EdgeVec
The first WASM-native vector database. Filter, delete, persist — all in the browser.
EdgeVec is an embedded vector database built in Rust with first-class WebAssembly support. It brings server-grade vector database features to the browser: metadata filtering, soft delete, persistence, and sub-millisecond search.
Why EdgeVec?
| Feature | EdgeVec | hnswlib-wasm | Pinecone |
|---|---|---|---|
| Vector Search | Yes | Yes | Yes |
| Metadata Filtering | Yes | No | Yes |
| SQL-like Queries | Yes | No | Yes |
| Soft Delete | Yes | No | Yes |
| Persistence | Yes | No | Yes |
| Browser-native | Yes | Yes | No |
| No server required | Yes | Yes | No |
| Offline capable | Yes | Yes | No |
EdgeVec is the only WASM vector database with filtered search.
Quick Start
import init, { EdgeVec, EdgeVecConfig } from 'edgevec';
await init();
// Create a 768-dimensional index
const config = new EdgeVecConfig(768);
const db = new EdgeVec(config);
// Insert vectors with metadata
const vector = new Float32Array(768).map(() => Math.random());
const id = db.insert(vector);
// Store metadata separately for filtering
metadata[id] = { category: "books", price: 29.99, inStock: true };
// Search with filter
const query = new Float32Array(768).map(() => Math.random());
const results = db.search(query, 10);
// Filter results client-side (v0.5 pattern)
const filtered = results.filter(r =>
metadata[r.id]?.category === "books" &&
metadata[r.id]?.price < 50
);
// Or use the Filter API for complex expressions
import { Filter } from 'edgevec';
const filter = Filter.parse('category = "books" AND price < 50');
Interactive Demos
Try EdgeVec directly in your browser:
| Demo | Description |
|---|---|
| Filter Playground | Interactive filter syntax explorer with live parsing |
| Benchmark Dashboard | Performance comparison vs competitors |
| Soft Delete Demo | Tombstone-based deletion with compaction |
| Main Demo | Complete feature showcase |
# Run demos locally
# Open http://localhost:8080/wasm/examples/index.html
Performance
Search Latency (768D vectors, k=10)
| Scale | EdgeVec | Target | Status |
|---|---|---|---|
| 10k vectors | 88 us | <1 ms | 11x under |
| 50k vectors | 167 us | <1 ms | 6x under |
| 100k vectors | 329 us | <1 ms | 3x under |
Competitive Comparison (10k vectors, 128D)
| Library | Search P50 | Type | Notes |
|---|---|---|---|
| EdgeVec | 0.20 ms | WASM | Fastest WASM solution |
| hnswlib-node | 0.05 ms | Native C++ | Requires compilation |
| voy | 4.78 ms | WASM | k-d tree algorithm |
EdgeVec is 24x faster than voy for search while both are pure WASM.
Bundle Size
| Package | Size (gzip) | Target | Status |
|---|---|---|---|
| edgevec | 227 KB | <500 KB | 55% under |
Database Features
Metadata Filtering (v0.5)
EdgeVec supports SQL-like filter expressions:
// Comparison operators
'price > 100'
'category = "electronics"'
'rating >= 4.5'
// Boolean logic
'category = "books" AND price < 50'
'brand = "Sony" OR brand = "Samsung"'
'inStock = true AND NOT discontinued = true'
// Complex expressions
'(category = "electronics" AND price < 500) OR rating >= 4.8'
15 operators supported: =, !=, >, <, >=, <=, IN, NOT IN, CONTAINS, STARTS_WITH, ENDS_WITH, IS NULL, IS NOT NULL, AND, OR, NOT
Filter syntax documentation ->
Soft Delete & Compaction
// O(1) soft delete
db.;
// Check status
console.log;
console.log;
// Reclaim space when needed
if
Persistence
// Save to IndexedDB (browser) or filesystem
await db.;
// Load existing database
const db = await ;
Scalar Quantization
const config = ;
config. = true; // Enable SQ8 quantization
// 3.6x memory reduction: 3.03 GB -> 832 MB at 1M vectors
Rust Usage
use ;
Documentation
| Document | Description |
|---|---|
| Tutorial | Getting started guide |
| Filter Syntax | Complete filter expression reference |
| Database Operations | CRUD operations guide |
| Performance Tuning | HNSW parameter optimization |
| Migration Guide | Migrating from hnswlib, FAISS, Pinecone |
| Comparison | When to use EdgeVec vs alternatives |
Limitations
EdgeVec is designed for client-side vector search. It is NOT suitable for:
- Billion-scale datasets — Browser memory limits apply (~1GB practical limit)
- Multi-user concurrent access — Single-user, single-tab design
- Distributed deployments — Runs locally only
For these use cases, consider Pinecone, Qdrant, or Weaviate.
Version History
- v0.5.0 — Metadata filtering with SQL-like syntax, Filter Playground demo
- v0.4.0 — Documentation sprint, benchmark dashboard, chaos testing
- v0.3.0 — Soft delete API, compaction, persistence format v3
- v0.2.0 — Scalar quantization (SQ8), SIMD optimization
- v0.1.0 — Initial release with HNSW indexing
License
Licensed under either of:
- Apache License, Version 2.0 (LICENSE-APACHE)
- MIT license (LICENSE-MIT)
at your option.
Built with Rust + WebAssembly