assert!(s.is_nan());
    assert!(c.is_nan());

    let (s, c) = scalar_sin_cos(core::f32::NEG_INFINITY);
    assert!(s.is_nan());
    assert!(c.is_nan());
}

#[test]
#[cfg(vec4_sse2)]
fn test_sse2_m128_sin() {
    use crate::Vec4;
    use core::f32::consts::PI;

    fn test_sse2_m128_sin_angle(a: f32) {
        let v = Vec4::splat(a);
        let v = unsafe { Vec4(sse2::m128_sin(v.0)) };
        let a_sin = a.sin();
        // dbg!((a, a_sin, v));
        assert_approx_eq!(v.x, a_sin, 1e-6);
        assert_approx_eq!(v.z, a_sin, 1e-6);
        assert_approx_eq!(v.y, a_sin, 1e-6);
        assert_approx_eq!(v.w, a_sin, 1e-6);
    }

    let mut a = -PI;
    let end = PI;
    let step = PI / 8192.0;

    while a <= end {
        test_sse2_m128_sin_angle(a);
        a += step;
    }
}

// sse2::m128_sin is derived from the XMVectorSin in DirectXMath. It's been
// observed both here and in the C++ version that the error rate increases
// as the input angle drifts further from the bounds of PI.
//
// #[test]
// #[cfg(vec4_sse2)]
// fn test_sse2_m128_sin2() {
//     use crate::Vec4;

//     fn test_sse2_m128_sin_angle(a: f32) -> f32 {
//         let v = Vec4::splat(a);
//         let v = unsafe { Vec4(sse2::m128_sin(v.0)) };
//         let a_sin = a.sin();
//         let v_sin = v.x();
//         // println!("{:?}", (a, a_sin, v_sin));
//         assert_approx_eq!(a_sin, v.x(), 1e-4);
//         assert_approx_eq!(a_sin, v.z(), 1e-4);
//         assert_approx_eq!(a_sin, v.y(), 1e-4);
//         assert_approx_eq!(a_sin, v.w(), 1e-4);
//         v.x()
//     }

//     // test 1024 floats between -PI and PI inclusive
//     const MAX_TESTS: u32 = 1024 / 2;
//     const SIGN: u32 = 0x80_00_00_00;
//     let ptve_pi = std::f32::consts::PI.to_bits();
//     let ngve_pi = SIGN | ptve_pi;
//     let step_pi = (ptve_pi / MAX_TESTS) as usize;
//     for f in (SIGN..=ngve_pi).step_by(step_pi).map(|i| f32::from_bits(i)) {
//         test_sse2_m128_sin_angle(f);
//     }
//     for f in (0..=ptve_pi).step_by(step_pi).map(|i| f32::from_bits(i)) {
//         test_sse2_m128_sin_angle(f);
//     }

//     // test 1024 floats between -INF and +INF exclusive
//     let ptve_inf = std::f32::INFINITY.to_bits();
//     let ngve_inf = std::f32::NEG_INFINITY.to_bits();
//     let step_inf = (ptve_inf / MAX_TESTS) as usize;
//     for f in (SIGN..ngve_inf)
//         .step_by(step_inf)
//         .map(|i| f32::from_bits(i))
//     {
//         test_sse2_m128_sin_angle(f);
//     }
//     for f in (0..ptve_inf).step_by(step_inf).map(|i| f32::from_bits(i)) {
//         test_sse2_m128_sin_angle(f);
//     }

//     // +inf and -inf should return NaN
//     let s  = test_sse2_m128_sin_angle(std::f32::INFINITY);
//     assert!(s.is_nan());

//     let s  = test_sse2_m128_sin_angle(std::f32::NEG_INFINITY);
//     assert!(s.is_nan());
// }