1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
//! Root module for 256-bit unsigned integer type.
mod api;
mod cmp;
mod convert;
mod fmt;
mod iter;
mod ops;
mod parse;
pub use self::convert::AsU256;
use crate::I256;
use core::{mem::MaybeUninit, num::ParseIntError};
/// A 256-bit unsigned integer type.
#[derive(Clone, Copy, Default, Eq, Hash, PartialEq)]
#[repr(transparent)]
pub struct U256(pub [u128; 2]);
impl U256 {
/// The additive identity for this integer type, i.e. `0`.
pub const ZERO: Self = U256([0; 2]);
/// The multiplicative identity for this integer type, i.e. `1`.
pub const ONE: Self = U256::new(1);
/// Creates a new 256-bit integer value from a primitive `u128` integer.
#[inline]
pub const fn new(value: u128) -> Self {
U256::from_words(0, value)
}
/// Creates a new 256-bit integer value from high and low words.
#[inline]
pub const fn from_words(hi: u128, lo: u128) -> Self {
#[cfg(target_endian = "little")]
{
U256([lo, hi])
}
#[cfg(target_endian = "big")]
{
U256([hi, lo])
}
}
/// Splits a 256-bit integer into high and low words.
#[inline]
pub const fn into_words(self) -> (u128, u128) {
#[cfg(target_endian = "little")]
{
let U256([lo, hi]) = self;
(hi, lo)
}
#[cfg(target_endian = "big")]
{
let U256([hi, lo]) = self;
(hi, lo)
}
}
/// Get the low 128-bit word for this unsigned integer.
#[inline]
pub fn low(&self) -> &u128 {
#[cfg(target_endian = "little")]
{
&self.0[0]
}
#[cfg(target_endian = "big")]
{
&self.0[1]
}
}
/// Get the low 128-bit word for this unsigned integer as a mutable
/// reference.
#[inline]
pub fn low_mut(&mut self) -> &mut u128 {
#[cfg(target_endian = "little")]
{
&mut self.0[0]
}
#[cfg(target_endian = "big")]
{
&mut self.0[1]
}
}
/// Get the high 128-bit word for this unsigned integer.
#[inline]
pub fn high(&self) -> &u128 {
#[cfg(target_endian = "little")]
{
&self.0[1]
}
#[cfg(target_endian = "big")]
{
&self.0[0]
}
}
/// Get the high 128-bit word for this unsigned integer as a mutable
/// reference.
#[inline]
pub fn high_mut(&mut self) -> &mut u128 {
#[cfg(target_endian = "little")]
{
&mut self.0[1]
}
#[cfg(target_endian = "big")]
{
&mut self.0[0]
}
}
/// Converts a prefixed string slice in base 16 to an integer.
///
/// The string is expected to be an optional `+` sign followed by the `0x`
/// prefix and finally the digits. Leading and trailing whitespace represent
/// an error.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// # use ethnum::U256;
/// assert_eq!(U256::from_str_hex("0x2A"), Ok(U256::new(42)));
/// ```
pub fn from_str_hex(src: &str) -> Result<Self, ParseIntError> {
crate::parse::from_str_radix(src, 16, Some("0x"))
}
/// Converts a prefixed string slice in a base determined by the prefix to
/// an integer.
///
/// The string is expected to be an optional `+` sign followed by the one of
/// the supported prefixes and finally the digits. Leading and trailing
/// whitespace represent an error. The base is determined based on the
/// prefix:
///
/// * `0b`: base `2`
/// * `0o`: base `8`
/// * `0x`: base `16`
/// * no prefix: base `10`
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// # use ethnum::U256;
/// assert_eq!(U256::from_str_prefixed("0b101"), Ok(U256::new(0b101)));
/// assert_eq!(U256::from_str_prefixed("0o17"), Ok(U256::new(0o17)));
/// assert_eq!(U256::from_str_prefixed("0xa"), Ok(U256::new(0xa)));
/// assert_eq!(U256::from_str_prefixed("42"), Ok(U256::new(42)));
/// ```
pub fn from_str_prefixed(src: &str) -> Result<Self, ParseIntError> {
crate::parse::from_str_prefixed(src)
}
/// Same as [`U256::from_str_prefixed`] but as a `const fn`. This method is
/// not intended to be used directly but rather through the [`crate::uint`]
/// macro.
#[doc(hidden)]
pub const fn const_from_str_prefixed(src: &str) -> Self {
parse::const_from_str_prefixed(src)
}
/// Cast to a primitive `i8`.
#[inline]
pub const fn as_i8(self) -> i8 {
let (_, lo) = self.into_words();
lo as _
}
/// Cast to a primitive `i16`.
#[inline]
pub const fn as_i16(self) -> i16 {
let (_, lo) = self.into_words();
lo as _
}
/// Cast to a primitive `i32`.
#[inline]
pub const fn as_i32(self) -> i32 {
let (_, lo) = self.into_words();
lo as _
}
/// Cast to a primitive `i64`.
#[inline]
pub const fn as_i64(self) -> i64 {
let (_, lo) = self.into_words();
lo as _
}
/// Cast to a primitive `i128`.
#[inline]
pub const fn as_i128(self) -> i128 {
let (_, lo) = self.into_words();
lo as _
}
/// Cast to a `I256`.
#[inline]
pub const fn as_i256(self) -> I256 {
let Self([a, b]) = self;
I256([a as _, b as _])
}
/// Cast to a primitive `u8`.
#[inline]
pub const fn as_u8(self) -> u8 {
let (_, lo) = self.into_words();
lo as _
}
/// Cast to a primitive `u16`.
#[inline]
pub const fn as_u16(self) -> u16 {
let (_, lo) = self.into_words();
lo as _
}
/// Cast to a primitive `u32`.
#[inline]
pub const fn as_u32(self) -> u32 {
let (_, lo) = self.into_words();
lo as _
}
/// Cast to a primitive `u64`.
#[inline]
pub const fn as_u64(self) -> u64 {
let (_, lo) = self.into_words();
lo as _
}
/// Cast to a primitive `u128`.
#[inline]
pub const fn as_u128(self) -> u128 {
let (_, lo) = self.into_words();
lo
}
/// Cast to a primitive `isize`.
#[inline]
pub const fn as_isize(self) -> isize {
let (_, lo) = self.into_words();
lo as _
}
/// Cast to a primitive `usize`.
#[inline]
pub const fn as_usize(self) -> usize {
let (_, lo) = self.into_words();
lo as _
}
/// Cast to a primitive `f32`.
#[inline]
pub fn as_f32(self) -> f32 {
match self.into_words() {
(0, lo) => lo as _,
_ => f32::INFINITY,
}
}
/// Cast to a primitive `f64`.
#[inline]
pub fn as_f64(self) -> f64 {
// NOTE: Binary representation of 2**128. This is used because `powi` is
// neither `const` nor `no_std`.
const HI: u64 = 0x47f0000000000000;
let (hi, lo) = self.into_words();
(hi as f64) * f64::from_bits(HI) + (lo as f64)
}
/// Performs integer and division and returns the quotient and the remainder as a tuple. This is faster than computing the quotient and remainder separately.
///
/// # Panics
///
/// This function will panic if `rhs` is 0.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// # use ethnum::U256;
/// assert_eq!(U256::new(7).div_rem(U256::new(4)), (U256::new(1), U256::new(3)));
/// ```
#[inline]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[track_caller]
pub fn div_rem(self, rhs: Self) -> (Self, Self) {
if rhs == 0 {
if rhs > 0 {
// The optimizer understands inequalities better
unsafe { core::hint::unreachable_unchecked() }
}
panic!("attempt to divide by zero");
}
if rhs <= 0 {
// The optimizer understands inequalities better
unsafe { core::hint::unreachable_unchecked() }
}
let mut res: MaybeUninit<Self> = MaybeUninit::uninit();
let mut rem: MaybeUninit<Self> = MaybeUninit::uninit();
crate::intrinsics::udivmod4(&mut res, &self, &rhs, Some(&mut rem));
let ret = unsafe { ((res.assume_init()), (rem.assume_init())) };
// This helps the optimizer figure out when it can use smaller
// operands for later functions.
// SAFETY: Relies on the fact that rhs is at least 1.
if ret.1 >= rhs {
unsafe { core::hint::unreachable_unchecked() }
}
if ret.1 > self {
unsafe { core::hint::unreachable_unchecked() }
}
if ret.0 > self {
unsafe { core::hint::unreachable_unchecked() }
}
ret
}
/// Performs Euclidean division.
///
/// Since, for the positive integers, all common definitions of division are
/// equal, this is exactly equal to `self.div_rem(rhs)`.
///
/// # Panics
///
/// This function will panic if `rhs` is 0.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// # use ethnum::U256;
/// assert_eq!(U256::new(7).div_rem_euclid(U256::new(4)), (U256::new(1), U256::new(3)));
/// ```
#[inline(always)]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[track_caller]
pub fn div_rem_euclid(self, rhs: Self) -> (Self, Self) {
self.div_rem(rhs)
}
/// Checked integer division. Computes `self.div_rem(rhs)`, returning `None` if
/// `rhs == 0`.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// # use ethnum::U256;
/// assert_eq!(U256::new(128).checked_div_rem(U256::new(2)), Some((U256::new(64), U256::new(0))));
/// assert_eq!(U256::new(1).checked_div_rem(U256::new(0)), None);
/// ```
#[inline]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
pub fn checked_div_rem(self, rhs: Self) -> Option<(Self, Self)> {
if rhs == Self::ZERO {
if rhs > 0 {
// The optimizer understands inequalities better
unsafe { core::hint::unreachable_unchecked() }
}
None
} else {
if rhs <= 0 {
// The optimizer understands inequalities better
unsafe { core::hint::unreachable_unchecked() }
}
Some(self.div_rem(rhs))
}
}
/// Checked Euclidean division. Computes `self.div_rem_euclid(rhs)`, returning `None` if
/// `rhs == 0`.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// # use ethnum::U256;
/// assert_eq!(U256::new(128).checked_div_rem_euclid(U256::new(2)), Some((U256::new(64), U256::new(0))));
/// assert_eq!(U256::new(1).checked_div_rem_euclid(U256::new(0)), None);
/// ```
#[inline(always)]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
pub fn checked_div_rem_euclid(self, rhs: Self) -> Option<(Self, Self)> {
self.checked_div_rem(rhs)
}
/// Saturating integer division. Computes `self.div_rem(rhs)`, saturating at the
/// numeric bounds instead of overflowing.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// # use ethnum::U256;
/// assert_eq!(U256::new(5).saturating_div_rem(U256::new(2)), (U256::new(2), U256::new(1)));
/// ```
///
/// ```should_panic (expected = "attempt to divide by zero")
/// # use ethnum::U256;
/// let _ = U256::new(1).saturating_div_rem(U256::ZERO);
/// ```
#[inline(always)]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[track_caller]
pub fn saturating_div_rem(self, rhs: Self) -> (Self, Self) {
self.div_rem(rhs)
}
/// Saturating integer division. Computes `self.div_rem_euclid(rhs)`, saturating at the
/// numeric bounds instead of overflowing.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// # use ethnum::U256;
/// assert_eq!(U256::new(5).saturating_div_rem_euclid(U256::new(2)), (U256::new(2), U256::new(1)));
/// ```
///
/// ```should_panic (expected = "attempt to divide by zero")
/// # use ethnum::U256;
/// let _ = U256::new(1).saturating_div_rem_euclid(U256::ZERO);
/// ```
#[inline(always)]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[track_caller]
pub fn saturating_div_rem_euclid(self, rhs: Self) -> (Self, Self) {
self.div_rem(rhs)
}
/// Wrapping (modular) division. Computes `self.div_rem(rhs)`. Wrapped division on
/// unsigned types is just normal division. There's no way wrapping could
/// ever happen. This function exists, so that all operations are accounted
/// for in the wrapping operations.
///
/// # Panics
///
/// This function will panic if `rhs` is 0.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// # use ethnum::U256;
/// assert_eq!(U256::new(100).wrapping_div_rem(U256::new(10)), (U256::new(10), U256::new(0)));
/// ```
#[inline(always)]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[track_caller]
pub fn wrapping_div_rem(self, rhs: Self) -> (Self, Self) {
self.div_rem(rhs)
}
/// Wrapping Euclidean division. Computes `self.div_rem_euclid(rhs)`. Wrapped division on
/// unsigned types is just normal division. There's no way wrapping could
/// ever happen. This function exists, so that all operations are accounted
/// for in the wrapping operations. Since, for the positive integers, all common
/// definitions of division are equal, this is exactly equal to `self.div_rem(rhs)`.
///
/// # Panics
///
/// This function will panic if `rhs` is 0.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// # use ethnum::U256;
/// assert_eq!(U256::new(100).wrapping_div_rem_euclid(U256::new(10)), (U256::new(10), U256::new(0)));
/// ```
#[inline(always)]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[track_caller]
pub fn wrapping_div_rem_euclid(self, rhs: Self) -> (Self, Self) {
self.div_rem(rhs)
}
/// Calculates the quotient and the remainder when `self` is divided by `rhs`.
///
/// Returns a tuple of the divisor and the remainder along with a boolean indicating whether
/// an arithmetic overflow would occur. Note that for unsigned integers
/// overflow never occurs, so the second value is always `false`.
///
/// # Panics
///
/// This function will panic if `rhs` is 0.
///
/// # Examples
///
/// Basic usage
///
/// ```
/// # use ethnum::U256;
/// assert_eq!(U256::new(5).overflowing_div_rem(U256::new(2)), (U256::new(2), U256::new(1), false));
/// ```
#[inline(always)]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[track_caller]
pub fn overflowing_div_rem(self, rhs: Self) -> (Self, Self, bool) {
let (q, r) = self.div_rem(rhs);
(q, r, false)
}
/// Calculates the quotient of Euclidean division `self.div_rem_euclid(rhs)`.
///
/// Returns a tuple of the divisor along with a boolean indicating whether
/// an arithmetic overflow would occur. Note that for unsigned integers
/// overflow never occurs, so the second value is always `false`. Since,
/// for the positive integers, all common definitions of division are equal,
/// this is exactly equal to `self.div_rem(rhs)`.
///
/// # Panics
///
/// This function will panic if `rhs` is 0.
///
/// # Examples
///
/// Basic usage
///
/// ```
/// # use ethnum::U256;
/// assert_eq!(U256::new(5).overflowing_div_rem_euclid(U256::new(2)), (U256::new(2), U256::new(1), false));
/// ```
#[inline(always)]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[track_caller]
pub fn overflowing_div_rem_euclid(self, rhs: Self) -> (Self, Self, bool) {
let (q, r) = self.div_rem(rhs);
(q, r, false)
}
}
#[cfg(test)]
mod tests {
use crate::uint::U256;
#[test]
#[allow(clippy::float_cmp)]
fn converts_to_f64() {
assert_eq!(U256::from_words(1, 0).as_f64(), 2.0f64.powi(128))
}
}