diffusion-rs-sys 0.1.14

Rust bindings for stable-diffusion.cpp (FFI bindings)
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
#ifndef __Z_IMAGE_HPP__
#define __Z_IMAGE_HPP__

#include <algorithm>

#include "flux.hpp"
#include "ggml_extend.hpp"
#include "mmdit.hpp"

// Ref: https://github.com/Alpha-VLLM/Lumina-Image-2.0/blob/main/models/model.py
// Ref: https://github.com/huggingface/diffusers/pull/12703

#ifndef MIN
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#endif

namespace ZImage {
    constexpr int Z_IMAGE_GRAPH_SIZE = 20480;
    constexpr int ADALN_EMBED_DIM    = 256;
    constexpr int SEQ_MULTI_OF       = 32;

    struct JointAttention : public GGMLBlock {
    protected:
        int64_t head_dim;
        int64_t num_heads;
        int64_t num_kv_heads;
        bool qk_norm;

    public:
        JointAttention(int64_t hidden_size, int64_t head_dim, int64_t num_heads, int64_t num_kv_heads, bool qk_norm)
            : head_dim(head_dim), num_heads(num_heads), num_kv_heads(num_kv_heads), qk_norm(qk_norm) {
            blocks["qkv"] = std::make_shared<Linear>(hidden_size, (num_heads + num_kv_heads * 2) * head_dim, false);
            float scale   = 1.f;
#if GGML_USE_HIP
            // Prevent NaN issues with certain ROCm setups
            scale = 1.f / 16.f;
#endif
            blocks["out"] = std::make_shared<Linear>(num_heads * head_dim, hidden_size, false, false, false, scale);
            if (qk_norm) {
                blocks["q_norm"] = std::make_shared<RMSNorm>(head_dim);
                blocks["k_norm"] = std::make_shared<RMSNorm>(head_dim);
            }
        }

        struct ggml_tensor* forward(GGMLRunnerContext* ctx,
                                    struct ggml_tensor* x,
                                    struct ggml_tensor* pe,
                                    struct ggml_tensor* mask = nullptr) {
            // x: [N, n_token, hidden_size]
            int64_t n_token = x->ne[1];
            int64_t N       = x->ne[2];
            auto qkv_proj   = std::dynamic_pointer_cast<Linear>(blocks["qkv"]);
            auto out_proj   = std::dynamic_pointer_cast<Linear>(blocks["out"]);

            auto qkv = qkv_proj->forward(ctx, x);                                                                            // [N, n_token, (num_heads + num_kv_heads*2)*head_dim]
            qkv      = ggml_reshape_4d(ctx->ggml_ctx, qkv, head_dim, num_heads + num_kv_heads * 2, qkv->ne[1], qkv->ne[2]);  // [N, n_token, num_heads + num_kv_heads*2, head_dim]
            qkv      = ggml_cont(ctx->ggml_ctx, ggml_ext_torch_permute(ctx->ggml_ctx, qkv, 0, 2, 3, 1));                     // [num_heads + num_kv_heads*2, N, n_token, head_dim]

            auto q = ggml_view_4d(ctx->ggml_ctx, qkv, qkv->ne[0], qkv->ne[1], qkv->ne[2], num_heads, qkv->nb[1], qkv->nb[2], qkv->nb[3], 0);                                           // [num_heads, N, n_token, head_dim]
            auto k = ggml_view_4d(ctx->ggml_ctx, qkv, qkv->ne[0], qkv->ne[1], qkv->ne[2], num_kv_heads, qkv->nb[1], qkv->nb[2], qkv->nb[3], qkv->nb[3] * num_heads);                   // [num_kv_heads, N, n_token, head_dim]
            auto v = ggml_view_4d(ctx->ggml_ctx, qkv, qkv->ne[0], qkv->ne[1], qkv->ne[2], num_kv_heads, qkv->nb[1], qkv->nb[2], qkv->nb[3], qkv->nb[3] * (num_heads + num_kv_heads));  // [num_kv_heads, N, n_token, head_dim]

            q = ggml_cont(ctx->ggml_ctx, ggml_ext_torch_permute(ctx->ggml_ctx, q, 0, 3, 1, 2));  // [N, n_token, num_heads, head_dim]
            k = ggml_cont(ctx->ggml_ctx, ggml_ext_torch_permute(ctx->ggml_ctx, k, 0, 3, 1, 2));  // [N, n_token, num_kv_heads, head_dim]
            v = ggml_cont(ctx->ggml_ctx, ggml_ext_torch_permute(ctx->ggml_ctx, v, 0, 3, 1, 2));  // [N, n_token, num_kv_heads, head_dim]

            if (qk_norm) {
                auto q_norm = std::dynamic_pointer_cast<RMSNorm>(blocks["q_norm"]);
                auto k_norm = std::dynamic_pointer_cast<RMSNorm>(blocks["k_norm"]);

                q = q_norm->forward(ctx, q);
                k = k_norm->forward(ctx, k);
            }

            x = Rope::attention(ctx, q, k, v, pe, mask, 1.f / 128.f);  // [N, n_token, num_heads * head_dim]

            x = out_proj->forward(ctx, x);  // [N, n_token, hidden_size]
            return x;
        }
    };

    class FeedForward : public GGMLBlock {
    public:
        FeedForward(int64_t dim,
                    int64_t hidden_dim,
                    int64_t multiple_of,
                    float ffn_dim_multiplier = 0.f) {
            if (ffn_dim_multiplier > 0.f) {
                hidden_dim = static_cast<int64_t>(ffn_dim_multiplier * hidden_dim);
            }
            hidden_dim   = multiple_of * ((hidden_dim + multiple_of - 1) / multiple_of);
            blocks["w1"] = std::make_shared<Linear>(dim, hidden_dim, false);

            bool force_prec_f32 = false;
            float scale         = 1.f / 128.f;
#ifdef SD_USE_VULKAN
            force_prec_f32 = true;
#endif
            // The purpose of the scale here is to prevent NaN issues in certain situations.
            // For example, when using CUDA but the weights are k-quants.
            blocks["w2"] = std::make_shared<Linear>(hidden_dim, dim, false, false, force_prec_f32, scale);
            blocks["w3"] = std::make_shared<Linear>(dim, hidden_dim, false);
        }

        struct ggml_tensor* forward(GGMLRunnerContext* ctx, struct ggml_tensor* x) {
            auto w1 = std::dynamic_pointer_cast<Linear>(blocks["w1"]);
            auto w2 = std::dynamic_pointer_cast<Linear>(blocks["w2"]);
            auto w3 = std::dynamic_pointer_cast<Linear>(blocks["w3"]);

            auto x1 = w1->forward(ctx, x);
            auto x3 = w3->forward(ctx, x);
            x       = ggml_mul(ctx->ggml_ctx, ggml_silu(ctx->ggml_ctx, x1), x3);
            x       = w2->forward(ctx, x);

            return x;
        }
    };

    __STATIC_INLINE__ struct ggml_tensor* modulate(struct ggml_context* ctx,
                                                   struct ggml_tensor* x,
                                                   struct ggml_tensor* scale) {
        // x: [N, L, C]
        // scale: [N, C]
        scale = ggml_reshape_3d(ctx, scale, scale->ne[0], 1, scale->ne[1]);  // [N, 1, C]
        x     = ggml_add(ctx, x, ggml_mul(ctx, x, scale));
        return x;
    }

    struct JointTransformerBlock : public GGMLBlock {
    protected:
        bool modulation;

    public:
        JointTransformerBlock(int layer_id,
                              int64_t hidden_size,
                              int64_t head_dim,
                              int64_t num_heads,
                              int64_t num_kv_heads,
                              int64_t multiple_of,
                              float ffn_dim_multiplier,
                              float norm_eps,
                              bool qk_norm,
                              bool modulation = true)
            : modulation(modulation) {
            blocks["attention"]       = std::make_shared<JointAttention>(hidden_size, head_dim, num_heads, num_kv_heads, qk_norm);
            blocks["feed_forward"]    = std::make_shared<FeedForward>(hidden_size, hidden_size, multiple_of, ffn_dim_multiplier);
            blocks["attention_norm1"] = std::make_shared<RMSNorm>(hidden_size, norm_eps);
            blocks["ffn_norm1"]       = std::make_shared<RMSNorm>(hidden_size, norm_eps);
            blocks["attention_norm2"] = std::make_shared<RMSNorm>(hidden_size, norm_eps);
            blocks["ffn_norm2"]       = std::make_shared<RMSNorm>(hidden_size, norm_eps);
            if (modulation) {
                blocks["adaLN_modulation.0"] = std::make_shared<Linear>(MIN(hidden_size, ADALN_EMBED_DIM), 4 * hidden_size);
            }
        }

        struct ggml_tensor* forward(GGMLRunnerContext* ctx,
                                    struct ggml_tensor* x,
                                    struct ggml_tensor* pe,
                                    struct ggml_tensor* mask        = nullptr,
                                    struct ggml_tensor* adaln_input = nullptr) {
            auto attention       = std::dynamic_pointer_cast<JointAttention>(blocks["attention"]);
            auto feed_forward    = std::dynamic_pointer_cast<FeedForward>(blocks["feed_forward"]);
            auto attention_norm1 = std::dynamic_pointer_cast<RMSNorm>(blocks["attention_norm1"]);
            auto ffn_norm1       = std::dynamic_pointer_cast<RMSNorm>(blocks["ffn_norm1"]);
            auto attention_norm2 = std::dynamic_pointer_cast<RMSNorm>(blocks["attention_norm2"]);
            auto ffn_norm2       = std::dynamic_pointer_cast<RMSNorm>(blocks["ffn_norm2"]);

            if (modulation) {
                GGML_ASSERT(adaln_input != nullptr);
                auto adaLN_modulation_0 = std::dynamic_pointer_cast<Linear>(blocks["adaLN_modulation.0"]);

                auto m         = adaLN_modulation_0->forward(ctx, adaln_input);  // [N, 4 * hidden_size]
                auto mods      = ggml_ext_chunk(ctx->ggml_ctx, m, 4, 0);
                auto scale_msa = mods[0];
                auto gate_msa  = mods[1];
                auto scale_mlp = mods[2];
                auto gate_mlp  = mods[3];

                auto residual = x;
                x             = modulate(ctx->ggml_ctx, attention_norm1->forward(ctx, x), scale_msa);
                x             = attention->forward(ctx, x, pe, mask);
                x             = attention_norm2->forward(ctx, x);
                x             = ggml_mul(ctx->ggml_ctx, x, ggml_tanh(ctx->ggml_ctx, gate_msa));
                x             = ggml_add(ctx->ggml_ctx, x, residual);

                residual = x;
                x        = modulate(ctx->ggml_ctx, ffn_norm1->forward(ctx, x), scale_mlp);
                x        = feed_forward->forward(ctx, x);
                x        = ffn_norm2->forward(ctx, x);
                x        = ggml_mul(ctx->ggml_ctx, x, ggml_tanh(ctx->ggml_ctx, gate_mlp));
                x        = ggml_add(ctx->ggml_ctx, x, residual);
            } else {
                GGML_ASSERT(adaln_input == nullptr);

                auto residual = x;
                x             = attention_norm1->forward(ctx, x);
                x             = attention->forward(ctx, x, pe, mask);
                x             = attention_norm2->forward(ctx, x);
                x             = ggml_add(ctx->ggml_ctx, x, residual);

                residual = x;
                x        = ffn_norm1->forward(ctx, x);
                x        = feed_forward->forward(ctx, x);
                x        = ffn_norm2->forward(ctx, x);
                x        = ggml_add(ctx->ggml_ctx, x, residual);
            }

            return x;
        }
    };

    struct FinalLayer : public GGMLBlock {
    public:
        FinalLayer(int64_t hidden_size,
                   int64_t patch_size,
                   int64_t out_channels) {
            blocks["norm_final"]         = std::make_shared<LayerNorm>(hidden_size, 1e-06f, false);
            blocks["linear"]             = std::make_shared<Linear>(hidden_size, patch_size * patch_size * out_channels, true, true);
            blocks["adaLN_modulation.1"] = std::make_shared<Linear>(MIN(hidden_size, ADALN_EMBED_DIM), hidden_size);
        }

        struct ggml_tensor* forward(GGMLRunnerContext* ctx,
                                    struct ggml_tensor* x,
                                    struct ggml_tensor* c) {
            // x: [N, n_token, hidden_size]
            // c: [N, hidden_size]
            // return: [N, n_token, patch_size * patch_size * out_channels]
            auto norm_final         = std::dynamic_pointer_cast<LayerNorm>(blocks["norm_final"]);
            auto linear             = std::dynamic_pointer_cast<Linear>(blocks["linear"]);
            auto adaLN_modulation_1 = std::dynamic_pointer_cast<Linear>(blocks["adaLN_modulation.1"]);

            auto scale = adaLN_modulation_1->forward(ctx, ggml_silu(ctx->ggml_ctx, c));  // [N, hidden_size]
            x          = norm_final->forward(ctx, x);
            x          = modulate(ctx->ggml_ctx, x, scale);
            x          = linear->forward(ctx, x);

            return x;
        }
    };

    struct ZImageParams {
        int64_t patch_size         = 2;
        int64_t hidden_size        = 3840;
        int64_t in_channels        = 16;
        int64_t out_channels       = 16;
        int64_t num_layers         = 30;
        int64_t num_refiner_layers = 2;
        int64_t head_dim           = 128;
        int64_t num_heads          = 30;
        int64_t num_kv_heads       = 30;
        int64_t multiple_of        = 256;
        float ffn_dim_multiplier   = 8.0 / 3.0f;
        float norm_eps             = 1e-5f;
        bool qk_norm               = true;
        int64_t cap_feat_dim       = 2560;
        float theta                = 256.f;
        std::vector<int> axes_dim  = {32, 48, 48};
        int64_t axes_dim_sum       = 128;
    };

    class ZImageModel : public GGMLBlock {
    protected:
        ZImageParams z_image_params;

        void init_params(struct ggml_context* ctx, const String2TensorStorage& tensor_storage_map = {}, const std::string prefix = "") override {
            params["cap_pad_token"] = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, z_image_params.hidden_size);
            params["x_pad_token"]   = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, z_image_params.hidden_size);
        }

    public:
        ZImageModel() = default;
        ZImageModel(ZImageParams z_image_params)
            : z_image_params(z_image_params) {
            blocks["x_embedder"]     = std::make_shared<Linear>(z_image_params.patch_size * z_image_params.patch_size * z_image_params.in_channels, z_image_params.hidden_size);
            blocks["t_embedder"]     = std::make_shared<TimestepEmbedder>(MIN(z_image_params.hidden_size, 1024), 256, 256);
            blocks["cap_embedder.0"] = std::make_shared<RMSNorm>(z_image_params.cap_feat_dim, z_image_params.norm_eps);
            blocks["cap_embedder.1"] = std::make_shared<Linear>(z_image_params.cap_feat_dim, z_image_params.hidden_size);

            for (int i = 0; i < z_image_params.num_refiner_layers; i++) {
                auto block = std::make_shared<JointTransformerBlock>(i,
                                                                     z_image_params.hidden_size,
                                                                     z_image_params.head_dim,
                                                                     z_image_params.num_heads,
                                                                     z_image_params.num_kv_heads,
                                                                     z_image_params.multiple_of,
                                                                     z_image_params.ffn_dim_multiplier,
                                                                     z_image_params.norm_eps,
                                                                     z_image_params.qk_norm,
                                                                     true);

                blocks["noise_refiner." + std::to_string(i)] = block;
            }

            for (int i = 0; i < z_image_params.num_refiner_layers; i++) {
                auto block = std::make_shared<JointTransformerBlock>(i,
                                                                     z_image_params.hidden_size,
                                                                     z_image_params.head_dim,
                                                                     z_image_params.num_heads,
                                                                     z_image_params.num_kv_heads,
                                                                     z_image_params.multiple_of,
                                                                     z_image_params.ffn_dim_multiplier,
                                                                     z_image_params.norm_eps,
                                                                     z_image_params.qk_norm,
                                                                     false);

                blocks["context_refiner." + std::to_string(i)] = block;
            }

            for (int i = 0; i < z_image_params.num_layers; i++) {
                auto block = std::make_shared<JointTransformerBlock>(i,
                                                                     z_image_params.hidden_size,
                                                                     z_image_params.head_dim,
                                                                     z_image_params.num_heads,
                                                                     z_image_params.num_kv_heads,
                                                                     z_image_params.multiple_of,
                                                                     z_image_params.ffn_dim_multiplier,
                                                                     z_image_params.norm_eps,
                                                                     z_image_params.qk_norm,
                                                                     true);

                blocks["layers." + std::to_string(i)] = block;
            }

            blocks["final_layer"] = std::make_shared<FinalLayer>(z_image_params.hidden_size, z_image_params.patch_size, z_image_params.out_channels);
        }

        struct ggml_tensor* pad_to_patch_size(GGMLRunnerContext* ctx,
                                              struct ggml_tensor* x) {
            int64_t W = x->ne[0];
            int64_t H = x->ne[1];

            int pad_h = (z_image_params.patch_size - H % z_image_params.patch_size) % z_image_params.patch_size;
            int pad_w = (z_image_params.patch_size - W % z_image_params.patch_size) % z_image_params.patch_size;
            x         = ggml_ext_pad(ctx->ggml_ctx, x, pad_w, pad_h, 0, 0, ctx->circular_x_enabled, ctx->circular_y_enabled);
            return x;
        }

        struct ggml_tensor* patchify(struct ggml_context* ctx,
                                     struct ggml_tensor* x) {
            // x: [N, C, H, W]
            // return: [N, h*w, patch_size*patch_size*C]
            int64_t N = x->ne[3];
            int64_t C = x->ne[2];
            int64_t H = x->ne[1];
            int64_t W = x->ne[0];
            int64_t p = z_image_params.patch_size;
            int64_t h = H / z_image_params.patch_size;
            int64_t w = W / z_image_params.patch_size;

            GGML_ASSERT(h * p == H && w * p == W);

            x = ggml_reshape_4d(ctx, x, p, w, p, h * C * N);                 // [N*C*h, p, w, p]
            x = ggml_cont(ctx, ggml_permute(ctx, x, 0, 2, 1, 3));            // [N*C*h, w, p, p]
            x = ggml_reshape_4d(ctx, x, p * p, w * h, C, N);                 // [N, C, h*w, p*p]
            x = ggml_cont(ctx, ggml_ext_torch_permute(ctx, x, 2, 0, 1, 3));  // [N, h*w, C, p*p]
            x = ggml_reshape_3d(ctx, x, C * p * p, w * h, N);                // [N, h*w, p*p*C]
            return x;
        }

        struct ggml_tensor* process_img(GGMLRunnerContext* ctx,
                                        struct ggml_tensor* x) {
            x = pad_to_patch_size(ctx, x);
            x = patchify(ctx->ggml_ctx, x);
            return x;
        }

        struct ggml_tensor* unpatchify(struct ggml_context* ctx,
                                       struct ggml_tensor* x,
                                       int64_t h,
                                       int64_t w) {
            // x: [N, h*w, patch_size*patch_size*C]
            // return: [N, C, H, W]
            int64_t N = x->ne[2];
            int64_t C = x->ne[0] / z_image_params.patch_size / z_image_params.patch_size;
            int64_t H = h * z_image_params.patch_size;
            int64_t W = w * z_image_params.patch_size;
            int64_t p = z_image_params.patch_size;

            GGML_ASSERT(C * p * p == x->ne[0]);

            x = ggml_reshape_4d(ctx, x, C, p * p, w * h, N);                 // [N, h*w, p*p, C]
            x = ggml_cont(ctx, ggml_ext_torch_permute(ctx, x, 1, 2, 0, 3));  // [N, C, h*w, p*p]
            x = ggml_reshape_4d(ctx, x, p, p, w, h * C * N);                 // [N*C*h, w, p, p]
            x = ggml_cont(ctx, ggml_permute(ctx, x, 0, 2, 1, 3));            // [N*C*h, p, w, p]
            x = ggml_reshape_4d(ctx, x, W, H, C, N);                         // [N, C, h*p, w*p]

            return x;
        }

        struct ggml_tensor* forward_core(GGMLRunnerContext* ctx,
                                         struct ggml_tensor* x,
                                         struct ggml_tensor* timestep,
                                         struct ggml_tensor* context,
                                         struct ggml_tensor* pe) {
            auto x_embedder     = std::dynamic_pointer_cast<Linear>(blocks["x_embedder"]);
            auto t_embedder     = std::dynamic_pointer_cast<TimestepEmbedder>(blocks["t_embedder"]);
            auto cap_embedder_0 = std::dynamic_pointer_cast<RMSNorm>(blocks["cap_embedder.0"]);
            auto cap_embedder_1 = std::dynamic_pointer_cast<Linear>(blocks["cap_embedder.1"]);
            auto norm_final     = std::dynamic_pointer_cast<RMSNorm>(blocks["norm_final"]);
            auto final_layer    = std::dynamic_pointer_cast<FinalLayer>(blocks["final_layer"]);

            auto txt_pad_token = params["cap_pad_token"];
            auto img_pad_token = params["x_pad_token"];

            int64_t N           = x->ne[2];
            int64_t n_img_token = x->ne[1];
            int64_t n_txt_token = context->ne[1];

            auto t_emb = t_embedder->forward(ctx, timestep);

            auto txt = cap_embedder_1->forward(ctx, cap_embedder_0->forward(ctx, context));  // [N, n_txt_token, hidden_size]
            auto img = x_embedder->forward(ctx, x);                                          // [N, n_img_token, hidden_size]

            int64_t n_txt_pad_token = Rope::bound_mod(n_txt_token, SEQ_MULTI_OF);
            if (n_txt_pad_token > 0) {
                auto txt_pad_tokens = ggml_repeat_4d(ctx->ggml_ctx, txt_pad_token, txt_pad_token->ne[0], n_txt_pad_token, N, 1);
                txt                 = ggml_concat(ctx->ggml_ctx, txt, txt_pad_tokens, 1);  // [N, n_txt_token + n_txt_pad_token, hidden_size]
            }

            int64_t n_img_pad_token = Rope::bound_mod(n_img_token, SEQ_MULTI_OF);
            if (n_img_pad_token > 0) {
                auto img_pad_tokens = ggml_repeat_4d(ctx->ggml_ctx, img_pad_token, img_pad_token->ne[0], n_img_pad_token, N, 1);
                img                 = ggml_concat(ctx->ggml_ctx, img, img_pad_tokens, 1);  // [N, n_img_token + n_img_pad_token, hidden_size]
            }

            GGML_ASSERT(txt->ne[1] + img->ne[1] == pe->ne[3]);

            auto txt_pe = ggml_ext_slice(ctx->ggml_ctx, pe, 3, 0, txt->ne[1]);
            auto img_pe = ggml_ext_slice(ctx->ggml_ctx, pe, 3, txt->ne[1], pe->ne[3]);

            for (int i = 0; i < z_image_params.num_refiner_layers; i++) {
                auto block = std::dynamic_pointer_cast<JointTransformerBlock>(blocks["context_refiner." + std::to_string(i)]);

                txt = block->forward(ctx, txt, txt_pe, nullptr, nullptr);
            }

            for (int i = 0; i < z_image_params.num_refiner_layers; i++) {
                auto block = std::dynamic_pointer_cast<JointTransformerBlock>(blocks["noise_refiner." + std::to_string(i)]);

                img = block->forward(ctx, img, img_pe, nullptr, t_emb);
            }

            auto txt_img = ggml_concat(ctx->ggml_ctx, txt, img, 1);  // [N, n_txt_token + n_txt_pad_token + n_img_token + n_img_pad_token, hidden_size]

            for (int i = 0; i < z_image_params.num_layers; i++) {
                auto block = std::dynamic_pointer_cast<JointTransformerBlock>(blocks["layers." + std::to_string(i)]);

                txt_img = block->forward(ctx, txt_img, pe, nullptr, t_emb);
            }

            txt_img = final_layer->forward(ctx, txt_img, t_emb);  // [N, n_txt_token + n_txt_pad_token + n_img_token + n_img_pad_token, ph*pw*C]

            img = ggml_ext_slice(ctx->ggml_ctx, txt_img, 1, n_txt_token + n_txt_pad_token, n_txt_token + n_txt_pad_token + n_img_token);  // [N, n_img_token, ph*pw*C]

            return img;
        }

        struct ggml_tensor* forward(GGMLRunnerContext* ctx,
                                    struct ggml_tensor* x,
                                    struct ggml_tensor* timestep,
                                    struct ggml_tensor* context,
                                    struct ggml_tensor* pe,
                                    std::vector<ggml_tensor*> ref_latents = {}) {
            // Forward pass of DiT.
            // x: [N, C, H, W]
            // timestep: [N,]
            // context: [N, L, D]
            // pe: [L, d_head/2, 2, 2]
            // return: [N, C, H, W]

            int64_t W = x->ne[0];
            int64_t H = x->ne[1];
            int64_t C = x->ne[2];
            int64_t N = x->ne[3];

            auto img             = process_img(ctx, x);
            uint64_t n_img_token = img->ne[1];

            if (ref_latents.size() > 0) {
                for (ggml_tensor* ref : ref_latents) {
                    ref = process_img(ctx, ref);
                    img = ggml_concat(ctx->ggml_ctx, img, ref, 1);
                }
            }

            int64_t h_len = ((H + (z_image_params.patch_size / 2)) / z_image_params.patch_size);
            int64_t w_len = ((W + (z_image_params.patch_size / 2)) / z_image_params.patch_size);

            auto out = forward_core(ctx, img, timestep, context, pe);

            out = ggml_ext_slice(ctx->ggml_ctx, out, 1, 0, n_img_token);  // [N, n_img_token, ph*pw*C]
            out = unpatchify(ctx->ggml_ctx, out, h_len, w_len);           // [N, C, H + pad_h, W + pad_w]

            // slice
            out = ggml_ext_slice(ctx->ggml_ctx, out, 1, 0, H);  // [N, C, H, W + pad_w]
            out = ggml_ext_slice(ctx->ggml_ctx, out, 0, 0, W);  // [N, C, H, W]

            out = ggml_scale(ctx->ggml_ctx, out, -1.f);

            return out;
        }
    };

    struct ZImageRunner : public GGMLRunner {
    public:
        ZImageParams z_image_params;
        ZImageModel z_image;
        std::vector<float> pe_vec;
        std::vector<float> timestep_vec;
        SDVersion version;

        ZImageRunner(ggml_backend_t backend,
                     bool offload_params_to_cpu,
                     const String2TensorStorage& tensor_storage_map = {},
                     const std::string prefix                       = "",
                     SDVersion version                              = VERSION_Z_IMAGE)
            : GGMLRunner(backend, offload_params_to_cpu) {
            z_image = ZImageModel(z_image_params);
            z_image.init(params_ctx, tensor_storage_map, prefix);
        }

        std::string get_desc() override {
            return "z_image";
        }

        void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors, const std::string prefix) {
            z_image.get_param_tensors(tensors, prefix);
        }

        struct ggml_cgraph* build_graph(struct ggml_tensor* x,
                                        struct ggml_tensor* timesteps,
                                        struct ggml_tensor* context,
                                        std::vector<ggml_tensor*> ref_latents = {},
                                        bool increase_ref_index               = false) {
            GGML_ASSERT(x->ne[3] == 1);
            struct ggml_cgraph* gf = new_graph_custom(Z_IMAGE_GRAPH_SIZE);

            x         = to_backend(x);
            context   = to_backend(context);
            timesteps = to_backend(timesteps);

            for (int i = 0; i < ref_latents.size(); i++) {
                ref_latents[i] = to_backend(ref_latents[i]);
            }

            pe_vec      = Rope::gen_z_image_pe(x->ne[1],
                                               x->ne[0],
                                               z_image_params.patch_size,
                                               x->ne[3],
                                               context->ne[1],
                                               SEQ_MULTI_OF,
                                               ref_latents,
                                               increase_ref_index,
                                               z_image_params.theta,
                                               circular_y_enabled,
                                               circular_x_enabled,
                                               z_image_params.axes_dim);
            int pos_len = pe_vec.size() / z_image_params.axes_dim_sum / 2;
            // LOG_DEBUG("pos_len %d", pos_len);
            auto pe = ggml_new_tensor_4d(compute_ctx, GGML_TYPE_F32, 2, 2, z_image_params.axes_dim_sum / 2, pos_len);
            // pe->data = pe_vec.data();
            // print_ggml_tensor(pe, true, "pe");
            // pe->data = nullptr;
            set_backend_tensor_data(pe, pe_vec.data());
            auto runner_ctx = get_context();

            struct ggml_tensor* out = z_image.forward(&runner_ctx,
                                                      x,
                                                      timesteps,
                                                      context,
                                                      pe,
                                                      ref_latents);

            ggml_build_forward_expand(gf, out);

            return gf;
        }

        bool compute(int n_threads,
                     struct ggml_tensor* x,
                     struct ggml_tensor* timesteps,
                     struct ggml_tensor* context,
                     std::vector<ggml_tensor*> ref_latents = {},
                     bool increase_ref_index               = false,
                     struct ggml_tensor** output           = nullptr,
                     struct ggml_context* output_ctx       = nullptr) {
            // x: [N, in_channels, h, w]
            // timesteps: [N, ]
            // context: [N, max_position, hidden_size]
            auto get_graph = [&]() -> struct ggml_cgraph* {
                return build_graph(x, timesteps, context, ref_latents, increase_ref_index);
            };

            return GGMLRunner::compute(get_graph, n_threads, false, output, output_ctx);
        }

        void test() {
            struct ggml_init_params params;
            params.mem_size   = static_cast<size_t>(1024 * 1024) * 1024;  // 1GB
            params.mem_buffer = nullptr;
            params.no_alloc   = false;

            struct ggml_context* work_ctx = ggml_init(params);
            GGML_ASSERT(work_ctx != nullptr);

            {
                // auto x = ggml_new_tensor_4d(work_ctx, GGML_TYPE_F32, 16, 16, 16, 1);
                // ggml_set_f32(x, 0.01f);
                auto x = load_tensor_from_file(work_ctx, "./z_image_x.bin");
                print_ggml_tensor(x);

                std::vector<float> timesteps_vec(1, 0.f);
                auto timesteps = vector_to_ggml_tensor(work_ctx, timesteps_vec);

                // auto context = ggml_new_tensor_3d(work_ctx, GGML_TYPE_F32, 2560, 256, 1);
                // ggml_set_f32(context, 0.01f);
                auto context = load_tensor_from_file(work_ctx, "./z_image_context.bin");
                print_ggml_tensor(context);

                struct ggml_tensor* out = nullptr;

                int t0 = ggml_time_ms();
                compute(8, x, timesteps, context, {}, false, &out, work_ctx);
                int t1 = ggml_time_ms();

                print_ggml_tensor(out);
                LOG_DEBUG("z_image test done in %dms", t1 - t0);
            }
        }

        static void load_from_file_and_test(const std::string& file_path) {
            // cuda q8: pass
            // cuda q8 fa: pass
            // ggml_backend_t backend = ggml_backend_cuda_init(0);
            ggml_backend_t backend    = ggml_backend_cpu_init();
            ggml_type model_data_type = GGML_TYPE_Q8_0;

            ModelLoader model_loader;
            if (!model_loader.init_from_file_and_convert_name(file_path, "model.diffusion_model.")) {
                LOG_ERROR("init model loader from file failed: '%s'", file_path.c_str());
                return;
            }

            auto& tensor_storage_map = model_loader.get_tensor_storage_map();
            if (model_data_type != GGML_TYPE_COUNT) {
                for (auto& [name, tensor_storage] : tensor_storage_map) {
                    if (ends_with(name, "weight")) {
                        tensor_storage.expected_type = model_data_type;
                    }
                }
            }

            std::shared_ptr<ZImageRunner> z_image = std::make_shared<ZImageRunner>(backend,
                                                                                   false,
                                                                                   tensor_storage_map,
                                                                                   "model.diffusion_model",
                                                                                   VERSION_QWEN_IMAGE);

            z_image->alloc_params_buffer();
            std::map<std::string, ggml_tensor*> tensors;
            z_image->get_param_tensors(tensors, "model.diffusion_model");

            bool success = model_loader.load_tensors(tensors);

            if (!success) {
                LOG_ERROR("load tensors from model loader failed");
                return;
            }

            LOG_INFO("z_image model loaded");
            z_image->test();
        }
    };

}  // namespace ZImage

#endif  // __Z_IMAGE_HPP__