genetic_algorithm 0.20.5

A genetic algorithm implementation
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
//! A solution strategy for finding the best chromosome, when search space is convex with little local optima or crossover is impossible or inefficient
mod builder;
pub mod prelude;
mod reporter;

pub use self::builder::{
    Builder as HillClimbBuilder, TryFromBuilderError as TryFromHillClimbBuilderError,
};

use super::{
    Strategy, StrategyAction, StrategyConfig, StrategyReporter, StrategyReporterNoop,
    StrategyState, StrategyVariant,
};
use crate::chromosome::{Chromosome, GenesOwner};
use crate::fitness::{Fitness, FitnessCache, FitnessOrdering, FitnessValue};
use crate::genotype::{HillClimbGenotype, MutationType};
use crate::population::Population;
use rand::prelude::SliceRandom;
use rand::rngs::SmallRng;
use std::cell::RefCell;
use std::collections::HashMap;
use std::fmt;
use std::time::{Duration, Instant};
use thread_local::ThreadLocal;

pub use self::reporter::Simple as HillClimbReporterSimple;
pub use crate::strategy::reporter::Duration as HillClimbReporterDuration;
pub use crate::strategy::reporter::Noop as HillClimbReporterNoop;

#[derive(Copy, Clone, Debug, Default)]
pub enum HillClimbVariant {
    #[default]
    Stochastic,
    SteepestAscent,
}

/// The HillClimb strategy is an iterative algorithm that starts with a single arbitrary solution
/// to a problem (unless the genotype seeds specific genes to sample a single starting point from),
/// then attempts to find a better solution by making an incremental change to the solution
///
/// There are 2 variants:
/// * [HillClimbVariant::Stochastic]: does not examine all neighbors before deciding how to move.
///   Rather, it selects a neighbor at random, and decides (based on the improvement in that
///   neighbour) whether to move to that neighbor or to examine another
/// * [HillClimbVariant::SteepestAscent]: all neighbours are compared and the one with the best
///   improvement is chosen.
///
/// The ending conditions are one or more of the following:
/// * target_fitness_score: when the ultimate goal in terms of fitness score is known and reached
/// * max_stale_generations: when the ultimate goal in terms of fitness score is unknown and one depends on some convergion
///   threshold, or one wants a duration limitation next to the target_fitness_score.
///   * set to a high value for [HillClimbVariant::Stochastic]
///   * set to a low value for [HillClimbVariant::SteepestAscent], preferably even `1`, unless
///   there is a replace_on_equal_fitness consideration or some remaining randomness in the neighbouring population (see RangeGenotype
///   below)
/// * max_generations: when the ultimate goal in terms of fitness score is unknown and there is a effort constraint
///
/// There are optional mutation distance limitations for
/// [RangeGenotype](crate::genotype::RangeGenotype) and
/// [MultiRangeGenotype](crate::genotype::MultiRangeGenotype) neighbouring chromosomes. Listed in
/// descending priority:
/// * With allele_mutation_scaled_range(s) set on genotype:
///     * Mutation distance only on edges of current scale (e.g. -1 and +1 for -1..-1 scale)
///         * Pick random edge for [HillClimbVariant::Stochastic]
///         * Take both edges per gene for [HillClimbVariant::SteepestAscent]
///     * Scale down after max_stale_generations is reached and reset stale_generations to zero
///     * Only trigger max_stale_generations ending condition when already reached the smallest scale
///     * max_stale_generations could be set to 1, as there is no remaining randomness
/// * With allele_mutation_range(s) set on genotype:
///     * Mutation distance taken uniformly from mutation range
///         * Sample single random value for [HillClimbVariant::Stochastic]
///         * Ensure to sample both a higer and lower value per gene for [HillClimbVariant::SteepestAscent]
///     * Standard max_stale_generations ending condition
///     * max_stale_generations should be set somewhat higher than 1 as there is some remaining randomness
/// * With only allele_range(s) set on genotype (not advised for hill climbing):
///     * Mutate uniformly over the complete allele range
///         * Sample single random value for [HillClimbVariant::Stochastic]
///         * Ensure to sample both a higer and lower value per gene for [HillClimbVariant::SteepestAscent]
///     * Standard max_stale_generations ending condition
///     * max_stale_generations should be set substantially higher than 1 as there is a lot remaining randomness
///
/// There are reporting hooks in the loop receiving the [HillClimbState], which can by handled by an
/// [StrategyReporter] (e.g. [HillClimbReporterDuration], [HillClimbReporterSimple]). But you are encouraged to
/// roll your own, see [StrategyReporter].
///
/// From the [HillClimbBuilder] level, there are several calling mechanisms:
/// * [call](HillClimbBuilder::call): this runs a single [HillClimb] strategy
/// * [call_repeatedly](HillClimbBuilder::call_repeatedly): this runs multiple independent [HillClimb]
///   strategies and returns the best one (or short circuits when the target_fitness_score is
///   reached)
/// * [call_par_repeatedly](HillClimbBuilder::call_par_repeatedly): this runs multiple independent
///   [HillClimb] strategies in parallel and returns the best one (or short circuits when the
///   target_fitness_score is reached). This is separate and independent from the
///   `with_par_fitness()` flag on the builder, which determines multithreading of the fitness
///   calculation inside the [HillClimb] strategy. Both can be combined.
///
/// Multithreading inside the [HillClimbVariant::Stochastic] using the `with_par_fitness()` builder
/// step does nothing, due to the sequential nature of the search. But
/// [call_par_repeatedly](HillClimbBuilder::call_par_repeatedly) still effectively multithreads for
/// these variants as the sequential nature is only internal to the [HillClimb] strategy.
///
/// All multithreading mechanisms are implemented using [rayon::iter] and [std::sync::mpsc].
///
/// See [HillClimbBuilder] for initialization options.
///
/// Example:
/// ```
/// use genetic_algorithm::strategy::hill_climb::prelude::*;
/// use genetic_algorithm::fitness::placeholders::SumGenes;
///
/// // the search space
/// let genotype = RangeGenotype::builder()     // f32 alleles
///     .with_genes_size(16)                    // 16 genes
///     .with_genes_hashing(true)               // store genes_hash on chromosome (required for fitness_cache and deduplication extension)
///     .with_allele_range(0.0..=1.0)           // allow gene values between 0.0 and 1.0
///     .with_allele_mutation_range(-0.1..=0.1) // neighbouring step size randomly sampled from range
///     .with_allele_mutation_scaled_range(vec![
///       -0.1..=0.1,
///       -0.01..=0.01,
///       -0.001..=0.001
///      ]) // neighbouring step size equal to start/end of each scaled range
///     .build()
///     .unwrap();
///
/// // the search strategy
/// let hill_climb = HillClimb::builder()
///     .with_genotype(genotype)
///     .with_variant(HillClimbVariant::SteepestAscent)   // check all neighbours for each round
///     .with_fitness(SumGenes::new_with_precision(1e-5)) // sum the gene values of the chromosomes with precision 0.00001, which means multiply fitness score (isize) by 100_000
///     .with_fitness_ordering(FitnessOrdering::Minimize) // aim for the lowest sum
///     .with_fitness_cache(1000)                         // enable caching of fitness values (LRU size 1000), only works when genes_hash is stored in chromosome. Only useful for long stale runs
///     .with_par_fitness(true)                           // optional, defaults to false, use parallel fitness calculation
///     .with_target_fitness_score(0)                     // ending condition if sum of genes is <= 0.00001 in the best chromosome
///     .with_valid_fitness_score(100)                    // block ending conditions until at least the sum of genes <= 0.00100 is reached in the best chromosome
///     .with_max_stale_generations(1000)                 // stop searching if there is no improvement in fitness score for 1000 generations (per scaled_range)
///     .with_max_generations(1_000_000)                  // optional, stop searching after 1M generations
///     .with_replace_on_equal_fitness(true)              // optional, defaults to true, crucial for some type of problems with discrete fitness steps like nqueens
///     .with_reporter(HillClimbReporterSimple::new(100)) // optional, report every 100 generations
///     .with_rng_seed_from_u64(0)                        // for testing with deterministic results
///     .call()
///     .unwrap();
///
/// // it's all about the best genes after all
/// let (best_genes, best_fitness_score) = hill_climb.best_genes_and_fitness_score().unwrap();
/// assert_eq!(best_genes.into_iter().map(|v| v <= 1e-3).collect::<Vec<_>>(), vec![true; 16]);
/// assert_eq!(best_fitness_score, 0);
/// ```
pub struct HillClimb<
    G: HillClimbGenotype,
    F: Fitness<Genotype = G>,
    SR: StrategyReporter<Genotype = G>,
> {
    pub genotype: G,
    pub fitness: F,
    pub config: HillClimbConfig,
    pub state: HillClimbState<G>,
    pub reporter: SR,
    pub rng: SmallRng,
}

pub struct HillClimbConfig {
    pub variant: HillClimbVariant,
    pub fitness_ordering: FitnessOrdering,
    pub par_fitness: bool,
    pub replace_on_equal_fitness: bool,

    pub target_fitness_score: Option<FitnessValue>,
    pub max_stale_generations: Option<usize>,
    pub max_generations: Option<usize>,
    pub valid_fitness_score: Option<FitnessValue>,
    pub fitness_cache: Option<FitnessCache>,
}

/// Stores the state of the HillClimb strategy.
pub struct HillClimbState<G: HillClimbGenotype> {
    pub current_iteration: usize,
    pub current_generation: usize,
    pub stale_generations: usize,
    pub scale_generation: usize,
    pub best_generation: usize,
    pub best_fitness_score: Option<FitnessValue>,
    pub durations: HashMap<StrategyAction, Duration>,
    pub chromosome: Option<G::Chromosome>,
    pub population: Population<G::Chromosome>,
    pub current_scale_index: Option<usize>,
}

impl<G: HillClimbGenotype, F: Fitness<Genotype = G>, SR: StrategyReporter<Genotype = G>> Strategy<G>
    for HillClimb<G, F, SR>
{
    fn call(&mut self) {
        let now = Instant::now();
        self.reporter
            .on_enter(&self.genotype, &self.state, &self.config);
        let mut fitness_thread_local: Option<ThreadLocal<RefCell<F>>> = None;
        if self.config.par_fitness {
            fitness_thread_local = Some(ThreadLocal::new());
        }

        self.setup();
        self.reporter
            .on_start(&self.genotype, &self.state, &self.config);
        while !self.is_finished() {
            self.state.increment_generation();
            match self.config.variant {
                HillClimbVariant::Stochastic => {
                    self.genotype
                        .load_best_genes(self.state.chromosome.as_mut().unwrap());
                    self.genotype.mutate_chromosome_genes(
                        1,
                        true,
                        self.state.chromosome.as_mut().unwrap(),
                        self.state.current_scale_index,
                        &mut self.rng,
                    );
                    self.fitness.call_for_state_chromosome(
                        &self.genotype,
                        &mut self.state,
                        &self.config,
                    );
                    self.state.update_best_chromosome_from_state_chromosome(
                        &mut self.genotype,
                        &self.config,
                        &mut self.reporter,
                    );
                }
                HillClimbVariant::SteepestAscent => {
                    self.genotype
                        .load_best_genes(self.state.chromosome.as_mut().unwrap());
                    self.genotype
                        .chromosome_destructor_truncate(&mut self.state.population.chromosomes, 0);
                    self.genotype.fill_neighbouring_population(
                        self.state.chromosome.as_ref().unwrap(),
                        &mut self.state.population,
                        self.state.current_scale_index,
                        &mut self.rng,
                    );
                    self.fitness.call_for_state_population(
                        &self.genotype,
                        &mut self.state,
                        &self.config,
                        fitness_thread_local.as_ref(),
                    );
                    self.state.update_best_chromosome_from_state_population(
                        &mut self.genotype,
                        &self.config,
                        &mut self.reporter,
                        &mut self.rng,
                    );
                }
            }
            self.reporter
                .on_new_generation(&self.genotype, &self.state, &self.config);
            self.state.scale(&self.genotype, &self.config);
        }
        self.reporter
            .on_finish(&self.genotype, &self.state, &self.config);
        self.cleanup(fitness_thread_local.as_mut());
        self.state.close_duration(now.elapsed());
        self.reporter
            .on_exit(&self.genotype, &self.state, &self.config);
    }
    fn best_generation(&self) -> usize {
        self.state.best_generation
    }
    fn best_fitness_score(&self) -> Option<FitnessValue> {
        self.state.best_fitness_score()
    }
    fn best_genes(&self) -> Option<G::Genes> {
        if self.state.best_fitness_score().is_some() {
            Some(self.genotype.best_genes().clone())
        } else {
            None
        }
    }
    fn flush_reporter(&mut self, output: &mut Vec<u8>) {
        self.reporter.flush(output);
    }
}
impl<G: HillClimbGenotype, F: Fitness<Genotype = G>, SR: StrategyReporter<Genotype = G>>
    HillClimb<G, F, SR>
where
    G::Chromosome: GenesOwner<Genes = G::Genes>,
{
    pub fn best_chromosome(&self) -> Option<G::Chromosome> {
        if let Some(best_genes) = self.best_genes() {
            let mut chromosome = G::Chromosome::new(best_genes);
            chromosome.set_fitness_score(self.best_fitness_score());
            Some(chromosome)
        } else {
            None
        }
    }
}

impl<G: HillClimbGenotype, F: Fitness<Genotype = G>> HillClimb<G, F, StrategyReporterNoop<G>> {
    pub fn builder() -> HillClimbBuilder<G, F, StrategyReporterNoop<G>> {
        HillClimbBuilder::new()
    }
}
impl<G: HillClimbGenotype, F: Fitness<Genotype = G>, SR: StrategyReporter<Genotype = G>>
    HillClimb<G, F, SR>
{
    pub fn setup(&mut self) {
        let now = Instant::now();
        self.genotype.chromosomes_setup();

        let chromosome = self.genotype.chromosome_constructor_random(&mut self.rng);
        self.state.chromosome = Some(chromosome);
        self.genotype
            .save_best_genes(self.state.chromosome.as_ref().unwrap());
        self.state.best_generation = self.state.current_generation;
        self.state
            .add_duration(StrategyAction::SetupAndCleanup, now.elapsed());

        match self.config.variant {
            HillClimbVariant::Stochastic => {
                self.fitness.call_for_state_chromosome(
                    &self.genotype,
                    &mut self.state,
                    &self.config,
                );
                self.state.update_best_chromosome_from_state_chromosome(
                    &mut self.genotype,
                    &self.config,
                    &mut self.reporter,
                );
            }
            HillClimbVariant::SteepestAscent => {
                // init population with all seeds for first population if present, or just a single
                // random chromosome
                let population_size = self.genotype.seed_genes_list().len().max(1);
                self.state.population = self
                    .genotype
                    .population_constructor(population_size, &mut self.rng);

                self.fitness.call_for_state_population(
                    &self.genotype,
                    &mut self.state,
                    &self.config,
                    None,
                );
                self.state.update_best_chromosome_from_state_population(
                    &mut self.genotype,
                    &self.config,
                    &mut self.reporter,
                    &mut self.rng,
                );
            }
        }
    }
    pub fn cleanup(&mut self, fitness_thread_local: Option<&mut ThreadLocal<RefCell<F>>>) {
        let now = Instant::now();
        self.state.chromosome.take();
        std::mem::take(&mut self.state.population.chromosomes);
        self.genotype.chromosomes_cleanup();
        if let Some(thread_local) = fitness_thread_local {
            thread_local.clear();
        }
        self.state
            .add_duration(StrategyAction::SetupAndCleanup, now.elapsed());
    }
    fn is_finished(&self) -> bool {
        self.allow_finished_by_valid_fitness_score()
            && (self.is_finished_by_max_stale_generations()
                || self.is_finished_by_max_generations()
                || self.is_finished_by_target_fitness_score())
    }

    fn is_finished_by_max_stale_generations(&self) -> bool {
        if let Some(max_stale_generations) = self.config.max_stale_generations {
            self.state.stale_generations >= max_stale_generations
        } else {
            false
        }
    }

    fn is_finished_by_max_generations(&self) -> bool {
        if let Some(max_generations) = self.config.max_generations {
            self.state.current_generation >= max_generations
        } else {
            false
        }
    }

    fn is_finished_by_target_fitness_score(&self) -> bool {
        if let Some(target_fitness_score) = self.config.target_fitness_score {
            if let Some(fitness_score) = self.best_fitness_score() {
                match self.config.fitness_ordering {
                    FitnessOrdering::Maximize => fitness_score >= target_fitness_score,
                    FitnessOrdering::Minimize => fitness_score <= target_fitness_score,
                }
            } else {
                false
            }
        } else {
            false
        }
    }

    fn allow_finished_by_valid_fitness_score(&self) -> bool {
        if let Some(valid_fitness_score) = self.config.valid_fitness_score {
            if let Some(fitness_score) = self.best_fitness_score() {
                match self.config.fitness_ordering {
                    FitnessOrdering::Maximize => fitness_score >= valid_fitness_score,
                    FitnessOrdering::Minimize => fitness_score <= valid_fitness_score,
                }
            } else {
                true
            }
        } else {
            true
        }
    }
}

impl StrategyConfig for HillClimbConfig {
    fn fitness_ordering(&self) -> FitnessOrdering {
        self.fitness_ordering
    }
    fn fitness_cache(&self) -> Option<&FitnessCache> {
        self.fitness_cache.as_ref()
    }
    fn par_fitness(&self) -> bool {
        self.par_fitness
    }
    fn replace_on_equal_fitness(&self) -> bool {
        self.replace_on_equal_fitness
    }
    fn variant(&self) -> StrategyVariant {
        StrategyVariant::HillClimb(self.variant)
    }
}

impl<G: HillClimbGenotype> StrategyState<G> for HillClimbState<G> {
    fn chromosome_as_ref(&self) -> &Option<G::Chromosome> {
        &self.chromosome
    }
    fn population_as_ref(&self) -> &Population<G::Chromosome> {
        &self.population
    }
    fn chromosome_as_mut(&mut self) -> &mut Option<G::Chromosome> {
        &mut self.chromosome
    }
    fn population_as_mut(&mut self) -> &mut Population<G::Chromosome> {
        &mut self.population
    }
    fn best_fitness_score(&self) -> Option<FitnessValue> {
        self.best_fitness_score
    }
    fn best_generation(&self) -> usize {
        self.best_generation
    }
    fn current_generation(&self) -> usize {
        self.current_generation
    }
    fn current_iteration(&self) -> usize {
        self.current_iteration
    }
    fn increment_generation(&mut self) {
        self.current_generation += 1;
        self.scale_generation += 1;
    }
    fn stale_generations(&self) -> usize {
        self.stale_generations
    }
    fn increment_stale_generations(&mut self) {
        self.stale_generations += 1;
    }
    fn reset_stale_generations(&mut self) {
        self.stale_generations = 0;
    }
    fn scale_generation(&self) -> usize {
        self.scale_generation
    }
    fn reset_scale_generation(&mut self) {
        self.scale_generation = 0;
    }
    fn current_scale_index(&self) -> Option<usize> {
        self.current_scale_index
    }
    fn population_cardinality(&self) -> Option<usize> {
        None
    }
    fn durations(&self) -> &HashMap<StrategyAction, Duration> {
        &self.durations
    }
    fn add_duration(&mut self, action: StrategyAction, duration: Duration) {
        *self.durations.entry(action).or_default() += duration;
    }
    fn total_duration(&self) -> Duration {
        self.durations.values().sum()
    }
}

impl<G: HillClimbGenotype> HillClimbState<G> {
    fn update_best_chromosome_from_state_chromosome<SR: StrategyReporter<Genotype = G>>(
        &mut self,
        genotype: &mut G,
        config: &HillClimbConfig,
        reporter: &mut SR,
    ) {
        if let Some(chromosome) = self.chromosome.as_ref() {
            let now = Instant::now();
            match self.is_better_chromosome(
                chromosome,
                &config.fitness_ordering,
                config.replace_on_equal_fitness,
            ) {
                (true, true) => {
                    self.best_generation = self.current_generation;
                    self.best_fitness_score = chromosome.fitness_score();
                    genotype.save_best_genes(chromosome);
                    reporter.on_new_best_chromosome(genotype, self, config);
                    self.reset_stale_generations();
                }
                (true, false) => {
                    genotype.save_best_genes(chromosome);
                    reporter.on_new_best_chromosome_equal_fitness(genotype, self, config);
                    self.increment_stale_generations()
                }
                _ => self.increment_stale_generations(),
            }
            self.add_duration(StrategyAction::UpdateBestChromosome, now.elapsed());
        }
    }
    fn update_best_chromosome_from_state_population<SR: StrategyReporter<Genotype = G>>(
        &mut self,
        genotype: &mut G,
        config: &HillClimbConfig,
        reporter: &mut SR,
        rng: &mut SmallRng,
    ) {
        let now = Instant::now();
        if config.replace_on_equal_fitness {
            // shuffle, so we don't repeatedly take the same best chromosome in sideways move
            self.population.chromosomes.shuffle(rng);
        }
        if let Some(contending_chromosome) =
            self.population.best_chromosome(config.fitness_ordering)
        {
            match self.is_better_chromosome(
                contending_chromosome,
                &config.fitness_ordering,
                config.replace_on_equal_fitness,
            ) {
                (true, true) => {
                    self.best_generation = self.current_generation;
                    self.best_fitness_score = contending_chromosome.fitness_score();
                    genotype.save_best_genes(contending_chromosome);
                    reporter.on_new_best_chromosome(genotype, self, config);
                    self.reset_stale_generations();
                }
                (true, false) => {
                    genotype.save_best_genes(contending_chromosome);
                    reporter.on_new_best_chromosome_equal_fitness(genotype, self, config);
                    self.increment_stale_generations()
                }
                _ => self.increment_stale_generations(),
            }
        } else {
            self.increment_stale_generations();
        }
        self.add_duration(StrategyAction::UpdateBestChromosome, now.elapsed());
    }
    fn scale(&mut self, genotype: &G, config: &HillClimbConfig) {
        if let Some(current_scale_index) = self.current_scale_index {
            if let Some(max_stale_generations) = config.max_stale_generations {
                if let Some(max_scale_index) = genotype.max_scale_index() {
                    if self.stale_generations >= max_stale_generations
                        && current_scale_index < max_scale_index
                    {
                        self.current_scale_index = Some(current_scale_index + 1);
                        self.reset_scale_generation();
                        self.reset_stale_generations();
                    }
                }
            }
        }
    }
}

impl<G: HillClimbGenotype, F: Fitness<Genotype = G>, SR: StrategyReporter<Genotype = G>>
    TryFrom<HillClimbBuilder<G, F, SR>> for HillClimb<G, F, SR>
{
    type Error = TryFromHillClimbBuilderError;

    fn try_from(builder: HillClimbBuilder<G, F, SR>) -> Result<Self, Self::Error> {
        if builder.genotype.is_none() {
            Err(TryFromHillClimbBuilderError(
                "HillClimb requires a HillClimbGenotype",
            ))
        } else if builder.fitness.is_none() {
            Err(TryFromHillClimbBuilderError("HillClimb requires a Fitness"))
        } else if builder.max_stale_generations.is_none()
            && builder.max_generations.is_none()
            && builder.target_fitness_score.is_none()
        {
            Err(TryFromHillClimbBuilderError(
                "HillClimb requires at least a max_stale_generations, max_generations or target_fitness_score ending condition",
            ))
        } else {
            let rng = builder.rng();
            let genotype = builder.genotype.unwrap();
            let state = HillClimbState::new(&genotype);

            Ok(Self {
                genotype,
                fitness: builder.fitness.unwrap(),
                config: HillClimbConfig {
                    variant: builder.variant.unwrap_or_default(),
                    fitness_ordering: builder.fitness_ordering,
                    fitness_cache: builder.fitness_cache,
                    par_fitness: builder.par_fitness,
                    max_stale_generations: builder.max_stale_generations,
                    max_generations: builder.max_generations,
                    target_fitness_score: builder.target_fitness_score,
                    valid_fitness_score: builder.valid_fitness_score,
                    replace_on_equal_fitness: builder.replace_on_equal_fitness,
                },
                state,
                reporter: builder.reporter,
                rng,
            })
        }
    }
}

impl Default for HillClimbConfig {
    fn default() -> Self {
        Self {
            variant: Default::default(),
            fitness_ordering: FitnessOrdering::Maximize,
            fitness_cache: None,
            par_fitness: false,
            max_stale_generations: None,
            max_generations: None,
            target_fitness_score: None,
            valid_fitness_score: None,
            replace_on_equal_fitness: false,
        }
    }
}
impl HillClimbConfig {
    pub fn new() -> Self {
        Self::default()
    }
}

impl<G: HillClimbGenotype> HillClimbState<G> {
    pub fn new(genotype: &G) -> Self {
        let base = Self {
            current_iteration: 0,
            current_generation: 0,
            stale_generations: 0,
            scale_generation: 0,
            current_scale_index: None,
            best_generation: 0,
            best_fitness_score: None,
            chromosome: None,
            population: Population::new_empty(),
            durations: HashMap::new(),
        };
        match genotype.mutation_type() {
            MutationType::Scaled => Self {
                current_scale_index: Some(0),
                ..base
            },
            MutationType::Relative => base,
            MutationType::Random => base,
        }
    }
}

impl<G: HillClimbGenotype, F: Fitness<Genotype = G>, SR: StrategyReporter<Genotype = G>>
    fmt::Display for HillClimb<G, F, SR>
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        writeln!(f, "hill_climb:")?;
        writeln!(f, "  fitness: {:?}", self.fitness)?;
        writeln!(f)?;

        writeln!(f, "{}", self.config)?;
        writeln!(f, "{}", self.state)?;
        writeln!(f, "{}", self.genotype)
    }
}

impl fmt::Display for HillClimbConfig {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        writeln!(f, "hill_climb_config:")?;
        writeln!(f, "  variant: {:?}", self.variant)?;

        writeln!(
            f,
            "  max_stale_generations: {:?}",
            self.max_stale_generations
        )?;
        writeln!(f, "  max_generations: {:?}", self.max_generations)?;
        writeln!(f, "  valid_fitness_score: {:?}", self.valid_fitness_score)?;
        writeln!(f, "  target_fitness_score: {:?}", self.target_fitness_score)?;
        writeln!(f, "  fitness_ordering: {:?}", self.fitness_ordering)?;
        writeln!(f, "  par_fitness: {:?}", self.par_fitness)
    }
}

impl<G: HillClimbGenotype> fmt::Display for HillClimbState<G> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        writeln!(f, "hill_climb_state:")?;
        writeln!(f, "  current iteration: {:?}", self.current_iteration)?;
        writeln!(f, "  current generation: {:?}", self.current_generation)?;
        writeln!(f, "  stale generations: {:?}", self.stale_generations)?;
        writeln!(f, "  current scale index: {:?}", self.current_scale_index)?;
        writeln!(f, "  best fitness score: {:?}", self.best_fitness_score())
    }
}