fastfibonacci 1.3.0

Fast Fibonacci encoding/decoding
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
use std::collections::HashMap;
use bitvec::{store::BitStore, order::BitOrder, slice::BitSlice};
use crate::{utils::FIB64, bit_decode::fibonacci::encode};

/// `State` is used to remember the position in the bitvector and the partically decoded number.
#[derive(Debug, Clone, Eq, PartialEq, Hash, Copy)]
pub struct State(pub bool);

/// Result of the finite state machine in the paper.
/// 
/// For a given (state, input segment), it yields the next state
/// and this result structure containing decoded numbers and some info about
/// the trailing bits not yet decoded.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct DecodingResult {
    pub(crate) numbers: Vec<u64>, // fully decoded numbers from the segment
    pub(crate) number_end_in_segment: Vec<usize>, // the position in the segment where that number started; undefined for the first number (as it couldve started in theh previous segment)
    /// Stores the partially decoded number left in hte segment
    pub(crate) u: u64, // partially decoded number; i.e. anything that didnt have a delimiter so far, kind of the accumulator
    pub(crate) lu: usize, // bitlength of U; i..e how many bits processed so far without hitting the delimieter
}

/// State of the decoding across multiple segments. Keeps track of completely
/// decoded and partially decoded numbers (which could be completed with the next segment)
#[derive(Debug)]
pub(crate) struct DecodingState {
    pub decoded_numbers: Vec<u64>, // completly decoded numbers across all segments so far
    pub n: u64,                    // the partially decoded number from the last segment
    pub len: usize, // length of the last partially decoded number in bits; needed to bitshift whatever the next decoding result is
}
impl DecodingState {
    pub fn new() -> Self {
        DecodingState {
            decoded_numbers: Vec::new(),
            n: 0,
            len: 0,
        }
    }

    /// update the current decoding state with the results from the last segment of bits;
    /// i.e. new decoded numbers, new accumulator (n) and new trailing bits (len)
    pub(crate) fn update(&mut self, decoding_result: &DecodingResult) {
        for &num in decoding_result.numbers.iter() {
            if self.len > 0 {
                // some leftover from the previous segment
                self.n += fibonacci_left_shift(num, self.len);
            } else {
                self.n = num;
            }
            // TODO: ACTUALLY THIS LOOP RUNS EXACLTY ONCE (if len>0)
            // IT ADJUSTS ThE FIRST NUMBER (taking into accoutn the partial decode)
            // then the follwoing line sets len=0 which keeps all other numbers as is
            // ITS CORRECT as it is, but a little akward
            self.decoded_numbers.push(self.n);
            self.n = 0;
            self.len = 0;
        }

        // the beginning and inner port of F(n)
        if decoding_result.lu > 0 {
            self.n += fibonacci_left_shift(decoding_result.u, self.len);
            self.len += decoding_result.lu;
        }
    }
}

// Check with Table 6.6
// this function is used to generate/precompute the fiboncci shifts
#[allow(dead_code)]
fn extended_fibonacci_right_shift_slow(x: u64, k: usize) -> u64 {
    // calculate the "negative" fibbonaccis
    // negative fibs   | positive
    // 5 -3 2 -1 1 0 1 | 1  2  3  5
    //            -2-1   F0 F1 F2 F3
    //
    // F(i) = F(i+2) - F(i+1)

    let mut neg_fib = HashMap::new();
    // to get the recursion started
    neg_fib.insert(-1, 1);
    neg_fib.insert(-2, 0);
    for i in 3..32 {
        let idx = -i;
        // let f = neg_fib.get(&(idx+2)).unwrap() - neg_fib.get(&(idx+1)).unwrap();
        // neg_fib.insert(idx, f);

        // nevermind, somehow the paper treats everything with i<-1 as F(i) = 0
        neg_fib.insert(idx, 0);
    }
    // println!("{:?}", neg_fib);

    let bits = encode(&[x]);
    // the right shift essentially splits the code
    // the k lowest bits become negative fib
    // the rest remains positive
    // note that for us, the low bits are on the left!!
    // shift 3
    // abc.defg

    let (lowbits, mut highbits) = bits.split_at(k);
    assert_eq!(lowbits.len(), k);

    // split of the last element, as its the delimitier 11
    highbits = &highbits[..highbits.len() - 1];

    // decode postivve part
    let mut pos_acc = 0;
    for (i, b) in highbits.iter().by_vals().enumerate() {
        if b {
            pos_acc += FIB64[i];
        }
    }

    // decode netagive part
    let mut neg_acc = 0;
    for (i, b) in lowbits.iter().by_vals().enumerate() {
        let fib_ix = -((lowbits.len() - i) as i32);
        if b {
            neg_acc += neg_fib[&fib_ix];
        }
    }
    pos_acc + neg_acc
}


/// precompuated EXTENDED fibbonaci left shift by 1
/// n >> 1  = FIB_LEFT_1[n]
const FIB_EXT_LEFT_1: &[u64] = &[
    0, 1, 1, 2, 3, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, 11, 12, 12, 13, 14, 14, 15, 16, 16, 17,
    17, 18, 19, 19, 20, 21, 21, 22, 22, 23, 24, 24, 25, 25, 26, 27, 27, 28, 29, 29, 30, 30, 31, 32,
    32, 33, 33, 34, 35, 35, 36, 37, 37, 38, 38, 39, 40, 40, 41, 42, 42, 43, 43, 44, 45, 45, 46, 46,
    47, 48, 48, 49, 50, 50, 51, 51, 52, 53, 53, 54, 55, 55, 56, 56, 57, 58, 58, 59, 59, 60, 61, 61,
    62, 63, 63, 64, 64, 65, 66, 66, 67, 67, 68, 69, 69, 70, 71, 71, 72, 72, 73, 74, 74, 75, 76, 76,
    77, 77, 78, 79, 79, 80, 80, 81, 82, 82, 83, 84, 84, 85, 85, 86, 87, 87, 88, 88, 89, 90, 90, 91,
    92, 92, 93, 93, 94, 95, 95, 96, 97, 97, 98, 98, 99, 100, 100, 101, 101, 102, 103, 103, 104,
    105, 105, 106, 106, 107, 108, 108, 109, 110, 110, 111, 111, 112, 113, 113, 114, 114, 115, 116,
    116, 117, 118, 118, 119, 119, 120, 121, 121, 122, 122, 123, 124, 124, 125, 126, 126, 127, 127,
    128, 129, 129, 130, 131, 131, 132, 132, 133, 134, 134, 135, 135, 136, 137, 137, 138, 139, 139,
    140, 140, 141, 142, 142, 143, 144, 144, 145, 145, 146, 147, 147, 148, 148, 149, 150, 150, 151,
    152, 152, 153, 153, 154, 155, 155, 156, 156, 157, 158, 158, 159, 160, 160, 161, 161, 162, 163,
    163, 164, 165, 165, 166, 166, 167, 168, 168, 169, 169, 170, 171, 171, 172, 173, 173, 174, 174,
    175, 176, 176, 177, 177, 178, 179, 179, 180, 181, 181, 182, 182, 183, 184, 184, 185, 186, 186,
    187, 187, 188, 189, 189, 190, 190, 191, 192, 192, 193, 194, 194, 195, 195, 196, 197, 197, 198,
    199, 199, 200, 200, 201, 202, 202, 203, 203, 204, 205, 205, 206, 207, 207, 208, 208, 209, 210,
    210, 211, 211, 212, 213, 213, 214, 215, 215, 216, 216, 217, 218, 218, 219, 220, 220, 221, 221,
    222, 223, 223, 224, 224, 225, 226, 226, 227, 228, 228, 229, 229, 230, 231, 231, 232, 232, 233,
    234, 234, 235, 236, 236, 237, 237, 238, 239, 239, 240, 241, 241, 242, 242, 243, 244, 244, 245,
    245, 246, 247, 247, 248, 249, 249, 250, 250, 251, 252, 252, 253, 254, 254, 255, 255, 256, 257,
    257, 258, 258, 259, 260, 260, 261, 262, 262, 263, 263, 264, 265, 265, 266, 266, 267, 268, 268,
    269, 270, 270, 271, 271, 272, 273, 273, 274, 275, 275, 276, 276, 277, 278, 278, 279, 279, 280,
    281, 281, 282, 283, 283, 284, 284, 285, 286, 286, 287, 288, 288, 289, 289, 290, 291, 291, 292,
    292, 293, 294, 294, 295, 296, 296, 297, 297, 298, 299, 299, 300, 300, 301, 302, 302, 303, 304,
    304, 305, 305, 306, 307, 307, 308, 309, 309, 310, 310, 311, 312, 312, 313, 313, 314, 315, 315,
    316, 317, 317, 318, 318, 319, 320, 320, 321, 321, 322, 323, 323, 324, 325, 325, 326, 326, 327,
    328, 328, 329, 330, 330, 331, 331, 332, 333, 333, 334, 334, 335, 336, 336, 337, 338, 338, 339,
    339, 340, 341, 341, 342, 343, 343, 344, 344, 345, 346, 346, 347, 347, 348, 349, 349, 350, 351,
    351, 352, 352, 353, 354, 354, 355, 355, 356, 357, 357, 358, 359, 359, 360, 360, 361, 362, 362,
    363, 364, 364, 365, 365, 366, 367, 367, 368, 368, 369, 370, 370, 371, 372, 372, 373, 373, 374,
    375, 375, 376, 377, 377, 378, 378, 379, 380, 380, 381, 381, 382, 383, 383, 384, 385, 385, 386,
    386, 387, 388, 388, 389, 389, 390, 391, 391, 392, 393, 393, 394, 394, 395, 396, 396, 397, 398,
    398, 399, 399, 400, 401, 401, 402, 402, 403, 404, 404, 405, 406, 406, 407, 407, 408, 409, 409,
    410, 410, 411, 412, 412, 413, 414, 414, 415, 415, 416, 417, 417, 418, 419, 419, 420, 420, 421,
    422, 422, 423, 423, 424, 425, 425, 426, 427, 427, 428, 428, 429, 430, 430, 431, 432, 432, 433,
    433, 434, 435, 435, 436, 436, 437, 438, 438, 439, 440, 440, 441, 441, 442, 443, 443, 444, 444,
    445, 446, 446, 447, 448, 448, 449, 449, 450, 451, 451, 452, 453, 453, 454, 454, 455, 456, 456,
    457, 457, 458, 459, 459, 460, 461, 461, 462, 462, 463, 464, 464, 465, 465, 466, 467, 467, 468,
    469, 469, 470, 470, 471, 472, 472, 473, 474, 474, 475, 475, 476, 477, 477, 478, 478, 479, 480,
    480, 481, 482, 482, 483, 483, 484, 485, 485, 486, 487, 487, 488, 488, 489, 490, 490, 491, 491,
    492, 493, 493, 494, 495, 495, 496, 496, 497, 498, 498, 499, 499, 500, 501, 501, 502, 503, 503,
    504, 504, 505, 506, 506, 507, 508, 508, 509, 509, 510, 511, 511, 512, 512, 513, 514, 514, 515,
    516, 516, 517, 517, 518, 519, 519, 520, 521, 521, 522, 522, 523, 524, 524, 525, 525, 526, 527,
    527, 528, 529, 529, 530, 530, 531, 532, 532, 533, 533, 534, 535, 535, 536, 537, 537, 538, 538,
    539, 540, 540, 541, 542, 542, 543, 543, 544, 545, 545, 546, 546, 547, 548, 548, 549, 550, 550,
    551, 551, 552, 553, 553, 554, 554, 555, 556, 556, 557, 558, 558, 559, 559, 560, 561, 561, 562,
    563, 563, 564, 564, 565, 566, 566, 567, 567, 568, 569, 569, 570, 571, 571, 572, 572, 573, 574,
    574, 575, 576, 576, 577, 577, 578, 579, 579, 580, 580, 581, 582, 582, 583, 584, 584, 585, 585,
    586, 587, 587, 588, 588, 589, 590, 590, 591, 592, 592, 593, 593, 594, 595, 595, 596, 597, 597,
    598, 598, 599, 600, 600, 601, 601, 602, 603, 603, 604, 605, 605, 606, 606, 607, 608, 608, 609,
    609, 610, 611, 611, 612, 613, 613, 614, 614, 615, 616, 616, 617, 618, 618, 619, 619, 620, 621,
    621, 622, 622, 623, 624, 624, 625, 626, 626, 627, 627, 628, 629, 629, 630, 631, 631, 632, 632,
    633, 634, 634, 635, 635, 636, 637, 637, 638, 639, 639, 640, 640, 641, 642, 642, 643, 643, 644,
    645, 645, 646, 647, 647, 648, 648, 649, 650, 650, 651, 652, 652, 653, 653, 654, 655, 655, 656,
    656, 657, 658, 658, 659, 660, 660, 661, 661, 662, 663, 663, 664, 665, 665, 666, 666, 667, 668,
    668, 669, 669, 670, 671, 671, 672, 673, 673, 674, 674, 675, 676, 676, 677, 677, 678, 679, 679,
    680, 681, 681, 682, 682, 683, 684, 684, 685, 686, 686, 687, 687, 688, 689, 689, 690, 690, 691,
    692, 692, 693, 694, 694, 695, 695, 696, 697, 697, 698, 698, 699, 700, 700, 701, 702, 702, 703,
    703, 704, 705, 705, 706, 707, 707, 708, 708, 709, 710, 710, 711, 711, 712, 713, 713, 714, 715,
    715, 716, 716, 717, 718, 718, 719, 720, 720, 721, 721, 722, 723, 723, 724, 724, 725, 726, 726,
    727, 728, 728, 729, 729, 730, 731, 731, 732, 732, 733, 734, 734, 735, 736, 736, 737, 737, 738,
    739, 739, 740, 741, 741, 742, 742, 743, 744, 744, 745, 745, 746, 747, 747, 748, 749, 749, 750,
    750, 751, 752, 752, 753, 754, 754, 755, 755, 756, 757, 757, 758, 758, 759, 760, 760, 761, 762,
    762, 763, 763, 764, 765, 765, 766, 766, 767, 768, 768, 769, 770, 770, 771, 771, 772, 773, 773,
    774, 775, 775, 776, 776, 777, 778, 778, 779, 779, 780, 781, 781, 782, 783, 783, 784, 784, 785,
    786, 786, 787, 787, 788, 789, 789, 790, 791, 791, 792, 792, 793, 794, 794, 795, 796, 796, 797,
    797, 798, 799, 799, 800, 800, 801, 802, 802, 803, 804, 804, 805, 805, 806, 807, 807, 808, 809,
    809, 810, 810, 811, 812, 812, 813, 813, 814, 815, 815, 816, 817, 817, 818, 818, 819, 820, 820,
    821, 821, 822, 823, 823, 824, 825, 825, 826, 826, 827, 828, 828, 829, 830, 830, 831, 831, 832,
    833, 833, 834, 834, 835, 836, 836, 837, 838, 838, 839, 839, 840, 841, 841, 842, 842, 843, 844,
    844, 845, 846, 846, 847, 847, 848, 849, 849, 850, 851, 851, 852, 852, 853, 854, 854, 855, 855,
    856, 857, 857, 858, 859, 859, 860, 860, 861, 862, 862, 863, 864, 864, 865, 865, 866, 867, 867,
    868, 868, 869, 870, 870, 871, 872, 872, 873, 873, 874, 875, 875, 876, 876, 877, 878, 878, 879,
    880, 880, 881, 881, 882, 883, 883, 884, 885, 885, 886, 886, 887, 888, 888, 889, 889, 890, 891,
    891, 892, 893, 893, 894, 894, 895, 896, 896, 897, 898, 898, 899, 899, 900, 901, 901, 902, 902,
    903, 904, 904, 905, 906, 906, 907, 907, 908, 909, 909, 910, 910, 911, 912, 912, 913, 914, 914,
    915, 915, 916, 917, 917, 918, 919, 919, 920, 920, 921, 922, 922, 923, 923, 924, 925, 925, 926,
    927, 927, 928, 928, 929, 930, 930, 931, 931, 932, 933, 933, 934, 935, 935, 936, 936, 937, 938,
    938, 939, 940, 940, 941, 941, 942, 943, 943, 944, 944, 945, 946, 946, 947, 948, 948, 949, 949,
    950, 951, 951, 952, 953, 953, 954, 954, 955, 956, 956, 957, 957, 958, 959, 959, 960, 961, 961,
    962, 962, 963, 964, 964, 965, 965, 966, 967, 967, 968, 969, 969, 970, 970, 971, 972, 972, 973,
    974, 974, 975, 975, 976, 977, 977, 978, 978, 979, 980, 980, 981, 982, 982, 983, 983, 984, 985,
    985, 986, 987, 987, 988, 988, 989, 990, 990, 991, 991, 992, 993, 993, 994, 995, 995, 996, 996,
    997, 998, 998, 999, 999, 1000, 1001, 1001, 1002, 1003, 1003, 1004, 1004, 1005, 1006, 1006,
    1007, 1008, 1008, 1009, 1009, 1010, 1011, 1011, 1012, 1012, 1013, 1014, 1014, 1015, 1016, 1016,
    1017, 1017, 1018, 1019, 1019, 1020, 1020, 1021, 1022, 1022, 1023, 1024, 1024, 1025, 1025, 1026,
    1027, 1027, 1028, 1029, 1029, 1030, 1030, 1031, 1032, 1032, 1033, 1033, 1034, 1035, 1035, 1036,
    1037, 1037, 1038, 1038, 1039, 1040, 1040, 1041, 1042, 1042, 1043, 1043, 1044, 1045, 1045, 1046,
    1046, 1047, 1048, 1048, 1049, 1050, 1050, 1051, 1051, 1052, 1053, 1053, 1054, 1054, 1055, 1056,
    1056, 1057, 1058, 1058, 1059, 1059, 1060, 1061, 1061, 1062, 1063, 1063, 1064, 1064, 1065, 1066,
    1066, 1067, 1067, 1068, 1069, 1069, 1070, 1071, 1071, 1072, 1072, 1073, 1074, 1074, 1075, 1075,
    1076, 1077, 1077, 1078, 1079, 1079, 1080, 1080, 1081, 1082, 1082, 1083, 1084, 1084, 1085, 1085,
    1086, 1087, 1087, 1088, 1088, 1089, 1090, 1090, 1091, 1092, 1092, 1093, 1093, 1094, 1095, 1095,
    1096, 1097, 1097, 1098, 1098, 1099, 1100, 1100, 1101, 1101, 1102, 1103, 1103, 1104, 1105, 1105,
    1106, 1106, 1107, 1108, 1108, 1109, 1109, 1110, 1111, 1111, 1112, 1113, 1113, 1114, 1114, 1115,
    1116, 1116, 1117, 1118, 1118, 1119, 1119, 1120, 1121, 1121, 1122, 1122, 1123, 1124, 1124, 1125,
    1126, 1126, 1127, 1127, 1128, 1129, 1129, 1130, 1131, 1131, 1132, 1132, 1133, 1134, 1134, 1135,
    1135, 1136, 1137, 1137, 1138, 1139, 1139, 1140, 1140, 1141, 1142, 1142, 1143, 1143, 1144, 1145,
    1145, 1146, 1147, 1147, 1148, 1148, 1149, 1150, 1150, 1151, 1152, 1152, 1153, 1153, 1154, 1155,
    1155, 1156, 1156, 1157, 1158, 1158, 1159, 1160, 1160, 1161, 1161, 1162, 1163, 1163, 1164, 1164,
    1165, 1166, 1166, 1167, 1168, 1168, 1169, 1169, 1170, 1171, 1171, 1172, 1173, 1173, 1174, 1174,
    1175, 1176, 1176, 1177, 1177, 1178, 1179, 1179, 1180, 1181, 1181, 1182, 1182, 1183, 1184, 1184,
    1185, 1186, 1186, 1187, 1187, 1188, 1189, 1189, 1190, 1190, 1191, 1192, 1192, 1193, 1194, 1194,
    1195, 1195, 1196, 1197, 1197, 1198, 1198, 1199, 1200, 1200, 1201, 1202, 1202, 1203, 1203, 1204,
    1205, 1205, 1206, 1207, 1207, 1208, 1208, 1209, 1210, 1210, 1211, 1211, 1212, 1213, 1213, 1214,
    1215, 1215, 1216, 1216, 1217, 1218, 1218, 1219, 1219, 1220, 1221, 1221, 1222, 1223, 1223, 1224,
    1224, 1225, 1226, 1226, 1227, 1228, 1228, 1229, 1229, 1230, 1231, 1231, 1232, 1232, 1233, 1234,
    1234, 1235, 1236, 1236, 1237, 1237, 1238, 1239, 1239, 1240, 1241, 1241, 1242, 1242, 1243, 1244,
    1244, 1245, 1245, 1246, 1247, 1247, 1248, 1249, 1249, 1250, 1250, 1251, 1252, 1252, 1253, 1253,
    1254, 1255, 1255, 1256, 1257, 1257, 1258, 1258, 1259, 1260, 1260, 1261, 1262, 1262, 1263, 1263,
    1264, 1265, 1265, 1266, 1266, 1267, 1268, 1268, 1269, 1270, 1270, 1271, 1271, 1272, 1273, 1273,
    1274, 1275, 1275, 1276, 1276, 1277, 1278, 1278, 1279, 1279, 1280, 1281, 1281, 1282, 1283, 1283,
    1284, 1284, 1285, 1286, 1286, 1287, 1287, 1288, 1289, 1289, 1290, 1291, 1291, 1292, 1292, 1293,
    1294, 1294, 1295, 1296, 1296, 1297, 1297, 1298, 1299, 1299, 1300, 1300, 1301, 1302, 1302, 1303,
    1304, 1304, 1305, 1305, 1306, 1307, 1307, 1308, 1308, 1309, 1310, 1310, 1311, 1312, 1312, 1313,
    1313, 1314, 1315, 1315, 1316, 1317, 1317, 1318, 1318, 1319, 1320, 1320, 1321, 1321, 1322, 1323,
    1323, 1324, 1325, 1325, 1326, 1326, 1327, 1328, 1328, 1329, 1330, 1330, 1331, 1331, 1332, 1333,
    1333, 1334, 1334, 1335, 1336, 1336, 1337, 1338, 1338, 1339, 1339, 1340, 1341, 1341, 1342, 1342,
    1343, 1344, 1344, 1345, 1346, 1346, 1347, 1347, 1348, 1349, 1349, 1350, 1351, 1351, 1352, 1352,
    1353, 1354, 1354, 1355, 1355, 1356, 1357, 1357, 1358, 1359, 1359, 1360, 1360, 1361, 1362, 1362,
    1363, 1364, 1364, 1365, 1365, 1366, 1367, 1367, 1368, 1368, 1369, 1370, 1370, 1371, 1372, 1372,
    1373, 1373, 1374, 1375, 1375, 1376, 1376, 1377, 1378, 1378, 1379, 1380, 1380, 1381, 1381, 1382,
    1383, 1383, 1384, 1385, 1385, 1386, 1386, 1387, 1388, 1388, 1389, 1389, 1390, 1391, 1391, 1392,
    1393, 1393, 1394, 1394, 1395, 1396, 1396, 1397, 1397, 1398, 1399, 1399, 1400, 1401, 1401, 1402,
    1402, 1403, 1404, 1404, 1405, 1406, 1406, 1407, 1407, 1408, 1409, 1409, 1410, 1410, 1411, 1412,
    1412, 1413, 1414, 1414, 1415, 1415, 1416, 1417, 1417, 1418, 1419, 1419, 1420, 1420, 1421, 1422,
    1422, 1423, 1423, 1424, 1425, 1425, 1426, 1427, 1427, 1428, 1428, 1429, 1430, 1430, 1431, 1431,
    1432, 1433, 1433, 1434, 1435, 1435, 1436, 1436, 1437, 1438, 1438, 1439, 1440, 1440, 1441, 1441,
    1442, 1443, 1443, 1444, 1444, 1445, 1446, 1446, 1447, 1448, 1448, 1449, 1449, 1450, 1451, 1451,
    1452, 1452, 1453, 1454, 1454, 1455, 1456, 1456, 1457, 1457, 1458, 1459, 1459, 1460, 1461, 1461,
    1462, 1462, 1463, 1464, 1464, 1465, 1465, 1466, 1467, 1467, 1468, 1469, 1469, 1470, 1470, 1471,
    1472, 1472, 1473, 1474, 1474, 1475, 1475, 1476, 1477, 1477, 1478, 1478, 1479, 1480, 1480, 1481,
    1482, 1482, 1483, 1483, 1484, 1485, 1485, 1486, 1486, 1487, 1488, 1488, 1489, 1490, 1490, 1491,
    1491, 1492, 1493, 1493, 1494, 1495, 1495, 1496, 1496, 1497, 1498, 1498, 1499, 1499, 1500, 1501,
    1501, 1502, 1503, 1503, 1504, 1504, 1505, 1506, 1506, 1507, 1508, 1508, 1509, 1509, 1510, 1511,
    1511, 1512, 1512, 1513, 1514, 1514, 1515, 1516, 1516, 1517, 1517, 1518, 1519, 1519, 1520, 1520,
    1521, 1522, 1522, 1523, 1524, 1524, 1525, 1525, 1526, 1527, 1527, 1528, 1529, 1529, 1530, 1530,
    1531, 1532, 1532, 1533, 1533, 1534, 1535, 1535, 1536, 1537, 1537, 1538, 1538, 1539, 1540, 1540,
    1541, 1541, 1542, 1543, 1543, 1544, 1545, 1545, 1546, 1546, 1547, 1548, 1548, 1549, 1550, 1550,
    1551, 1551, 1552, 1553, 1553, 1554, 1554, 1555, 1556, 1556, 1557, 1558, 1558, 1559, 1559, 1560,
    1561, 1561, 1562, 1563, 1563, 1564, 1564, 1565, 1566, 1566, 1567, 1567, 1568, 1569, 1569, 1570,
    1571, 1571, 1572, 1572, 1573, 1574, 1574, 1575, 1575, 1576, 1577, 1577, 1578, 1579, 1579, 1580,
    1580, 1581, 1582, 1582, 1583, 1584, 1584, 1585, 1585, 1586, 1587, 1587, 1588, 1588, 1589, 1590,
    1590, 1591, 1592, 1592, 1593, 1593, 1594, 1595, 1595, 1596, 1596, 1597, 1598, 1598, 1599, 1600,
    1600,
];

/// Theorem 3
/// Quick way to calculate the fibonacci left shift
pub(crate) fn fibonacci_left_shift(n: u64, k: usize) -> u64 {
    //  FIB64[k-1] * n + FIB64[k-2] + FIB_EXT_LEFT_1[n as usize];

    // we need F(-2), F(-1) which are not in the FIB64 array; here;s the workaround
    let (f_km1, f_km2) = match k {
        // Fib[-1], Fib[-2]
        0 => (1, 0),

        // Fib[0], Fib[-1]
        1 => (1, 1),

        // Fib[1], Fib[0]
        2 => (2, 1),

        // anything else
        k => (FIB64[k - 1], FIB64[k - 2]),
    };

    // shifted:
    f_km1 * n + f_km2 * FIB_EXT_LEFT_1[n as usize]
}


// pub(crate) fn fibonacci_left_shift(n: u64, k: usize) -> u64 {
//     //  FIB64[k-1] * n + FIB64[k-2] + FIB_EXT_LEFT_1[n as usize];

//     // we need F(-2), F(-1) which are not in the FIB64 array; here;s the workaround
//     let (f_km1, f_km2) = LEFT_SHIFT_LOOKUP[k];

//     // shifted:
//     f_km1 * n + f_km2 * FIB_EXT_LEFT_1[n as usize]
// }


// #[test]
// fn test_left_shift_lookup(){
//     for k in 0..FIB64.len() {
//         assert_eq!(fibonacci_left_shift_static(10, k), fibonacci_left_shift(10, k))
//     }
// }


// const LEFT_SHIFT_LOOKUP: [(u64, u64); FIB64.len()] = {
//     let mut seq = [(0_u64,0_u64); FIB64.len()];
    
//     seq[0] = (1, 0);
//     seq[1] = (1, 1);
//     seq[2] = (2, 1);
//     let mut k = 3;
//     while k < FIB64.len() {
//         seq[k] = (FIB64[k-1], FIB64[k-2]);
//         k += 1;
//     }
//     seq
// };


/// decodes a fibonacci stream until the very end of the stream
/// there might be a remainder (behind the last 11 delimiter)
/// which is also returned (its value in Fib, and its len in fib)
pub(crate) fn decode_with_remainder<T: BitStore, O: BitOrder>(
    bitstream: &BitSlice<T, O>,
    lastbit_external: bool,
) -> DecodingResult {
    assert!(
        bitstream.len() < 64,
        "fib-codes cant be longer than 64bit, something is wrong!"
    );
    let mut prev_bit = lastbit_external;
    let mut decoded_ints = Vec::new();
    let mut decoded_end_pos: Vec<usize> = Vec::new();

    let mut accum = 0_u64;
    let mut offset = 0;
    for (ix, b) in bitstream.iter().by_vals().enumerate() {
        match (prev_bit, b) {
            (false, true) => {
                accum += FIB64[offset];
                offset += 1;
                prev_bit = b;
            }
            (true, true) => {
                // found delimiter; Note, the bit has already been counted in acc
                decoded_ints.push(accum);
                decoded_end_pos.push(ix); // will be none the first iteration
                // reset for next number
                accum = 0;
                offset = 0;
                // BIG TRICK: we need to set lastbit=false for the next iteration; otherwise 011|11 picks up the next 11 as delimiter
                prev_bit = false;
            }
            (false, false) | (true, false) => {
                // nothing to add, jsut increase offset
                offset += 1;
                prev_bit = b;
            }
        }
    }
    DecodingResult {
        numbers: decoded_ints,
        u: accum,
        lu: offset,
        number_end_in_segment: decoded_end_pos,
    }
}

#[cfg(test)]
mod test_decode_with_remainder {
    use crate::bit_decode::MyBitOrder;

    use super::*;
    use bitvec::{bits, view::BitView};
    use pretty_assertions::assert_eq;
    #[test]
    fn test_decode_with_remainder_edge_case_delimiters() {
        // the exampel from the paper, Fig 9.4
        let bits = bits![u8, MyBitOrder; 0,1,1,1,1];
        let r = decode_with_remainder(bits, false);
        assert_eq!(
            r,
            DecodingResult {
                numbers: vec![2, 1],
                u: 0,
                lu: 0,
                number_end_in_segment: vec![2, 4]
            }
        );
    }

    #[test]
    fn test_decode_with_remainder_edge_case_delimiters2() {
        // the exampel from the paper, Fig 9.4
        let bits = bits![u8, MyBitOrder; 0,0,0,0,0,0,1,1,1,0,0,0,0,0,1,1].to_bitvec();
        let r = decode_with_remainder(&bits, false);
        assert_eq!(
            r,
            DecodingResult {
                numbers: vec![21, 22],
                u: 0,
                lu: 0,
                number_end_in_segment: vec![7, 15]
            }
        );
    }

    #[test]
    fn test_decode_with_remainder_from_table94() {
        // the exampel from the paper, Fig 9.4
        let bits = &181_u8.view_bits::<MyBitOrder>()[..8];
        // bits.reverse();

        // let bits = bits![u8, MyBitOrder; 0,1,1,1,1];
        let r = decode_with_remainder(bits, false);
        assert_eq!(r.numbers, vec![4]);
        assert_eq!(r.u, 7);
        assert_eq!(r.lu, 4);

        // the exampel from the paper, Fig 9.4
        let bits = &165_u8.view_bits::<MyBitOrder>()[..8];
        let r = decode_with_remainder(&bits, true);
        assert_eq!(r.numbers, vec![0]);
        assert_eq!(r.u, 31);
        assert_eq!(r.lu, 7);

        // the exampel from the paper, Fig 9.4
        let bits = &114_u8.view_bits::<MyBitOrder>()[..8];
        let r = decode_with_remainder(&bits, true);
        assert_eq!(r.numbers, vec![2]);
        assert_eq!(r.u, 6);
        assert_eq!(r.lu, 5);
    }

    #[test]
    fn test_decode_with_remainder() {
        // the exampel from the paper, Fig 9.4
        let bits = bits![u8, MyBitOrder; 1,0,1,1,0,1,0,1,1,0,1,0,0,1,0,1];
        let r = decode_with_remainder(bits, false);
        assert_eq!(
            r,
            DecodingResult {
                numbers: vec![4, 7],
                u: 31,
                lu: 7,
                number_end_in_segment: vec![3, 8,]
            }
        );

        // the exampel from the paper, Fig 9.4
        // no remainder this time
        let bits = bits![u8, MyBitOrder; 1,0,1,1,0,1,0,1,1];
        let r = decode_with_remainder(bits, false);
        assert_eq!(
            r,
            DecodingResult {
                numbers: vec![4, 7],
                u: 0,
                lu: 0,
                number_end_in_segment: vec![3, 8]
            }
        );
    }
    #[test]
    fn test_decode_with_remainder_starts() {
        let bits = bits![u8, MyBitOrder; 1,0,1,1,0,1,0,1,1, 0,1,1,0,0,0];
        let r = decode_with_remainder(bits, false);
        assert_eq!(
            r,
            DecodingResult {
                numbers: vec![4, 7, 2],
                u: 0,
                lu: 3,
                number_end_in_segment: vec![3, 8, 11]
            }
        );
    }
}

#[cfg(test)]
mod test {
    use super::*;
    #[test]
    fn test_extended_shift() {
        let x = extended_fibonacci_right_shift_slow(7, 0);
        assert_eq!(x, 7);

        // from table 6.6
        let x = extended_fibonacci_right_shift_slow(7, 1);
        assert_eq!(x, 4);

        let x = extended_fibonacci_right_shift_slow(6, 1);
        assert_eq!(x, 4);

        let x = extended_fibonacci_right_shift_slow(8, 1);
        assert_eq!(x, 5);

        let x = extended_fibonacci_right_shift_slow(9, 1);
        assert_eq!(x, 6);

        let x = extended_fibonacci_right_shift_slow(39, 1);
        assert_eq!(x, 24);

        let x = extended_fibonacci_right_shift_slow(54, 1);
        assert_eq!(x, 33);
    }

    #[test]
    fn test_extended_shift_print() {
        let mut s = String::new();
        s.push_str("0, ");

        for i in 1..2590 {
            let f = extended_fibonacci_right_shift_slow(i, 1);
            let x = format!("{f}, ");
            s.push_str(&x);
        }
        println!("{s}");
    }

    #[test]
    fn test_fib_left() {
        // 32 = 0010101   (3+8+21)
        assert_eq!(fibonacci_left_shift(32, 0), 32);
        assert_eq!(fibonacci_left_shift(32, 3), 136);
    }
}