edgevec 0.6.0

High-performance embedded vector database for Browser, Node, and Edge
Documentation

EdgeVec

CI Crates.io npm License

The first WASM-native vector database. Binary quantization, metadata filtering, memory management — all in the browser.

EdgeVec is an embedded vector database built in Rust with first-class WebAssembly support. It brings server-grade vector database features to the browser: 32x memory reduction via binary quantization, metadata filtering, soft delete, persistence, and sub-millisecond search.


Why EdgeVec?

Feature EdgeVec hnswlib-wasm Pinecone
Vector Search Yes Yes Yes
Binary Quantization Yes (32x) No No
Metadata Filtering Yes No Yes
SQL-like Queries Yes No Yes
Memory Pressure API Yes No No
Soft Delete Yes No Yes
Persistence Yes No Yes
Browser-native Yes Yes No
No server required Yes Yes No
Offline capable Yes Yes No

EdgeVec is the only WASM vector database with binary quantization and filtered search.


Quick Start

npm install edgevec
import init, { EdgeVec } from 'edgevec';

await init();

// Create index (768D for embeddings like OpenAI, Cohere)
const db = new EdgeVec({ dimensions: 768 });

// Insert vectors with metadata (v0.6.0)
const vector = new Float32Array(768).map(() => Math.random());
const id = db.insertWithMetadata(vector, {
    category: "books",
    price: 29.99,
    inStock: true
});

// Search with filter expression (v0.6.0)
const query = new Float32Array(768).map(() => Math.random());
const results = db.searchFiltered(query, 'category = "books" AND price < 50', 10);

// Fast BQ search with rescoring — 32x less memory, 95% recall (v0.6.0)
const fastResults = db.searchBQ(query, 10);

// Monitor memory pressure (v0.6.0)
const pressure = db.getMemoryPressure();
if (pressure.level === 'warning') {
    db.compact();  // Free deleted vectors
}

Interactive Demos

Try EdgeVec directly in your browser:

Demo Description
v0.6.0 Demo BQ vs F32 comparison, metadata filtering, memory pressure
Filter Playground Interactive filter syntax explorer with live parsing
Benchmark Dashboard Performance comparison vs competitors
Soft Delete Demo Tombstone-based deletion with compaction
Main Demo Complete feature showcase
# Run demos locally
git clone https://github.com/matte1782/edgevec.git
cd edgevec
python -m http.server 8080
# Open http://localhost:8080/wasm/examples/index.html

Performance

Search Latency (768D vectors, k=10)

Scale EdgeVec Target Status
10k vectors 88 us <1 ms 11x under
50k vectors 167 us <1 ms 6x under
100k vectors 329 us <1 ms 3x under

Competitive Comparison (10k vectors, 128D)

Library Search P50 Type Notes
EdgeVec 0.20 ms WASM Fastest WASM solution
hnswlib-node 0.05 ms Native C++ Requires compilation
voy 4.78 ms WASM k-d tree algorithm

EdgeVec is 24x faster than voy for search while both are pure WASM.

Bundle Size

Package Size (gzip) Target Status
edgevec 217 KB <500 KB 57% under

Full benchmarks ->


Database Features

Binary Quantization (v0.6.0)

32x memory reduction with minimal recall loss:

// BQ is auto-enabled for dimensions divisible by 8
const db = new EdgeVec({ dimensions: 768 });

// Raw BQ search (~85% recall, ~5x faster)
const bqResults = db.searchBQ(query, 10);

// BQ + rescore (~95% recall, ~3x faster)
const rescoredResults = db.searchBQRescored(query, 10, 5);
Mode Memory (100k × 768D) Speed Recall@10
F32 (baseline) ~300 MB 1x 100%
BQ raw ~10 MB 5x ~85%
BQ + rescore(5) ~10 MB 3x ~95%

Metadata Filtering (v0.6.0)

Insert vectors with metadata, search with SQL-like filter expressions:

// Insert with metadata
db.insertWithMetadata(vector, {
    category: "electronics",
    price: 299.99,
    tags: ["featured", "sale"]
});

// Search with filter
db.searchFiltered(query, 'category = "electronics" AND price < 500', 10);
db.searchFiltered(query, 'tags ANY ["featured"]', 10);  // Array membership

// Complex expressions
db.searchFiltered(query,
    '(category = "electronics" OR category = "books") AND price < 100',
    10
);

Operators: =, !=, >, <, >=, <=, AND, OR, NOT, ANY

Filter syntax documentation ->

Memory Pressure API (v0.6.0)

Monitor and control WASM heap usage:

const pressure = db.getMemoryPressure();
// { level: 'normal', usedBytes: 52428800, totalBytes: 268435456, usagePercent: 19.5 }

if (pressure.level === 'warning') {
    db.compact();  // Free deleted vectors
}

if (!db.canInsert()) {
    console.warn('Memory critical, inserts blocked');
}

Soft Delete & Compaction

// O(1) soft delete
db.softDelete(id);

// Check status
console.log('Live:', db.liveCount());
console.log('Deleted:', db.deletedCount());

// Reclaim space when needed
if (db.needsCompaction()) {
    const result = db.compact();
    console.log(`Removed ${result.tombstones_removed} tombstones`);
}

Persistence

// Save to IndexedDB (browser) or filesystem
await db.save("my-vector-db");

// Load existing database
const db = await EdgeVec.load("my-vector-db");

Scalar Quantization

const config = new EdgeVecConfig(768);
config.quantized = true;  // Enable SQ8 quantization

// 3.6x memory reduction: 3.03 GB -> 832 MB at 1M vectors

Rust Usage

use edgevec::{HnswConfig, HnswIndex, VectorStorage};

fn main() -> Result<(), Box<dyn std::error::Error>> {
    let config = HnswConfig::new(768);
    let mut storage = VectorStorage::new(&config, None);
    let mut index = HnswIndex::new(config, &storage)?;

    // Insert
    let vector = vec![0.1; 768];
    let id = index.insert(&vector, &mut storage)?;

    // Search
    let query = vec![0.1; 768];
    let results = index.search(&query, 10, &storage)?;

    // Soft delete
    index.soft_delete(id)?;

    Ok(())
}

Documentation

Document Description
Tutorial Getting started guide
Filter Syntax Complete filter expression reference
Database Operations CRUD operations guide
Performance Tuning HNSW parameter optimization
Migration Guide Migrating from hnswlib, FAISS, Pinecone
Comparison When to use EdgeVec vs alternatives

Limitations

EdgeVec is designed for client-side vector search. It is NOT suitable for:

  • Billion-scale datasets — Browser memory limits apply (~1GB practical limit)
  • Multi-user concurrent access — Single-user, single-tab design
  • Distributed deployments — Runs locally only

For these use cases, consider Pinecone, Qdrant, or Weaviate.


Version History

  • v0.6.0 — Binary quantization (32x memory), metadata storage, memory pressure API
  • v0.5.4 — iOS Safari compatibility fixes
  • v0.5.3 — crates.io publishing fix (package size reduction)
  • v0.5.2 — npm TypeScript compilation fix
  • v0.5.0 — Metadata filtering with SQL-like syntax, Filter Playground demo
  • v0.4.0 — Documentation sprint, benchmark dashboard, chaos testing
  • v0.3.0 — Soft delete API, compaction, persistence format v3
  • v0.2.0 — Scalar quantization (SQ8), SIMD optimization
  • v0.1.0 — Initial release with HNSW indexing

License

Licensed under either of:

at your option.


Built with Rust + WebAssembly

GitHub | npm | crates.io | Demos