genetic_algorithm 0.20.5

A genetic algorithm implementation
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
//! A solution strategy for finding the best chromosome in case of small problem spaces (with a 100% guarantee)
mod builder;
pub mod prelude;
mod reporter;

pub use self::builder::{
    Builder as PermutateBuilder, TryFromBuilderError as TryFromPermutateBuilderError,
};

use super::{
    Strategy, StrategyAction, StrategyConfig, StrategyReporter, StrategyReporterNoop,
    StrategyState, StrategyVariant,
};
use crate::chromosome::{Chromosome, GenesOwner};
use crate::fitness::{Fitness, FitnessOrdering, FitnessValue};
use crate::genotype::{MutationType, PermutateGenotype};
use crate::population::Population;
use rayon::prelude::*;
use std::collections::HashMap;
use std::fmt;
use std::sync::mpsc::sync_channel;
use std::time::{Duration, Instant};

pub use self::reporter::Simple as PermutateReporterSimple;
pub use crate::strategy::reporter::Duration as PermutateReporterDuration;
pub use crate::strategy::reporter::Noop as PermutateReporterNoop;

#[derive(Copy, Clone, Debug, Default)]
pub enum PermutateVariant {
    #[default]
    Standard,
}

/// All possible combinations of genes are iterated over as chromosomes (unless the genotype seeds
/// specific genes, in which case only those genes are iterated over). The fitness is calculated
/// for each chromosome and the best is taken. For efficiency reasons the full population is never
/// instantiated as a whole.
///
/// The `chromosome_permutations_size` is subject to combinatorial explosion, so check the genotype
/// for practical values before using the [Permutate] strategy. This will not pose any memory
/// issues, as the permutations are not instantiated at the same time, just iterated over. But it
/// will take forever...
///
/// There is a method to permutate
/// [RangeGenotype](crate::genotype::RangeGenotype) and
/// [MultiRangeGenotype](crate::genotype::MultiRangeGenotype) chromosomes. Listed in
/// descending priority:
/// * With allele_mutation_scaled_range(s) set on genotype:
///     * First scale (index = 0) traverses the whole allele_range(s) with the upper bound of the
///     first scale as step size.
///     * Other scales (index > 0) center around the best chromomsome of the previous scale,
///     traversing the previous scale bounds around the best chromosome with the upper bound of the
///     current scale as step size.
///     * Scale down after grid is fully traversed
/// * With allele_mutation_range(s) set on genotype: Permutation not supported
/// * With only allele_range(s) set on genotype:  Permutation not supported
///
/// There are reporting hooks in the loop receiving the [PermutateState], which can by handled by an
/// [StrategyReporter] (e.g. [PermutateReporterDuration], [PermutateReporterSimple]). But you are encouraged to
/// roll your own, see [StrategyReporter].
///
/// See [PermutateBuilder] for initialization options.
///
/// All multithreading mechanisms are implemented using [rayon::iter] and [std::sync::mpsc].
///
/// Example:
/// ```
/// use genetic_algorithm::strategy::permutate::prelude::*;
/// use genetic_algorithm::fitness::placeholders::CountTrue;
///
/// // the search space
/// let genotype = BinaryGenotype::builder() // boolean alleles
///     .with_genes_size(12)                 // 12 genes per chromosome
///     .build()
///     .unwrap();
///
/// // the search strategy
/// let permutate = Permutate::builder()
///     .with_genotype(genotype)
///     .with_fitness(CountTrue)                          // count the number of true values in the chromosomes
///     .with_fitness_ordering(FitnessOrdering::Minimize) // aim for the least true values
///     .with_par_fitness(true)                           // optional, defaults to false, use parallel fitness calculation
///     .with_reporter(PermutateReporterSimple::new(100)) // optional builder step, report every 100 generations
///     .call()
///     .unwrap();
///
/// // it's all about the best genes after all
/// let (best_genes, best_fitness_score) = permutate.best_genes_and_fitness_score().unwrap();
/// assert_eq!(best_genes, vec![false; 12]);
/// assert_eq!(best_fitness_score, 0);
/// ```
pub struct Permutate<
    G: PermutateGenotype,
    F: Fitness<Genotype = G>,
    SR: StrategyReporter<Genotype = G>,
> {
    pub genotype: G,
    pub fitness: F,
    pub config: PermutateConfig,
    pub state: PermutateState<G>,
    pub reporter: SR,
}

pub struct PermutateConfig {
    pub variant: PermutateVariant,
    pub fitness_ordering: FitnessOrdering,
    pub par_fitness: bool,
    pub replace_on_equal_fitness: bool,
}

/// Stores the state of the Permutate strategy
pub struct PermutateState<G: PermutateGenotype> {
    pub current_iteration: usize,
    pub current_generation: usize,
    pub stale_generations: usize,
    pub scale_generation: usize,
    pub best_generation: usize,
    pub best_fitness_score: Option<FitnessValue>,
    pub durations: HashMap<StrategyAction, Duration>,
    pub chromosome: Option<G::Chromosome>,
    pub population: Population<G::Chromosome>,
    pub current_scale_index: Option<usize>,
}

impl<G: PermutateGenotype, F: Fitness<Genotype = G>, SR: StrategyReporter<Genotype = G>> Strategy<G>
    for Permutate<G, F, SR>
{
    fn call(&mut self) {
        let now = Instant::now();
        self.reporter
            .on_enter(&self.genotype, &self.state, &self.config);
        self.setup();
        self.reporter
            .on_start(&self.genotype, &self.state, &self.config);
        while !self.is_finished() {
            self.genotype
                .load_best_genes(self.state.chromosome.as_mut().unwrap());
            if self.config.par_fitness {
                self.call_parallel()
            } else {
                self.call_sequential()
            }
            self.state.scale(&self.genotype, &self.config);
        }
        self.reporter
            .on_finish(&self.genotype, &self.state, &self.config);
        self.cleanup();
        self.state.close_duration(now.elapsed());
        self.reporter
            .on_exit(&self.genotype, &self.state, &self.config);
    }
    fn best_generation(&self) -> usize {
        self.state.best_generation
    }
    fn best_fitness_score(&self) -> Option<FitnessValue> {
        self.state.best_fitness_score()
    }
    fn best_genes(&self) -> Option<G::Genes> {
        if self.state.best_fitness_score().is_some() {
            Some(self.genotype.best_genes().clone())
        } else {
            None
        }
    }
    fn flush_reporter(&mut self, output: &mut Vec<u8>) {
        self.reporter.flush(output);
    }
}
impl<G: PermutateGenotype, F: Fitness<Genotype = G>, SR: StrategyReporter<Genotype = G>>
    Permutate<G, F, SR>
where
    G::Chromosome: GenesOwner<Genes = G::Genes>,
{
    pub fn best_chromosome(&self) -> Option<G::Chromosome> {
        if let Some(best_genes) = self.best_genes() {
            let mut chromosome = G::Chromosome::new(best_genes);
            chromosome.set_fitness_score(self.best_fitness_score());
            Some(chromosome)
        } else {
            None
        }
    }
}

impl<G: PermutateGenotype, F: Fitness<Genotype = G>> Permutate<G, F, StrategyReporterNoop<G>> {
    pub fn builder() -> PermutateBuilder<G, F, StrategyReporterNoop<G>> {
        PermutateBuilder::new()
    }
}

impl<G: PermutateGenotype, F: Fitness<Genotype = G>, SR: StrategyReporter<Genotype = G>>
    Permutate<G, F, SR>
{
    pub fn setup(&mut self) {
        let now = Instant::now();
        self.state.chromosome = self
            .genotype
            .chromosome_permutations_into_iter(None, self.state.current_scale_index)
            .next();
        self.state
            .add_duration(StrategyAction::SetupAndCleanup, now.elapsed());
        self.fitness
            .call_for_state_chromosome(&self.genotype, &mut self.state, &self.config);
        self.state.update_best_chromosome_and_report(
            &mut self.genotype,
            &self.config,
            &mut self.reporter,
        );

        // in case fitness_score is None, set best by definition anyway
        self.state.best_generation = self.state.current_generation;
        self.genotype
            .save_best_genes(self.state.chromosome.as_ref().unwrap());
    }
    pub fn cleanup(&mut self) {
        let now = Instant::now();
        self.state.chromosome.take();
        std::mem::take(&mut self.state.population.chromosomes);
        self.genotype.chromosomes_cleanup();
        self.state
            .add_duration(StrategyAction::SetupAndCleanup, now.elapsed());
    }
    fn is_finished(&self) -> bool {
        self.is_finished_by_max_scale_generation()
    }
    fn is_finished_by_max_scale_generation(&self) -> bool {
        self.state.scale_generation > 0
    }

    fn call_sequential(&mut self) {
        self.genotype
            .clone()
            .chromosome_permutations_into_iter(
                self.state.chromosome.as_ref(),
                self.state.current_scale_index,
            )
            .for_each(|chromosome| {
                self.state.increment_generation();
                self.state.chromosome.replace(chromosome);
                self.fitness.call_for_state_chromosome(
                    &self.genotype,
                    &mut self.state,
                    &self.config,
                );
                self.state.update_best_chromosome_and_report(
                    &mut self.genotype,
                    &self.config,
                    &mut self.reporter,
                );
                self.reporter
                    .on_new_generation(&self.genotype, &self.state, &self.config);
            });
    }
    fn call_parallel(&mut self) {
        rayon::scope(|s| {
            let thread_genotype = self.genotype.clone();
            let thread_current_scale_index = self.state.current_scale_index;
            let thread_chromosome = self.state.chromosome.clone();
            let fitness = self.fitness.clone();
            let fitness_cache = self.config.fitness_cache();
            let (sender, receiver) = sync_channel(1000);

            s.spawn(move |_| {
                thread_genotype
                    .chromosome_permutations_into_iter(
                        thread_chromosome.as_ref(),
                        thread_current_scale_index,
                    )
                    .par_bridge()
                    .for_each_with((sender, fitness), |(sender, fitness), mut chromosome| {
                        let now = Instant::now();
                        fitness.call_for_chromosome(
                            &mut chromosome,
                            &thread_genotype,
                            fitness_cache,
                        );
                        sender.send((chromosome, now.elapsed())).unwrap();
                    });
            });

            receiver.iter().for_each(|(chromosome, fitness_duration)| {
                self.state.increment_generation();
                self.state.chromosome.replace(chromosome);
                self.state.update_best_chromosome_and_report(
                    &mut self.genotype,
                    &self.config,
                    &mut self.reporter,
                );
                self.state
                    .add_duration(StrategyAction::Fitness, fitness_duration);
                self.reporter
                    .on_new_generation(&self.genotype, &self.state, &self.config);
            });
        });
    }
}

impl StrategyConfig for PermutateConfig {
    fn fitness_ordering(&self) -> FitnessOrdering {
        self.fitness_ordering
    }
    fn par_fitness(&self) -> bool {
        self.par_fitness
    }
    fn replace_on_equal_fitness(&self) -> bool {
        self.replace_on_equal_fitness
    }
    fn variant(&self) -> StrategyVariant {
        StrategyVariant::Permutate(self.variant)
    }
}

impl<G: PermutateGenotype> StrategyState<G> for PermutateState<G> {
    fn chromosome_as_ref(&self) -> &Option<G::Chromosome> {
        &self.chromosome
    }
    fn population_as_ref(&self) -> &Population<G::Chromosome> {
        &self.population
    }
    fn chromosome_as_mut(&mut self) -> &mut Option<G::Chromosome> {
        &mut self.chromosome
    }
    fn population_as_mut(&mut self) -> &mut Population<G::Chromosome> {
        &mut self.population
    }
    fn best_fitness_score(&self) -> Option<FitnessValue> {
        self.best_fitness_score
    }
    fn best_generation(&self) -> usize {
        self.best_generation
    }
    fn current_generation(&self) -> usize {
        self.current_generation
    }
    fn current_iteration(&self) -> usize {
        self.current_iteration
    }
    fn increment_generation(&mut self) {
        self.current_generation += 1;
        self.scale_generation += 1;
    }
    fn stale_generations(&self) -> usize {
        self.stale_generations
    }
    fn increment_stale_generations(&mut self) {
        self.stale_generations += 1;
    }
    fn reset_stale_generations(&mut self) {
        self.stale_generations = 0;
    }
    fn scale_generation(&self) -> usize {
        self.scale_generation
    }
    fn reset_scale_generation(&mut self) {
        self.scale_generation = 0;
    }
    fn current_scale_index(&self) -> Option<usize> {
        self.current_scale_index
    }
    fn population_cardinality(&self) -> Option<usize> {
        None
    }
    fn durations(&self) -> &HashMap<StrategyAction, Duration> {
        &self.durations
    }
    fn add_duration(&mut self, action: StrategyAction, duration: Duration) {
        *self.durations.entry(action).or_default() += duration;
    }
    fn total_duration(&self) -> Duration {
        self.durations.values().sum()
    }
}

impl<G: PermutateGenotype> PermutateState<G> {
    fn update_best_chromosome_and_report<SR: StrategyReporter<Genotype = G>>(
        &mut self,
        genotype: &mut G,
        config: &PermutateConfig,
        reporter: &mut SR,
    ) {
        if let Some(chromosome) = self.chromosome.as_ref() {
            let now = Instant::now();
            match self.is_better_chromosome(
                chromosome,
                &config.fitness_ordering,
                config.replace_on_equal_fitness,
            ) {
                (true, true) => {
                    self.best_generation = self.current_generation;
                    self.best_fitness_score = chromosome.fitness_score();
                    genotype.save_best_genes(chromosome);
                    reporter.on_new_best_chromosome(genotype, self, config);
                    self.reset_stale_generations();
                }
                (true, false) => {
                    genotype.save_best_genes(chromosome);
                    reporter.on_new_best_chromosome_equal_fitness(genotype, self, config);
                    self.increment_stale_generations()
                }
                _ => self.increment_stale_generations(),
            }
            self.add_duration(StrategyAction::UpdateBestChromosome, now.elapsed());
        }
    }
    fn scale(&mut self, genotype: &G, _config: &PermutateConfig) {
        if let Some(current_scale_index) = self.current_scale_index {
            if let Some(max_scale_index) = genotype.max_scale_index() {
                if current_scale_index < max_scale_index {
                    self.current_scale_index = Some(current_scale_index + 1);
                    self.reset_scale_generation();
                    self.reset_stale_generations();
                }
            }
        }
    }
}

impl<G: PermutateGenotype, F: Fitness<Genotype = G>, SR: StrategyReporter<Genotype = G>>
    TryFrom<PermutateBuilder<G, F, SR>> for Permutate<G, F, SR>
{
    type Error = TryFromPermutateBuilderError;

    fn try_from(builder: PermutateBuilder<G, F, SR>) -> Result<Self, Self::Error> {
        if builder.genotype.is_none() {
            Err(TryFromPermutateBuilderError(
                "Permutate requires a PermutateGenotype",
            ))
        } else if builder.fitness.is_none() {
            Err(TryFromPermutateBuilderError("Permutate requires a Fitness"))
        } else if builder
            .genotype
            .as_ref()
            .map(|o| !o.mutation_type_allows_permutation())
            .unwrap()
        {
            Err(TryFromPermutateBuilderError(
                "The Genotype's mutation_type does not allow permutation",
            ))
        } else {
            let genotype = builder.genotype.unwrap();
            let state = PermutateState::new(&genotype);

            Ok(Self {
                genotype,
                fitness: builder.fitness.unwrap(),

                config: PermutateConfig {
                    fitness_ordering: builder.fitness_ordering,
                    par_fitness: builder.par_fitness,
                    replace_on_equal_fitness: builder.replace_on_equal_fitness,
                    ..Default::default()
                },
                state,
                reporter: builder.reporter,
            })
        }
    }
}

impl Default for PermutateConfig {
    fn default() -> Self {
        Self {
            variant: Default::default(),
            fitness_ordering: FitnessOrdering::Maximize,
            par_fitness: false,
            replace_on_equal_fitness: false,
        }
    }
}
impl PermutateConfig {
    pub fn new() -> Self {
        Self::default()
    }
}

impl<G: PermutateGenotype> PermutateState<G> {
    pub fn new(genotype: &G) -> Self {
        let base = Self {
            current_iteration: 0,
            current_generation: 0,
            stale_generations: 0,
            scale_generation: 0,
            current_scale_index: None,
            best_generation: 0,
            best_fitness_score: None,
            chromosome: None,
            population: Population::new_empty(),
            durations: HashMap::new(),
        };
        match genotype.mutation_type() {
            MutationType::Scaled => Self {
                current_scale_index: Some(0),
                ..base
            },
            MutationType::Relative => base,
            MutationType::Random => base,
        }
    }
}

impl<G: PermutateGenotype, F: Fitness<Genotype = G>, SR: StrategyReporter<Genotype = G>>
    fmt::Display for Permutate<G, F, SR>
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        writeln!(f, "permutate:")?;
        writeln!(f, "  fitness: {:?}", self.fitness)?;
        writeln!(f)?;

        writeln!(f, "{}", self.config)?;
        writeln!(f, "{}", self.state)?;
        writeln!(f, "{}", self.genotype)
    }
}

impl fmt::Display for PermutateConfig {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        writeln!(f, "permutate_config:")?;
        writeln!(f, "  fitness_ordering: {:?}", self.fitness_ordering)?;
        writeln!(f, "  par_fitness: {:?}", self.par_fitness)
    }
}

impl<G: PermutateGenotype> fmt::Display for PermutateState<G> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        writeln!(f, "permutate_state:")?;
        writeln!(f, "  current iteration: -")?;
        writeln!(f, "  current generation: {:?}", self.current_generation)?;
        writeln!(f, "  current scale index: {:?}", self.current_scale_index)?;
        writeln!(f, "  best fitness score: {:?}", self.best_fitness_score())
    }
}