1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
//! Port of selected GDScript built-in functions.
//!
//! This module contains _some_ of the functions available in the [@GDScript] documentation.
//!
//! Reasons why a GDScript function may _not_ be ported to Rust include:
//! * they are in the Rust standard library (`abs`, `sin`, `floor`, `assert`, ...)
//! * they are already part of a godot-rust API
//! * `print` -> [`godot_print!`][crate::log::godot_print!]
//! * `instance_from_id` -> [`GodotObject::from_instance_id()`][crate::object::GodotObject::from_instance_id]
//! * ...
//! * they have a private implementation, i.e. a Rust port would have different semantics
//! * `randi`, `randf` etc. -- users should use `rand` crate
//! * `str2var`, `bytes2var`, `hash` etc -- to be verified
//!
//! This above list is not a definitive inclusion/exclusion criterion, just a rough guideline.
//!
//! Other noteworthy special cases:
//! * GDScript `fmod` corresponds to Rust's `%` operator on `f32` (also known as the `Rem` trait).
//!
//! [@GDScript]: https://docs.godotengine.org/en/stable/classes/class_@gdscript.html
use std::f32::consts::TAU;
use std::ops::Rem;
use std::ops::{Range, RangeInclusive};
const CMP_EPSILON: f32 = 0.00001;
/// Coordinate system conversion: polar -> cartesian
///
/// Polar coordinates: distance `r` from the origin + angle `th` (radians).
/// Cartesian coordinate system: `x` and `y` axis.
///
/// Example:
/// ```
/// use gdnative::globalscope::*;
///
/// let (x, y) = polar2cartesian(13.0, -0.394791119699);
///
/// assert_eq!(x, 12.0);
/// assert_eq!(y, -5.0);
/// ```
#[inline]
pub fn polar2cartesian(r: f32, th: f32) -> (f32, f32) {
let x = r * th.cos();
let y = r * th.sin();
(x, y)
}
/// Coordinate system conversion: cartesian -> polar
///
/// Cartesian coordinate system: `x` and `y` axis.
/// Polar coordinates: distance `r` from the origin + angle `th` (radians).
///
/// Example:
/// ```
/// use gdnative::globalscope::*;
///
/// let (r, th) = cartesian2polar(12.0, -5.0);
///
/// assert!(is_equal_approx(r, 13.0));
/// assert!(is_equal_approx(th, -0.394791119699));
/// ```
#[inline]
pub fn cartesian2polar(x: f32, y: f32) -> (f32, f32) {
let r = x.hypot(y);
let th = y.atan2(x);
(r, th)
}
/// Converts from decibels to linear energy (audio).
#[inline]
pub fn db2linear(decibels: f32) -> f32 {
f32::exp(decibels * 0.115_129_255)
}
/// Converts from linear energy to decibels (audio).
///
/// This can be used to implement volume sliders that behave as expected (since volume isn't linear).
#[inline]
pub fn linear2db(linear_energy: f32) -> f32 {
linear_energy.ln() * 0.115_129_255
}
/// Position of the first non-zero digit, after the decimal point.
///
/// Note that the maximum return value is `10`, which is a design decision in the implementation.
///
/// # Examples:
/// ```
/// use gdnative::globalscope::*;
///
/// assert_eq!(step_decimals(5.0), 0);
/// assert_eq!(step_decimals(12.0004), 4);
/// assert_eq!(step_decimals(0.000000004), 9);
/// ```
#[inline]
pub fn step_decimals(step: f32) -> i32 {
const MAXN: usize = 10;
const SD: [f32; MAXN] = [
0.9999, // somehow compensate for floating point error
0.09999,
0.009999,
0.0009999,
0.00009999,
0.000009999,
0.0000009999,
0.00000009999,
0.000000009999,
0.0000000009999,
];
let abs = step.abs();
let int_abs: i32 = step as i32;
let decs: f32 = abs - (int_abs as f32); // strip away integer part;
for (i, item) in SD.iter().enumerate().take(MAXN) {
if decs >= *item {
return i.try_into().unwrap();
}
}
0
}
/// Moves `range.start()` toward `range.end()` by the `delta` value.
///
/// Use a negative `delta` value `range.end()` to move away.
/// # Examples:
/// ```
/// use gdnative::globalscope::*;
///
/// assert_eq!(move_toward(10.0..=5.0, 4.), 6.);
/// assert_eq!(move_toward(10.0..=5.0, -1.5), 11.5);
/// assert_eq!(move_toward(4.0..=8.0, 1.0), 5.0);
/// assert_eq!(move_toward(4.0..=8.0, 5.0), 8.0);
/// assert_eq!(move_toward(8.0..=4.0, 1.0), 7.0);
/// assert_eq!(move_toward(8.0..=4.0, 5.0), 4.0);
/// ```
#[inline]
pub fn move_toward(range: RangeInclusive<f32>, delta: f32) -> f32 {
if (range.end() - range.start()).abs() <= delta {
*range.end()
} else {
range.start() + (range.end() - range.start()).signum() * delta
}
}
/// Returns an "eased" value of x based on an easing function defined with `curve`.
///
/// This easing function is based on an `exponent`. The curve can be any floating-point number,
/// with specific values leading to the following behaviors:
///
/// Value range | Effect
/// :---: | ---
/// `s < -1` | Ease in-out
/// `s == -1` | Linear
/// `-1 < s < 0` | Ease out-in
/// `s == 0` | Constant
/// `0 < s < 1` | Ease out
/// `s == 1` | Linear
/// `s > 1` | Ease in
///
/// See also [`smoothstep`]. If you need to perform more advanced transitions, use `Tween` or `AnimationPlayer`.
///
/// Curve values cheatsheet:
/// 
#[inline]
pub fn ease(mut s: f32, curve: f32) -> f32 {
if s < 0.0 {
s = 0.0;
} else if s > 1.0 {
s = 1.0;
}
if curve > 0.0 {
if curve < 1.0 {
1.0 - (1.0 - s).powf(1.0 / curve)
} else {
s.powf(curve)
}
} else if curve < 0.0 {
//inout ease
if s < 0.5 {
(s * 2.0).powf(-curve) * 0.5
} else {
(1.0 - (1.0 - (s - 0.5) * 2.0).powf(-curve)) * 0.5 + 0.5
}
} else {
0.0 // no ease (raw)
}
}
/// Linearly interpolates between two values, by the factor defined in weight.
///
/// To perform interpolation, weight should be between 0.0 and 1.0 (inclusive).
/// However, values outside this range are allowed and can be used to perform extrapolation.
/// ```
/// use gdnative::globalscope::*;
/// assert_eq!(lerp(0.0..=4.0, 0.75), 3.0);
/// ```
#[inline]
pub fn lerp(range: RangeInclusive<f32>, weight: f32) -> f32 {
range.start() + (range.end() - range.start()) * weight
}
/// Linearly interpolates between two angles (in radians), by a normalized value.
///
/// Similar to lerp, but interpolates correctly when the angles wrap around `TAU`.
/// To perform eased interpolation with `lerp_angle`, combine it with `ease` or `smoothstep`.
/// ```
/// use std::f32::consts::{PI, TAU};
/// use gdnative::globalscope::lerp_angle;
///
/// assert_eq!(lerp_angle(-PI..PI, 0.0), -PI);
/// assert_eq!(lerp_angle(-PI..PI, 1.0), -PI);
/// assert_eq!(lerp_angle(PI..-PI, 0.0), PI);
/// assert_eq!(lerp_angle(PI..-PI, 1.0), PI);
/// assert_eq!(lerp_angle(0.0..TAU, 0.0), 0.0);
/// assert_eq!(lerp_angle(0.0..TAU, 1.0), 0.0);
/// assert_eq!(lerp_angle(TAU..0.0, 0.0), TAU);
/// assert_eq!(lerp_angle(TAU..0.0, 1.0), TAU);
/// ```
#[inline]
pub fn lerp_angle(range: Range<f32>, amount: f32) -> f32 {
let difference = f32::rem(range.end - range.start, TAU);
let distance = f32::rem(2.0 * difference, TAU) - difference;
range.start + distance * amount
}
/// Returns the floating-point modulus of `a/b` that wraps equally in positive and negative.
///
/// The result, if not zero, has the same sign as `b`.
///
/// # Examples:
/// ```
/// use gdnative::globalscope::*;
///
/// assert_eq!(fposmod(7.0, 3.0), 1.0);
/// assert_eq!(fposmod(-7.0, 3.0), 2.0);
/// assert_eq!(fposmod(7.0, -3.0), -2.0);
/// assert_eq!(fposmod(-7.0, -3.0), -1.0);
///
/// assert_eq!(fposmod(6.0, 3.0), 0.0);
/// assert_eq!(fposmod(-6.0, 3.0), 0.0);
/// assert_eq!(fposmod(6.0, -3.0), 0.0);
/// assert_eq!(fposmod(-6.0, -3.0), 0.0);
/// ```
#[inline]
pub fn fposmod(a: f32, b: f32) -> f32 {
let mut value = a % b;
if value < 0.0 && b > 0.0 || value > 0.0 && b < 0.0 {
value += b;
}
value
}
/// Find linear interpolation weight from interpolated values.
///
/// Returns an interpolation or extrapolation factor considering the range specified in `range.start()` and `range.end()`,
/// and the interpolated value specified in `weight`.
///
/// The returned value will be between `0.0` and `1.0` if `weight` is between `range.start()` and `range.end()` (inclusive).
///
/// If `weight` is located outside this range, then an extrapolation factor will be returned
/// (return value lower than `0.0` or greater than `1.0`).
///
/// # Examples:
/// ```
/// use gdnative::globalscope::*;
///
/// assert_eq!(inverse_lerp(20.0..=30.0, 27.5), 0.75);
/// ```
#[inline]
pub fn inverse_lerp(range: RangeInclusive<f32>, value: f32) -> f32 {
(value - range.start()) / (range.end() - range.start())
}
/// Smooth (Hermite) interpolation.
///
/// Returns the result of smoothly interpolating the value of `s` between `0` and `1`, based on where `s` lies
/// with respect to the edges `from` and `to`.
///
/// The return value is `0` if `s <= from`, and `1` if `s >= to`.
///
/// If `s` lies between `from` and `to`, the returned value follows an S-shaped curve that maps `s` between `0` and `1`.
/// This S-shaped curve is the cubic Hermite interpolator, given by `f(y) = 3*y^2 - 2*y^3` where `y = (x-from) / (to-from)`.
///
/// Compared to [`ease()`] with a curve value of `-1.6521`, `smoothstep()` returns the smoothest possible curve with no
/// sudden changes in the derivative.
///
/// If you need to perform more advanced transitions, use `Tween` or `AnimationPlayer`.
/// # Examples:
/// ```
/// use gdnative::globalscope::*;
///
/// assert_eq!(smoothstep(0.0, 2.0, -5.0), 0.0);
/// assert_eq!(smoothstep(0.0, 2.0, 0.5), 0.15625);
/// assert_eq!(smoothstep(0.0, 2.0, 1.0), 0.5);
/// assert_eq!(smoothstep(0.0, 2.0, 2.0), 1.0);
/// ```
#[inline]
pub fn smoothstep(from: f32, to: f32, s: f32) -> f32 {
if is_equal_approx(from, to) {
return from;
}
let s = ((s - from) / (to - from)).clamp(0.0, 1.0);
s * s * (3.0 - 2.0 * s)
}
/// Returns `true` if `a` and `b` are approximately equal to each other.
///
/// Here, approximately equal means that `a` and `b` are within a small internal epsilon of each other,
/// which scales with the magnitude of the numbers.
///
/// Infinity values of the same sign are considered equal.
#[inline]
pub fn is_equal_approx(a: f32, b: f32) -> bool {
if a == b {
return true;
}
let mut tolerance = CMP_EPSILON * a.abs();
if tolerance < CMP_EPSILON {
tolerance = CMP_EPSILON;
}
(a - b).abs() < tolerance
}
/// Returns true if `s` is zero or almost zero.
///
/// This method is faster than using is_equal_approx with one value as zero.
#[inline]
pub fn is_zero_approx(s: f32) -> bool {
s.abs() < CMP_EPSILON
}
/// Returns the nearest equal or larger power of 2 for an integer value.
///
/// In other words, returns the smallest value a where `a = pow(2, n)` such that `value <= a` for some non-negative integer `n`.
///
/// This behaves like [`u32::next_power_of_two()`] for `value >= 1`.
///
/// **Warning:** This function returns 0 rather than 1 for non-positive values of `value`
/// (in reality, 1 is the smallest integer power of 2).
///
/// # Examples:
/// ```
/// use gdnative::globalscope::*;
///
/// assert_eq!(nearest_po2(3), 4);
/// assert_eq!(nearest_po2(4), 4);
/// assert_eq!(nearest_po2(5), 8);
/// assert_eq!(nearest_po2(0), 0);
/// assert_eq!(nearest_po2(-1), 0);
/// ```
#[inline]
pub fn nearest_po2(value: i32) -> u32 {
if value <= 0 {
return 0;
}
(value as u32).next_power_of_two()
}
/// Returns the integer modulus of `a/b` that wraps equally in positive and negative.
///
/// The result, if not zero, has the same sign as `b`.
///
/// # Examples:
/// ```
/// use gdnative::globalscope::*;
///
/// assert_eq!(posmod(7, 3), 1);
/// assert_eq!(posmod(-7, 3), 2);
/// assert_eq!(posmod(7, -3), -2);
/// assert_eq!(posmod(-7, -3), -1);
///
/// assert_eq!(posmod(6, 3), 0);
/// assert_eq!(posmod(-6, 3), 0);
/// assert_eq!(posmod(6, -3), 0);
/// assert_eq!(posmod(-6, -3), 0);
/// ```
#[inline]
pub fn posmod(a: i32, b: i32) -> i32 {
let mut value = a % b;
if value < 0 && b > 0 || value > 0 && b < 0 {
value += b;
}
value
}
/// Maps a value from `range_from` to `range_to`, using linear interpolation.
///
/// # Example:
/// ```
/// use gdnative::globalscope::*;
///
/// assert_eq!(range_lerp(75.0, 0.0..=100.0, -1.0..=1.0), 0.5);
/// ```
#[inline]
pub fn range_lerp(
value: f32,
range_from: RangeInclusive<f32>,
range_to: RangeInclusive<f32>,
) -> f32 {
lerp(range_to, inverse_lerp(range_from, value))
}
/// Snaps float value `s` to a given `step`.
///
/// This can also be used to round a floating point number to an arbitrary number of decimals.
/// ```
/// use gdnative::globalscope::*;
/// use std::f32::consts::E; // Euler constant, 2.71828
///
/// assert_eq!(stepify(100.0, 32.0), 96.0);
/// assert_eq!(stepify(E, 0.01), 2.72);
/// ```
#[inline]
pub fn stepify(mut value: f32, step: f32) -> f32 {
if step != 0.0 {
value = (value / step + 0.5).floor() * step;
}
value
}
/// Wraps float value between `min` and `max`.
///
/// Usable for creating loop-alike behavior or infinite surfaces.
///
/// # Examples:
/// ```
/// use gdnative::globalscope::*;
/// use std::f32::consts::{TAU, PI};
///
/// // Custom range
/// assert_eq!(wrapf(3.2, 0.5..2.5), 1.2);
///
/// // Full circle
/// let angle = 3.0 * PI;
/// assert!(is_equal_approx(wrapf(angle, 0.0..TAU), PI));
/// ```
///
/// If the range start is 0, this is equivalent to [`fposmod()`], so prefer using that instead.
///
/// Note that unlike GDScript's method, the range must be non-empty and non-inverted.
///
/// # Panics
/// If the range is empty, i.e. `range.start` >= `range.end`.
#[inline]
pub fn wrapf(value: f32, range: Range<f32>) -> f32 {
assert!(
!range.is_empty(),
"wrapf expects non-empty, non-inverted range; passed {}..{}",
range.start,
range.end
);
let range_diff = range.end - range.start;
value - range_diff * ((value - range.start) / range_diff).floor()
}
/// Wraps integer value between `min` and `max`.
///
/// Usable for creating loop-alike behavior or infinite surfaces.
///
/// # Examples:
/// ```
/// use gdnative::globalscope::*;
///
/// assert_eq!(wrapi(5, 3..5), 3);
/// assert_eq!(wrapi(1, -1..2), 1);
/// assert_eq!(wrapi(-1, 2..4), 3);
/// ```
///
/// If the range start is 0, this is equivalent to [`posmod()`], so prefer using that instead.
///
/// Note that unlike GDScript's method, the range must be non-empty and non-inverted.
///
/// # Panics
/// If the range is empty, i.e. `range.start` >= `range.end`.
#[inline]
pub fn wrapi(value: i32, range: Range<i32>) -> i32 {
assert!(
!range.is_empty(),
"wrapf expects non-empty, non-inverted range; passed {}..{}",
range.start,
range.end
);
let range_diff = range.end - range.start;
range.start + (value - range.start % range_diff + range_diff) % range_diff
}