ethnum 1.5.2

256-bit integer implementation
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
//! Root module for 256-bit signed integer type.

mod api;
mod cmp;
mod convert;
mod fmt;
mod iter;
mod ops;
mod parse;

pub use self::convert::AsI256;
use crate::uint::U256;
use core::{mem::MaybeUninit, num::ParseIntError};

/// A 256-bit signed integer type.
#[derive(Clone, Copy, Default, Eq, Hash, PartialEq)]
#[repr(transparent)]
pub struct I256(pub [i128; 2]);

impl I256 {
    /// The additive identity for this integer type, i.e. `0`.
    pub const ZERO: Self = I256([0; 2]);

    /// The multiplicative identity for this integer type, i.e. `1`.
    pub const ONE: Self = I256::new(1);

    /// The multiplicative inverse for this integer type, i.e. `-1`.
    pub const MINUS_ONE: Self = I256::new(-1);

    /// Creates a new 256-bit integer value from a primitive `i128` integer.
    #[inline]
    pub const fn new(value: i128) -> Self {
        I256::from_words(value >> 127, value)
    }

    /// Creates a new 256-bit integer value from high and low words.
    #[inline]
    pub const fn from_words(hi: i128, lo: i128) -> Self {
        #[cfg(target_endian = "little")]
        {
            I256([lo, hi])
        }
        #[cfg(target_endian = "big")]
        {
            I256([hi, lo])
        }
    }

    /// Splits a 256-bit integer into high and low words.
    #[inline]
    pub const fn into_words(self) -> (i128, i128) {
        #[cfg(target_endian = "little")]
        {
            let I256([lo, hi]) = self;
            (hi, lo)
        }
        #[cfg(target_endian = "big")]
        {
            let I256([hi, lo]) = self;
            (hi, lo)
        }
    }

    /// Get the low 128-bit word for this signed integer.
    #[inline]
    pub fn low(&self) -> &i128 {
        #[cfg(target_endian = "little")]
        {
            &self.0[0]
        }
        #[cfg(target_endian = "big")]
        {
            &self.0[1]
        }
    }

    /// Get the low 128-bit word for this signed integer as a mutable reference.
    #[inline]
    pub fn low_mut(&mut self) -> &mut i128 {
        #[cfg(target_endian = "little")]
        {
            &mut self.0[0]
        }
        #[cfg(target_endian = "big")]
        {
            &mut self.0[1]
        }
    }

    /// Get the high 128-bit word for this signed integer.
    #[inline]
    pub fn high(&self) -> &i128 {
        #[cfg(target_endian = "little")]
        {
            &self.0[1]
        }
        #[cfg(target_endian = "big")]
        {
            &self.0[0]
        }
    }

    /// Get the high 128-bit word for this signed integer as a mutable
    /// reference.
    #[inline]
    pub fn high_mut(&mut self) -> &mut i128 {
        #[cfg(target_endian = "little")]
        {
            &mut self.0[1]
        }
        #[cfg(target_endian = "big")]
        {
            &mut self.0[0]
        }
    }

    /// Converts a prefixed string slice in base 16 to an integer.
    ///
    /// The string is expected to be an optional `+` or `-` sign followed by
    /// the `0x` prefix and finally the digits. Leading and trailing whitespace
    /// represent an error.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// # use ethnum::I256;
    /// assert_eq!(I256::from_str_hex("0x2A"), Ok(I256::new(42)));
    /// assert_eq!(I256::from_str_hex("-0xa"), Ok(I256::new(-10)));
    /// ```
    pub fn from_str_hex(src: &str) -> Result<Self, ParseIntError> {
        crate::parse::from_str_radix(src, 16, Some("0x"))
    }

    /// Converts a prefixed string slice in a base determined by the prefix to
    /// an integer.
    ///
    /// The string is expected to be an optional `+` or `-` sign followed by
    /// the one of the supported prefixes and finally the digits. Leading and
    /// trailing whitespace represent an error. The base is determined based
    /// on the prefix:
    ///
    /// * `0b`: base `2`
    /// * `0o`: base `8`
    /// * `0x`: base `16`
    /// * no prefix: base `10`
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// # use ethnum::I256;
    /// assert_eq!(I256::from_str_prefixed("-0b101"), Ok(I256::new(-0b101)));
    /// assert_eq!(I256::from_str_prefixed("0o17"), Ok(I256::new(0o17)));
    /// assert_eq!(I256::from_str_prefixed("-0xa"), Ok(I256::new(-0xa)));
    /// assert_eq!(I256::from_str_prefixed("42"), Ok(I256::new(42)));
    /// ```
    pub fn from_str_prefixed(src: &str) -> Result<Self, ParseIntError> {
        crate::parse::from_str_prefixed(src)
    }

    /// Same as [`I256::from_str_prefixed`] but as a `const fn`. This method is
    /// not intended to be used directly but rather through the [`crate::int`]
    /// macro.
    #[doc(hidden)]
    pub const fn const_from_str_prefixed(src: &str) -> Self {
        parse::const_from_str_prefixed(src)
    }

    /// Cast to a primitive `i8`.
    #[inline]
    pub const fn as_i8(self) -> i8 {
        let (_, lo) = self.into_words();
        lo as _
    }

    /// Cast to a primitive `i16`.
    #[inline]
    pub const fn as_i16(self) -> i16 {
        let (_, lo) = self.into_words();
        lo as _
    }

    /// Cast to a primitive `i32`.
    #[inline]
    pub const fn as_i32(self) -> i32 {
        let (_, lo) = self.into_words();
        lo as _
    }

    /// Cast to a primitive `i64`.
    #[inline]
    pub const fn as_i64(self) -> i64 {
        let (_, lo) = self.into_words();
        lo as _
    }

    /// Cast to a primitive `i128`.
    #[inline]
    pub const fn as_i128(self) -> i128 {
        let (_, lo) = self.into_words();
        lo as _
    }

    /// Cast to a primitive `u8`.
    #[inline]
    pub const fn as_u8(self) -> u8 {
        let (_, lo) = self.into_words();
        lo as _
    }

    /// Cast to a primitive `u16`.
    #[inline]
    pub const fn as_u16(self) -> u16 {
        let (_, lo) = self.into_words();
        lo as _
    }

    /// Cast to a primitive `u32`.
    #[inline]
    pub const fn as_u32(self) -> u32 {
        let (_, lo) = self.into_words();
        lo as _
    }

    /// Cast to a primitive `u64`.
    #[inline]
    pub const fn as_u64(self) -> u64 {
        let (_, lo) = self.into_words();
        lo as _
    }

    /// Cast to a primitive `u128`.
    #[inline]
    pub const fn as_u128(self) -> u128 {
        let (_, lo) = self.into_words();
        lo as _
    }

    /// Cast to a `U256`.
    #[inline]
    pub const fn as_u256(self) -> U256 {
        let Self([a, b]) = self;
        U256([a as _, b as _])
    }

    /// Cast to a primitive `isize`.
    #[inline]
    pub const fn as_isize(self) -> isize {
        let (_, lo) = self.into_words();
        lo as _
    }

    /// Cast to a primitive `usize`.
    #[inline]
    pub const fn as_usize(self) -> usize {
        let (_, lo) = self.into_words();
        lo as _
    }

    /// Cast to a primitive `f32`.
    #[inline]
    pub fn as_f32(self) -> f32 {
        self.as_f64() as _
    }

    /// Cast to a primitive `f64`.
    #[inline]
    pub fn as_f64(self) -> f64 {
        let sign = self.signum128() as f64;
        self.unsigned_abs().as_f64() * sign
    }

    /// Performs integer and division and returns the quotient and the remainder as a tuple. This is equivelent to `(self / rhs, self % rhs)`, but more effecient.
    ///
    /// # Panics
    ///
    /// This function will panic if `rhs` is 0, and will panic on overflow iff debug assertions are enabled.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// # use ethnum::I256;
    /// assert_eq!(I256::new(22).div_rem(I256::new(5)), (I256::new(4), I256::new(2)));
    /// assert_eq!(I256::new(-22).div_rem(I256::new(5)), (I256::new(-4), I256::new(-2)));
    /// assert_eq!(I256::new(22).div_rem(I256::new(-5)), (I256::new(-4), I256::new(2)));
    /// assert_eq!(I256::new(-22).div_rem(I256::new(-5)), (I256::new(4), I256::new(-2)));
    /// ```
    #[inline]
    #[must_use = "this returns the result of the operation, \
                  without modifying the original"]
    #[track_caller]
    pub fn div_rem(self, rhs: Self) -> (Self, Self) {
        if self == Self::MIN && rhs == -1 {
            panic!("attempt to divide with overflow")
        }
        self.wrapping_div_rem(rhs)
    }

    /// Performs euclidean division and returns the quotient and the remainder as a tuple.
    ///
    /// This computes the integers `q` and `r` such that self = q * rhs + r, with `q = self.div_euclid` and `r = self.rem_euclid(rhs)`.
    ///
    /// # Panics
    ///
    /// This function will panic if `rhs` is 0, and will panic on overflow iff debug assertions are enabled.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// # use ethnum::I256;
    /// assert_eq!(I256::new(22).div_rem_euclid(I256::new(5)), (I256::new(4), I256::new(2)));
    /// assert_eq!(I256::new(-22).div_rem_euclid(I256::new(5)), (I256::new(-5), I256::new(3)));
    /// assert_eq!(I256::new(22).div_rem_euclid(I256::new(-5)), (I256::new(-4), I256::new(2)));
    /// assert_eq!(I256::new(-22).div_rem_euclid(I256::new(-5)), (I256::new(5), I256::new(3)));
    ///
    /// # assert_eq!(I256::new(20).div_rem_euclid(I256::new(5)), (I256::new(4), I256::new(0)));
    /// # assert_eq!(I256::new(-20).div_rem_euclid(I256::new(5)), (I256::new(-4), I256::new(0)));
    /// # assert_eq!(I256::new(20).div_rem_euclid(I256::new(-5)), (I256::new(-4), I256::new(0)));
    /// # assert_eq!(I256::new(-20).div_rem_euclid(I256::new(-5)), (I256::new(4), I256::new(0)));
    /// ```
    #[inline]
    #[must_use = "this returns the result of the operation, \
                  without modifying the original"]
    #[track_caller]
    pub fn div_rem_euclid(self, rhs: Self) -> (Self, Self) {
        if self == Self::MIN && rhs == -1 {
            panic!("attempt to divide with overflow")
        }
        self.wrapping_div_rem_euclid(rhs)
    }

    /// Checked division. Computes `self.div_rem(rhs)`,
    /// returning `None` if `rhs == 0` or the division results in overflow.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// # use ethnum::I256;
    /// assert_eq!((I256::MIN + 1).checked_div_rem(I256::new(-1)), Some((I256::MAX, I256::new(0))));
    /// assert_eq!(I256::MIN.checked_div_rem(I256::new(-1)), None);
    /// assert_eq!(I256::new(1).checked_div_rem(I256::new(0)), None);
    /// ```
    #[inline]
    #[must_use = "this returns the result of the operation, \
                  without modifying the original"]
    #[track_caller]
    pub fn checked_div_rem(self, rhs: Self) -> Option<(Self, Self)> {
        if rhs == 0 || (self == Self::MIN && rhs == -1) {
            None
        } else {
            if rhs.cmp(&I256::ZERO) == core::cmp::Ordering::Equal {
                // The optimizer understands inequalities better
                unsafe { core::hint::unreachable_unchecked() }
            }

            let mut res: MaybeUninit<Self> = MaybeUninit::uninit();
            let mut rem: MaybeUninit<Self> = MaybeUninit::uninit();
            crate::intrinsics::idivmod4(&mut res, &self, &rhs, Some(&mut rem));
            unsafe { Some(((res.assume_init()), (rem.assume_init()))) }
        }
    }

    /// Checked Euclidean division. Computes `self.div_rem_euclid(rhs)`,
    /// returning `None` if `rhs == 0` or the division results in overflow.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// # use ethnum::I256;
    /// assert_eq!((I256::MIN + 1).checked_div_rem_euclid(I256::new(-1)), Some((I256::MAX, I256::new(0))));
    /// assert_eq!(I256::MIN.checked_div_rem_euclid(I256::new(-1)), None);
    /// assert_eq!(I256::new(1).checked_div_rem_euclid(I256::new(0)), None);
    /// ```
    #[inline]
    #[must_use = "this returns the result of the operation, \
                  without modifying the original"]
    #[track_caller]
    pub fn checked_div_rem_euclid(self, rhs: Self) -> Option<(Self, Self)> {
        if rhs == 0 || (self == Self::MIN && rhs == -1) {
            None
        } else {
            if rhs.cmp(&I256::ZERO) == core::cmp::Ordering::Equal {
                // The optimizer understands inequalities better
                unsafe { core::hint::unreachable_unchecked() }
            }

            Some(self.wrapping_div_rem_euclid(rhs))
        }
    }

    /// Saturating integer division. Computes `self.div_rem(rhs)`, saturating at the
    /// numeric bounds instead of overflowing.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// # use ethnum::I256;
    /// assert_eq!(I256::new(5).saturating_div_rem(I256::new(2)), (I256::new(2), I256::new(1)));
    /// assert_eq!(I256::MAX.saturating_div_rem(I256::new(-1)), (I256::MIN + 1, I256::new(0)));
    /// assert_eq!(I256::MIN.saturating_div_rem(I256::new(-1)), (I256::MAX, I256::new(0)));
    /// ```
    /// ```should_panic (expected = "attempt to divide by zero")
    /// # use ethnum::I256;
    /// let _ = I256::new(1).saturating_div_rem(I256::ZERO);
    /// ```
    #[inline]
    #[must_use = "this returns the result of the operation, \
                  without modifying the original"]
    #[track_caller]
    pub fn saturating_div_rem(self, rhs: Self) -> (Self, Self) {
        match self.overflowing_div_rem(rhs) {
            (q, r, false) => (q, r),
            (_q, r, true) => (Self::MAX, r), // MIN / -1 is the only possible saturating overflow
        }
    }

    /// Saturating integer division. Computes `self.div_rem_euclid(rhs)`, saturating at the
    /// numeric bounds instead of overflowing.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// # use ethnum::I256;
    /// assert_eq!(I256::new(5).saturating_div_rem_euclid(I256::new(2)), (I256::new(2), I256::new(1)));
    /// assert_eq!(I256::MAX.saturating_div_rem_euclid(I256::new(-1)), (I256::MIN + 1, I256::new(0)));
    /// assert_eq!(I256::MIN.saturating_div_rem_euclid(I256::new(-1)), (I256::MAX, I256::new(0)));
    /// ```
    /// ```should_panic (expected = "attempt to divide by zero")
    /// # use ethnum::I256;
    /// let _ = I256::new(1).saturating_div_rem_euclid(I256::ZERO);
    /// ```
    #[inline]
    #[must_use = "this returns the result of the operation, \
                  without modifying the original"]
    #[track_caller]
    pub fn saturating_div_rem_euclid(self, rhs: Self) -> (Self, Self) {
        match self.overflowing_div_rem_euclid(rhs) {
            (q, r, false) => (q, r),
            (_q, r, true) => (Self::MAX, r),
        }
    }

    /// Performs integer and division and returns the quotient and the remainder as a tuple. This is equivelent to `(self.wrapping_div(rhs), self.wrapping_rem(rhs))`, but more effecient.
    ///
    /// # Panics
    ///
    /// This function will panic if `rhs` is 0.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// # use ethnum::I256;
    /// assert_eq!(I256::new(22).wrapping_div_rem(I256::new(5)), (I256::new(4), I256::new(2)));
    /// assert_eq!(I256::new(-22).wrapping_div_rem(I256::new(5)), (I256::new(-4), I256::new(-2)));
    /// assert_eq!(I256::new(22).wrapping_div_rem(I256::new(-5)), (I256::new(-4), I256::new(2)));
    /// assert_eq!(I256::new(-22).wrapping_div_rem(I256::new(-5)), (I256::new(4), I256::new(-2)));
    ///
    /// assert_eq!(I256::MIN.wrapping_div_rem(I256::MINUS_ONE), (I256::MIN, I256::ZERO));
    /// ```
    #[inline]
    #[must_use = "this returns the result of the operation, \
                  without modifying the original"]
    #[track_caller]
    pub fn wrapping_div_rem(self, rhs: Self) -> (Self, Self) {
        if rhs == 0 {
            if rhs.cmp(&I256::ZERO) != core::cmp::Ordering::Equal {
                // The optimizer understands inequalities better
                unsafe { core::hint::unreachable_unchecked() }
            }
            panic!("attempt to divide by zero");
        }
        if rhs.cmp(&I256::ZERO) == core::cmp::Ordering::Equal {
            // The optimizer understands inequalities better
            unsafe { core::hint::unreachable_unchecked() }
        }

        let mut res: MaybeUninit<Self> = MaybeUninit::uninit();
        let mut rem: MaybeUninit<Self> = MaybeUninit::uninit();
        crate::intrinsics::idivmod4(&mut res, &self, &rhs, Some(&mut rem));
        unsafe { ((res.assume_init()), (rem.assume_init())) }
    }

    /// Performs euclidean division and returns the quotient and the remainder as a tuple.
    ///
    /// This computes the integers `q` and `r` such that self = q * rhs + r, with `q = self.wrapping_div_euclid` and `r = self.wrapping_rem_euclid(rhs)`.
    ///
    /// # Panics
    ///
    /// This function will panic if `rhs` is 0.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// # use ethnum::I256;
    /// assert_eq!(I256::new(22).wrapping_div_rem_euclid(I256::new(5)), (I256::new(4), I256::new(2)));
    /// assert_eq!(I256::new(-22).wrapping_div_rem_euclid(I256::new(5)), (I256::new(-5), I256::new(3)));
    /// assert_eq!(I256::new(22).wrapping_div_rem_euclid(I256::new(-5)), (I256::new(-4), I256::new(2)));
    /// assert_eq!(I256::new(-22).wrapping_div_rem_euclid(I256::new(-5)), (I256::new(5), I256::new(3)));
    ///
    /// assert_eq!(I256::MIN.wrapping_div_rem(I256::MINUS_ONE), (I256::MIN, I256::ZERO));
    /// # assert_eq!(I256::new(20).wrapping_div_rem_euclid(I256::new(5)), (I256::new(4), I256::new(0)));
    /// # assert_eq!(I256::new(-20).wrapping_div_rem_euclid(I256::new(5)), (I256::new(-4), I256::new(0)));
    /// # assert_eq!(I256::new(20).wrapping_div_rem_euclid(I256::new(-5)), (I256::new(-4), I256::new(0)));
    /// # assert_eq!(I256::new(-20).wrapping_div_rem_euclid(I256::new(-5)), (I256::new(4), I256::new(0)));
    /// ```
    #[inline]
    #[must_use = "this returns the result of the operation, \
                  without modifying the original"]
    #[track_caller]
    pub fn wrapping_div_rem_euclid(self, rhs: Self) -> (Self, Self) {
        let dividend_sign = self.is_negative();
        let quotient_sign = dividend_sign ^ rhs.is_negative();
        let abs_dividend = self.unsigned_abs();
        let abs_divisor = rhs.unsigned_abs();

        let (q, r) = abs_dividend.div_rem(abs_divisor);
        let mut quotient = q.as_i256();
        let mut remainder = r.as_i256();

        let adjust_remainder = dividend_sign && remainder != 0;
        if adjust_remainder {
            remainder = abs_divisor.as_i256() - remainder;
            // cannot overflow
        }
        if remainder.is_negative() || remainder.as_u256() >= abs_divisor {
            debug_assert!(false);
            unsafe { core::hint::unreachable_unchecked() }
        }

        if adjust_remainder {
            if quotient_sign {
                quotient = !quotient;
                // quotient = -quotient - 1
            } else {
                quotient += 1;
                // cannot overflow
            }
        } else if quotient_sign {
            quotient = quotient.wrapping_neg();
        }

        (quotient, remainder)
    }

    /// Calculates the quotient and the remainder when `self` is divided by `rhs`.
    ///
    /// Returns a tuple of the quotient and the remainder along with a boolean indicating whether
    /// an arithmetic overflow would occur. If an overflow would occur then
    /// `self` is returned.
    ///
    /// # Panics
    ///
    /// This function will panic if `rhs` is 0.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// # use ethnum::I256;
    /// assert_eq!(I256::new(5).overflowing_div_rem(I256::new(2)), (I256::new(2), I256::new(1), false));
    /// assert_eq!(I256::MIN.overflowing_div_rem(I256::new(-1)), (I256::MIN, I256::new(0), true));
    /// ```
    #[inline]
    #[must_use = "this returns the result of the operation, \
                  without modifying the original"]
    #[track_caller]
    pub fn overflowing_div_rem(self, rhs: Self) -> (Self, Self, bool) {
        if self == Self::MIN && rhs == -1 {
            (self, Self::ZERO, true)
        } else {
            let (q, r) = self.wrapping_div_rem(rhs);
            (q, r, false)
        }
    }

    /// Calculates the quotient and remainder of Euclidean division `self.div_rem_euclid(rhs)`.
    ///
    /// Returns a tuple of the quotient and the remainder along with a boolean indicating whether
    /// an arithmetic overflow would occur. If an overflow would occur then
    /// `self` is returned.
    ///
    /// # Panics
    ///
    /// This function will panic if `rhs` is 0.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// # use ethnum::I256;
    /// assert_eq!(I256::new(5).overflowing_div_rem_euclid(I256::new(2)), (I256::new(2), I256::new(1), false));
    /// assert_eq!(I256::MIN.overflowing_div_rem_euclid(I256::new(-1)), (I256::MIN, I256::new(0), true));
    /// ```
    #[inline]
    #[must_use = "this returns the result of the operation, \
                  without modifying the original"]
    #[track_caller]
    pub fn overflowing_div_rem_euclid(self, rhs: Self) -> (Self, Self, bool) {
        if self == Self::MIN && rhs == -1 {
            (self, Self::ZERO, true)
        } else {
            let (q, r) = self.wrapping_div_rem_euclid(rhs);
            (q, r, false)
        }
    }
}

#[cfg(test)]
mod tests {
    use crate::I256;

    #[test]
    #[allow(clippy::float_cmp)]
    fn converts_to_f64() {
        assert_eq!((-I256::from_words(1, 0)).as_f64(), -(2.0f64.powi(128)))
    }
}