#ifndef __LORA_HPP__
#define __LORA_HPP__
#include "ggml_extend.hpp"
#define LORA_GRAPH_BASE_SIZE 10240
struct LoraModel : public GGMLRunner {
enum lora_t {
REGULAR = 0,
DIFFUSERS = 1,
DIFFUSERS_2 = 2,
DIFFUSERS_3 = 3,
TRANSFORMERS = 4,
LORA_TYPE_COUNT
};
const std::string lora_ups[LORA_TYPE_COUNT] = {
".lora_up",
"_lora.up",
".lora_B",
".lora.up",
".lora_linear_layer.up",
};
const std::string lora_downs[LORA_TYPE_COUNT] = {
".lora_down",
"_lora.down",
".lora_A",
".lora.down",
".lora_linear_layer.down",
};
const std::string lora_pre[LORA_TYPE_COUNT] = {
"lora.",
"",
"",
"",
"",
};
const std::map<std::string, std::string> alt_names = {
{"final_layer.adaLN_modulation.1", "norm_out.linear"},
{"pos_embed", "pos_embed.proj"},
{"final_layer.linear", "proj_out"},
{"y_embedder.mlp.0", "time_text_embed.text_embedder.linear_1"},
{"y_embedder.mlp.2", "time_text_embed.text_embedder.linear_2"},
{"t_embedder.mlp.0", "time_text_embed.timestep_embedder.linear_1"},
{"t_embedder.mlp.2", "time_text_embed.timestep_embedder.linear_2"},
{"x_block.mlp.fc1", "ff.net.0.proj"},
{"x_block.mlp.fc2", "ff.net.2"},
{"context_block.mlp.fc1", "ff_context.net.0.proj"},
{"context_block.mlp.fc2", "ff_context.net.2"},
{"x_block.adaLN_modulation.1", "norm1.linear"},
{"context_block.adaLN_modulation.1", "norm1_context.linear"},
{"context_block.attn.proj", "attn.to_add_out"},
{"x_block.attn.proj", "attn.to_out.0"},
{"x_block.attn2.proj", "attn2.to_out.0"},
{"img_in", "x_embedder"},
{"linear2", "proj_out"},
{"modulation.lin", "norm.linear"},
{"txt_attn.proj", "attn.to_add_out"},
{"img_attn.proj", "attn.to_out.0"},
{"txt_mlp.0", "ff_context.net.0.proj"},
{"txt_mlp.2", "ff_context.net.2"},
{"img_mlp.0", "ff.net.0.proj"},
{"img_mlp.2", "ff.net.2"},
{"txt_mod.lin", "norm1_context.linear"},
{"img_mod.lin", "norm1.linear"},
};
const std::map<std::string, std::string> qkv_prefixes = {
{"context_block.attn.qkv", "attn.add_"}, {"x_block.attn.qkv", "attn.to_"},
{"x_block.attn2.qkv", "attn2.to_"},
{"txt_attn.qkv", "attn.add_"}, {"img_attn.qkv", "attn.to_"},
};
const std::map<std::string, std::string> qkvm_prefixes = {
{"linear1", ""},
};
const std::string* type_fingerprints = lora_ups;
float multiplier = 1.0f;
std::map<std::string, struct ggml_tensor*> lora_tensors;
std::map<ggml_tensor*, ggml_tensor*> original_tensor_to_final_tensor;
std::string file_path;
ModelLoader model_loader;
bool load_failed = false;
bool applied = false;
std::vector<int> zero_index_vec = {0};
ggml_tensor* zero_index = NULL;
enum lora_t type = REGULAR;
LoraModel(ggml_backend_t backend,
const std::string& file_path = "",
const std::string prefix = "")
: file_path(file_path), GGMLRunner(backend, false) {
if (!model_loader.init_from_file(file_path, prefix)) {
load_failed = true;
}
}
std::string get_desc() {
return "lora";
}
bool load_from_file(bool filter_tensor = false) {
LOG_INFO("loading LoRA from '%s'", file_path.c_str());
if (load_failed) {
LOG_ERROR("init lora model loader from file failed: '%s'", file_path.c_str());
return false;
}
bool dry_run = true;
auto on_new_tensor_cb = [&](const TensorStorage& tensor_storage, ggml_tensor** dst_tensor) -> bool {
const std::string& name = tensor_storage.name;
if (filter_tensor && !contains(name, "lora")) {
return true;
}
for (int i = 0; i < LORA_TYPE_COUNT; i++) {
if (name.find(type_fingerprints[i]) != std::string::npos) {
type = (lora_t)i;
break;
}
}
if (dry_run) {
struct ggml_tensor* real = ggml_new_tensor(params_ctx,
tensor_storage.type,
tensor_storage.n_dims,
tensor_storage.ne);
lora_tensors[name] = real;
} else {
auto real = lora_tensors[name];
*dst_tensor = real;
}
return true;
};
model_loader.load_tensors(on_new_tensor_cb);
alloc_params_buffer();
dry_run = false;
model_loader.load_tensors(on_new_tensor_cb);
LOG_DEBUG("lora type: \"%s\"/\"%s\"", lora_downs[type].c_str(), lora_ups[type].c_str());
LOG_DEBUG("finished loaded lora");
return true;
}
ggml_tensor* to_f32(ggml_context* ctx, ggml_tensor* a) {
auto out = ggml_reshape_1d(ctx, a, ggml_nelements(a));
out = ggml_get_rows(ctx, out, zero_index);
out = ggml_reshape(ctx, out, a);
return out;
}
std::vector<std::string> to_lora_keys(std::string blk_name, SDVersion version) {
std::vector<std::string> keys;
size_t k_pos = blk_name.find(".weight");
if (k_pos == std::string::npos) {
return keys;
}
blk_name = blk_name.substr(0, k_pos);
keys.push_back(blk_name);
keys.push_back("lora." + blk_name);
if (sd_version_is_dit(version)) {
if (blk_name.find("model.diffusion_model") != std::string::npos) {
blk_name.replace(blk_name.find("model.diffusion_model"), sizeof("model.diffusion_model") - 1, "transformer");
}
if (blk_name.find(".single_blocks") != std::string::npos) {
blk_name.replace(blk_name.find(".single_blocks"), sizeof(".single_blocks") - 1, ".single_transformer_blocks");
}
if (blk_name.find(".double_blocks") != std::string::npos) {
blk_name.replace(blk_name.find(".double_blocks"), sizeof(".double_blocks") - 1, ".transformer_blocks");
}
if (blk_name.find(".joint_blocks") != std::string::npos) {
blk_name.replace(blk_name.find(".joint_blocks"), sizeof(".joint_blocks") - 1, ".transformer_blocks");
}
if (blk_name.find("text_encoders.clip_l") != std::string::npos) {
blk_name.replace(blk_name.find("text_encoders.clip_l"), sizeof("text_encoders.clip_l") - 1, "cond_stage_model");
}
for (const auto& item : alt_names) {
size_t match = blk_name.find(item.first);
if (match != std::string::npos) {
blk_name = blk_name.substr(0, match) + item.second;
}
}
for (const auto& prefix : qkv_prefixes) {
size_t match = blk_name.find(prefix.first);
if (match != std::string::npos) {
std::string split_blk = "SPLIT|" + blk_name.substr(0, match) + prefix.second;
keys.push_back(split_blk);
}
}
for (const auto& prefix : qkvm_prefixes) {
size_t match = blk_name.find(prefix.first);
if (match != std::string::npos) {
std::string split_blk = "SPLIT_L|" + blk_name.substr(0, match) + prefix.second;
keys.push_back(split_blk);
}
}
keys.push_back(blk_name);
}
std::vector<std::string> ret;
for (std::string& key : keys) {
ret.push_back(key);
replace_all_chars(key, '.', '_');
if (key == "model_diffusion_model_output_blocks_2_2_conv") {
ret.push_back("model_diffusion_model_output_blocks_2_1_conv");
}
ret.push_back(key);
}
return ret;
}
struct ggml_cgraph* build_lora_graph(std::map<std::string, struct ggml_tensor*> model_tensors, SDVersion version) {
size_t lora_graph_size = LORA_GRAPH_BASE_SIZE + lora_tensors.size() * 10;
struct ggml_cgraph* gf = ggml_new_graph_custom(compute_ctx, lora_graph_size, false);
zero_index = ggml_new_tensor_1d(compute_ctx, GGML_TYPE_I32, 1);
set_backend_tensor_data(zero_index, zero_index_vec.data());
ggml_build_forward_expand(gf, zero_index);
original_tensor_to_final_tensor.clear();
std::set<std::string> applied_lora_tensors;
for (auto it : model_tensors) {
std::string model_tensor_name = it.first;
struct ggml_tensor* model_tensor = model_tensors[it.first];
std::vector<std::string> keys = to_lora_keys(model_tensor_name, version);
bool is_bias = ends_with(model_tensor_name, ".bias");
if (keys.size() == 0) {
if (is_bias) {
keys.push_back(model_tensor_name.substr(0, model_tensor_name.size() - 5)); } else {
continue;
}
}
for (auto& key : keys) {
bool is_qkv_split = starts_with(key, "SPLIT|");
if (is_qkv_split) {
key = key.substr(sizeof("SPLIT|") - 1);
}
bool is_qkvm_split = starts_with(key, "SPLIT_L|");
if (is_qkvm_split) {
key = key.substr(sizeof("SPLIT_L|") - 1);
}
struct ggml_tensor* updown = NULL;
float scale_value = 1.0f;
std::string full_key = lora_pre[type] + key;
if (is_bias) {
if (lora_tensors.find(full_key + ".diff_b") != lora_tensors.end()) {
std::string diff_name = full_key + ".diff_b";
ggml_tensor* diff = lora_tensors[diff_name];
updown = to_f32(compute_ctx, diff);
applied_lora_tensors.insert(diff_name);
} else {
continue;
}
} else if (lora_tensors.find(full_key + ".diff") != lora_tensors.end()) {
std::string diff_name = full_key + ".diff";
ggml_tensor* diff = lora_tensors[diff_name];
updown = to_f32(compute_ctx, diff);
applied_lora_tensors.insert(diff_name);
} else if (lora_tensors.find(full_key + ".hada_w1_a") != lora_tensors.end()) {
if (is_qkv_split || is_qkvm_split) {
LOG_ERROR("Split qkv isn't supported for LoHa models.");
break;
}
std::string alpha_name = "";
ggml_tensor* hada_1_mid = NULL; ggml_tensor* hada_1_up = NULL;
ggml_tensor* hada_1_down = NULL;
ggml_tensor* hada_2_mid = NULL; ggml_tensor* hada_2_up = NULL;
ggml_tensor* hada_2_down = NULL;
std::string hada_1_mid_name = "";
std::string hada_1_down_name = "";
std::string hada_1_up_name = "";
std::string hada_2_mid_name = "";
std::string hada_2_down_name = "";
std::string hada_2_up_name = "";
hada_1_down_name = full_key + ".hada_w1_b";
hada_1_up_name = full_key + ".hada_w1_a";
hada_1_mid_name = full_key + ".hada_t1";
if (lora_tensors.find(hada_1_down_name) != lora_tensors.end()) {
hada_1_down = to_f32(compute_ctx, lora_tensors[hada_1_down_name]);
}
if (lora_tensors.find(hada_1_up_name) != lora_tensors.end()) {
hada_1_up = to_f32(compute_ctx, lora_tensors[hada_1_up_name]);
}
if (lora_tensors.find(hada_1_mid_name) != lora_tensors.end()) {
hada_1_mid = to_f32(compute_ctx, lora_tensors[hada_1_mid_name]);
applied_lora_tensors.insert(hada_1_mid_name);
hada_1_up = ggml_cont(compute_ctx, ggml_transpose(compute_ctx, hada_1_up));
}
hada_2_down_name = full_key + ".hada_w2_b";
hada_2_up_name = full_key + ".hada_w2_a";
hada_2_mid_name = full_key + ".hada_t2";
if (lora_tensors.find(hada_2_down_name) != lora_tensors.end()) {
hada_2_down = to_f32(compute_ctx, lora_tensors[hada_2_down_name]);
}
if (lora_tensors.find(hada_2_up_name) != lora_tensors.end()) {
hada_2_up = to_f32(compute_ctx, lora_tensors[hada_2_up_name]);
}
if (lora_tensors.find(hada_2_mid_name) != lora_tensors.end()) {
hada_2_mid = to_f32(compute_ctx, lora_tensors[hada_2_mid_name]);
applied_lora_tensors.insert(hada_2_mid_name);
hada_2_up = ggml_cont(compute_ctx, ggml_transpose(compute_ctx, hada_2_up));
}
alpha_name = full_key + ".alpha";
applied_lora_tensors.insert(hada_1_down_name);
applied_lora_tensors.insert(hada_1_up_name);
applied_lora_tensors.insert(hada_2_down_name);
applied_lora_tensors.insert(hada_2_up_name);
applied_lora_tensors.insert(alpha_name);
if (hada_1_up == NULL || hada_1_down == NULL || hada_2_up == NULL || hada_2_down == NULL) {
continue;
}
struct ggml_tensor* updown_1 = ggml_merge_lora(compute_ctx, hada_1_down, hada_1_up, hada_1_mid);
struct ggml_tensor* updown_2 = ggml_merge_lora(compute_ctx, hada_2_down, hada_2_up, hada_2_mid);
updown = ggml_mul_inplace(compute_ctx, updown_1, updown_2);
int64_t rank = hada_1_down->ne[ggml_n_dims(hada_1_down) - 1];
if (lora_tensors.find(alpha_name) != lora_tensors.end()) {
float alpha = ggml_backend_tensor_get_f32(lora_tensors[alpha_name]);
scale_value = alpha / rank;
}
} else if (lora_tensors.find(full_key + ".lokr_w1") != lora_tensors.end() || lora_tensors.find(full_key + ".lokr_w1_a") != lora_tensors.end()) {
if (is_qkv_split || is_qkvm_split) {
LOG_ERROR("Split qkv isn't supported for LoKr models.");
break;
}
std::string alpha_name = full_key + ".alpha";
ggml_tensor* lokr_w1 = NULL;
ggml_tensor* lokr_w2 = NULL;
std::string lokr_w1_name = "";
std::string lokr_w2_name = "";
lokr_w1_name = full_key + ".lokr_w1";
lokr_w2_name = full_key + ".lokr_w2";
if (lora_tensors.find(lokr_w1_name) != lora_tensors.end()) {
lokr_w1 = to_f32(compute_ctx, lora_tensors[lokr_w1_name]);
applied_lora_tensors.insert(lokr_w1_name);
} else {
ggml_tensor* down = NULL;
ggml_tensor* up = NULL;
std::string down_name = lokr_w1_name + "_b";
std::string up_name = lokr_w1_name + "_a";
if (lora_tensors.find(down_name) != lora_tensors.end()) {
down = to_f32(compute_ctx, lora_tensors[down_name]);
applied_lora_tensors.insert(down_name);
int64_t rank = down->ne[ggml_n_dims(down) - 1];
if (lora_tensors.find(alpha_name) != lora_tensors.end()) {
float alpha = ggml_backend_tensor_get_f32(lora_tensors[alpha_name]);
scale_value = alpha / rank;
}
}
if (lora_tensors.find(up_name) != lora_tensors.end()) {
up = to_f32(compute_ctx, lora_tensors[up_name]);
applied_lora_tensors.insert(up_name);
}
lokr_w1 = ggml_merge_lora(compute_ctx, down, up);
}
if (lora_tensors.find(lokr_w2_name) != lora_tensors.end()) {
lokr_w2 = to_f32(compute_ctx, lora_tensors[lokr_w2_name]);
applied_lora_tensors.insert(lokr_w2_name);
} else {
ggml_tensor* down = NULL;
ggml_tensor* up = NULL;
std::string down_name = lokr_w2_name + "_b";
std::string up_name = lokr_w2_name + "_a";
if (lora_tensors.find(down_name) != lora_tensors.end()) {
down = to_f32(compute_ctx, lora_tensors[down_name]);
applied_lora_tensors.insert(down_name);
int64_t rank = down->ne[ggml_n_dims(down) - 1];
if (lora_tensors.find(alpha_name) != lora_tensors.end()) {
float alpha = ggml_backend_tensor_get_f32(lora_tensors[alpha_name]);
scale_value = alpha / rank;
}
}
if (lora_tensors.find(up_name) != lora_tensors.end()) {
up = to_f32(compute_ctx, lora_tensors[up_name]);
applied_lora_tensors.insert(up_name);
}
lokr_w2 = ggml_merge_lora(compute_ctx, down, up);
}
applied_lora_tensors.insert(alpha_name);
updown = ggml_kronecker(compute_ctx, lokr_w1, lokr_w2);
} else {
ggml_tensor* lora_mid = NULL; ggml_tensor* lora_up = NULL;
ggml_tensor* lora_down = NULL;
std::string alpha_name = "";
std::string scale_name = "";
std::string split_q_scale_name = "";
std::string lora_mid_name = "";
std::string lora_down_name = "";
std::string lora_up_name = "";
if (is_qkv_split) {
std::string suffix = "";
auto split_q_d_name = full_key + "q" + suffix + lora_downs[type] + ".weight";
if (lora_tensors.find(split_q_d_name) == lora_tensors.end()) {
suffix = "_proj";
split_q_d_name = full_key + "q" + suffix + lora_downs[type] + ".weight";
}
if (lora_tensors.find(split_q_d_name) != lora_tensors.end()) {
auto split_k_d_name = full_key + "k" + suffix + lora_downs[type] + ".weight";
auto split_v_d_name = full_key + "v" + suffix + lora_downs[type] + ".weight";
auto split_q_u_name = full_key + "q" + suffix + lora_ups[type] + ".weight";
auto split_k_u_name = full_key + "k" + suffix + lora_ups[type] + ".weight";
auto split_v_u_name = full_key + "v" + suffix + lora_ups[type] + ".weight";
auto split_q_scale_name = full_key + "q" + suffix + ".scale";
auto split_k_scale_name = full_key + "k" + suffix + ".scale";
auto split_v_scale_name = full_key + "v" + suffix + ".scale";
auto split_q_alpha_name = full_key + "q" + suffix + ".alpha";
auto split_k_alpha_name = full_key + "k" + suffix + ".alpha";
auto split_v_alpha_name = full_key + "v" + suffix + ".alpha";
ggml_tensor* lora_q_down = NULL;
ggml_tensor* lora_q_up = NULL;
ggml_tensor* lora_k_down = NULL;
ggml_tensor* lora_k_up = NULL;
ggml_tensor* lora_v_down = NULL;
ggml_tensor* lora_v_up = NULL;
lora_q_down = to_f32(compute_ctx, lora_tensors[split_q_d_name]);
if (lora_tensors.find(split_q_u_name) != lora_tensors.end()) {
lora_q_up = to_f32(compute_ctx, lora_tensors[split_q_u_name]);
}
if (lora_tensors.find(split_k_d_name) != lora_tensors.end()) {
lora_k_down = to_f32(compute_ctx, lora_tensors[split_k_d_name]);
}
if (lora_tensors.find(split_k_u_name) != lora_tensors.end()) {
lora_k_up = to_f32(compute_ctx, lora_tensors[split_k_u_name]);
}
if (lora_tensors.find(split_v_d_name) != lora_tensors.end()) {
lora_v_down = to_f32(compute_ctx, lora_tensors[split_v_d_name]);
}
if (lora_tensors.find(split_v_u_name) != lora_tensors.end()) {
lora_v_up = to_f32(compute_ctx, lora_tensors[split_v_u_name]);
}
float q_rank = lora_q_up->ne[0];
float k_rank = lora_k_up->ne[0];
float v_rank = lora_v_up->ne[0];
float lora_q_scale = 1;
float lora_k_scale = 1;
float lora_v_scale = 1;
if (lora_tensors.find(split_q_scale_name) != lora_tensors.end()) {
lora_q_scale = ggml_backend_tensor_get_f32(lora_tensors[split_q_scale_name]);
applied_lora_tensors.insert(split_q_scale_name);
}
if (lora_tensors.find(split_k_scale_name) != lora_tensors.end()) {
lora_k_scale = ggml_backend_tensor_get_f32(lora_tensors[split_k_scale_name]);
applied_lora_tensors.insert(split_k_scale_name);
}
if (lora_tensors.find(split_v_scale_name) != lora_tensors.end()) {
lora_v_scale = ggml_backend_tensor_get_f32(lora_tensors[split_v_scale_name]);
applied_lora_tensors.insert(split_v_scale_name);
}
if (lora_tensors.find(split_q_alpha_name) != lora_tensors.end()) {
float lora_q_alpha = ggml_backend_tensor_get_f32(lora_tensors[split_q_alpha_name]);
applied_lora_tensors.insert(split_q_alpha_name);
lora_q_scale = lora_q_alpha / q_rank;
}
if (lora_tensors.find(split_k_alpha_name) != lora_tensors.end()) {
float lora_k_alpha = ggml_backend_tensor_get_f32(lora_tensors[split_k_alpha_name]);
applied_lora_tensors.insert(split_k_alpha_name);
lora_k_scale = lora_k_alpha / k_rank;
}
if (lora_tensors.find(split_v_alpha_name) != lora_tensors.end()) {
float lora_v_alpha = ggml_backend_tensor_get_f32(lora_tensors[split_v_alpha_name]);
applied_lora_tensors.insert(split_v_alpha_name);
lora_v_scale = lora_v_alpha / v_rank;
}
ggml_scale_inplace(compute_ctx, lora_q_down, lora_q_scale);
ggml_scale_inplace(compute_ctx, lora_k_down, lora_k_scale);
ggml_scale_inplace(compute_ctx, lora_v_down, lora_v_scale);
ggml_tensor* lora_down_concat = ggml_concat(compute_ctx, ggml_concat(compute_ctx, lora_q_down, lora_k_down, 1), lora_v_down, 1);
ggml_tensor* z = ggml_dup_tensor(compute_ctx, lora_q_up);
ggml_scale(compute_ctx, z, 0);
ggml_tensor* zz = ggml_concat(compute_ctx, z, z, 1);
ggml_tensor* q_up = ggml_concat(compute_ctx, lora_q_up, zz, 1);
ggml_tensor* k_up = ggml_concat(compute_ctx, ggml_concat(compute_ctx, z, lora_k_up, 1), z, 1);
ggml_tensor* v_up = ggml_concat(compute_ctx, zz, lora_v_up, 1);
ggml_tensor* lora_up_concat = ggml_concat(compute_ctx, ggml_concat(compute_ctx, q_up, k_up, 0), v_up, 0);
lora_down = ggml_cont(compute_ctx, lora_down_concat);
lora_up = ggml_cont(compute_ctx, lora_up_concat);
applied_lora_tensors.insert(split_q_u_name);
applied_lora_tensors.insert(split_k_u_name);
applied_lora_tensors.insert(split_v_u_name);
applied_lora_tensors.insert(split_q_d_name);
applied_lora_tensors.insert(split_k_d_name);
applied_lora_tensors.insert(split_v_d_name);
}
} else if (is_qkvm_split) {
auto split_q_d_name = full_key + "attn.to_q" + lora_downs[type] + ".weight";
if (lora_tensors.find(split_q_d_name) != lora_tensors.end()) {
auto split_k_d_name = full_key + "attn.to_k" + lora_downs[type] + ".weight";
auto split_v_d_name = full_key + "attn.to_v" + lora_downs[type] + ".weight";
auto split_q_u_name = full_key + "attn.to_q" + lora_ups[type] + ".weight";
auto split_k_u_name = full_key + "attn.to_k" + lora_ups[type] + ".weight";
auto split_v_u_name = full_key + "attn.to_v" + lora_ups[type] + ".weight";
auto split_m_d_name = full_key + "proj_mlp" + lora_downs[type] + ".weight";
auto split_m_u_name = full_key + "proj_mlp" + lora_ups[type] + ".weight";
auto split_q_scale_name = full_key + "attn.to_q" + ".scale";
auto split_k_scale_name = full_key + "attn.to_k" + ".scale";
auto split_v_scale_name = full_key + "attn.to_v" + ".scale";
auto split_m_scale_name = full_key + "proj_mlp" + ".scale";
auto split_q_alpha_name = full_key + "attn.to_q" + ".alpha";
auto split_k_alpha_name = full_key + "attn.to_k" + ".alpha";
auto split_v_alpha_name = full_key + "attn.to_v" + ".alpha";
auto split_m_alpha_name = full_key + "proj_mlp" + ".alpha";
ggml_tensor* lora_q_down = NULL;
ggml_tensor* lora_q_up = NULL;
ggml_tensor* lora_k_down = NULL;
ggml_tensor* lora_k_up = NULL;
ggml_tensor* lora_v_down = NULL;
ggml_tensor* lora_v_up = NULL;
ggml_tensor* lora_m_down = NULL;
ggml_tensor* lora_m_up = NULL;
lora_q_up = to_f32(compute_ctx, lora_tensors[split_q_u_name]);
if (lora_tensors.find(split_q_d_name) != lora_tensors.end()) {
lora_q_down = to_f32(compute_ctx, lora_tensors[split_q_d_name]);
}
if (lora_tensors.find(split_q_u_name) != lora_tensors.end()) {
lora_q_up = to_f32(compute_ctx, lora_tensors[split_q_u_name]);
}
if (lora_tensors.find(split_k_d_name) != lora_tensors.end()) {
lora_k_down = to_f32(compute_ctx, lora_tensors[split_k_d_name]);
}
if (lora_tensors.find(split_k_u_name) != lora_tensors.end()) {
lora_k_up = to_f32(compute_ctx, lora_tensors[split_k_u_name]);
}
if (lora_tensors.find(split_v_d_name) != lora_tensors.end()) {
lora_v_down = to_f32(compute_ctx, lora_tensors[split_v_d_name]);
}
if (lora_tensors.find(split_v_u_name) != lora_tensors.end()) {
lora_v_up = to_f32(compute_ctx, lora_tensors[split_v_u_name]);
}
if (lora_tensors.find(split_m_d_name) != lora_tensors.end()) {
lora_m_down = to_f32(compute_ctx, lora_tensors[split_m_d_name]);
}
if (lora_tensors.find(split_m_u_name) != lora_tensors.end()) {
lora_m_up = to_f32(compute_ctx, lora_tensors[split_m_u_name]);
}
float q_rank = lora_q_up->ne[0];
float k_rank = lora_k_up->ne[0];
float v_rank = lora_v_up->ne[0];
float m_rank = lora_v_up->ne[0];
float lora_q_scale = 1;
float lora_k_scale = 1;
float lora_v_scale = 1;
float lora_m_scale = 1;
if (lora_tensors.find(split_q_scale_name) != lora_tensors.end()) {
lora_q_scale = ggml_backend_tensor_get_f32(lora_tensors[split_q_scale_name]);
applied_lora_tensors.insert(split_q_scale_name);
}
if (lora_tensors.find(split_k_scale_name) != lora_tensors.end()) {
lora_k_scale = ggml_backend_tensor_get_f32(lora_tensors[split_k_scale_name]);
applied_lora_tensors.insert(split_k_scale_name);
}
if (lora_tensors.find(split_v_scale_name) != lora_tensors.end()) {
lora_v_scale = ggml_backend_tensor_get_f32(lora_tensors[split_v_scale_name]);
applied_lora_tensors.insert(split_v_scale_name);
}
if (lora_tensors.find(split_m_scale_name) != lora_tensors.end()) {
lora_m_scale = ggml_backend_tensor_get_f32(lora_tensors[split_m_scale_name]);
applied_lora_tensors.insert(split_m_scale_name);
}
if (lora_tensors.find(split_q_alpha_name) != lora_tensors.end()) {
float lora_q_alpha = ggml_backend_tensor_get_f32(lora_tensors[split_q_alpha_name]);
applied_lora_tensors.insert(split_q_alpha_name);
lora_q_scale = lora_q_alpha / q_rank;
}
if (lora_tensors.find(split_k_alpha_name) != lora_tensors.end()) {
float lora_k_alpha = ggml_backend_tensor_get_f32(lora_tensors[split_k_alpha_name]);
applied_lora_tensors.insert(split_k_alpha_name);
lora_k_scale = lora_k_alpha / k_rank;
}
if (lora_tensors.find(split_v_alpha_name) != lora_tensors.end()) {
float lora_v_alpha = ggml_backend_tensor_get_f32(lora_tensors[split_v_alpha_name]);
applied_lora_tensors.insert(split_v_alpha_name);
lora_v_scale = lora_v_alpha / v_rank;
}
if (lora_tensors.find(split_m_alpha_name) != lora_tensors.end()) {
float lora_m_alpha = ggml_backend_tensor_get_f32(lora_tensors[split_m_alpha_name]);
applied_lora_tensors.insert(split_m_alpha_name);
lora_m_scale = lora_m_alpha / m_rank;
}
ggml_scale_inplace(compute_ctx, lora_q_down, lora_q_scale);
ggml_scale_inplace(compute_ctx, lora_k_down, lora_k_scale);
ggml_scale_inplace(compute_ctx, lora_v_down, lora_v_scale);
ggml_scale_inplace(compute_ctx, lora_m_down, lora_m_scale);
ggml_tensor* lora_down_concat = ggml_concat(compute_ctx, ggml_concat(compute_ctx, lora_q_down, lora_k_down, 1), ggml_concat(compute_ctx, lora_v_down, lora_m_down, 1), 1);
ggml_tensor* z = ggml_dup_tensor(compute_ctx, lora_q_up);
ggml_tensor* mlp_z = ggml_dup_tensor(compute_ctx, lora_m_up);
ggml_scale(compute_ctx, z, 0);
ggml_scale(compute_ctx, mlp_z, 0);
ggml_tensor* zz = ggml_concat(compute_ctx, z, z, 1);
ggml_tensor* q_up = ggml_concat(compute_ctx, ggml_concat(compute_ctx, lora_q_up, zz, 1), mlp_z, 1);
ggml_tensor* k_up = ggml_concat(compute_ctx, ggml_concat(compute_ctx, z, lora_k_up, 1), ggml_concat(compute_ctx, z, mlp_z, 1), 1);
ggml_tensor* v_up = ggml_concat(compute_ctx, ggml_concat(compute_ctx, zz, lora_v_up, 1), mlp_z, 1);
ggml_tensor* m_up = ggml_concat(compute_ctx, ggml_concat(compute_ctx, zz, z, 1), lora_m_up, 1);
ggml_tensor* lora_up_concat = ggml_concat(compute_ctx, ggml_concat(compute_ctx, q_up, k_up, 0), ggml_concat(compute_ctx, v_up, m_up, 0), 0);
lora_down = ggml_cont(compute_ctx, lora_down_concat);
lora_up = ggml_cont(compute_ctx, lora_up_concat);
applied_lora_tensors.insert(split_q_u_name);
applied_lora_tensors.insert(split_k_u_name);
applied_lora_tensors.insert(split_v_u_name);
applied_lora_tensors.insert(split_m_u_name);
applied_lora_tensors.insert(split_q_d_name);
applied_lora_tensors.insert(split_k_d_name);
applied_lora_tensors.insert(split_v_d_name);
applied_lora_tensors.insert(split_m_d_name);
}
} else {
lora_up_name = full_key + lora_ups[type] + ".weight";
lora_down_name = full_key + lora_downs[type] + ".weight";
lora_mid_name = full_key + ".lora_mid.weight";
alpha_name = full_key + ".alpha";
scale_name = full_key + ".scale";
if (lora_tensors.find(lora_up_name) != lora_tensors.end()) {
lora_up = to_f32(compute_ctx, lora_tensors[lora_up_name]);
applied_lora_tensors.insert(lora_up_name);
}
if (lora_tensors.find(lora_down_name) != lora_tensors.end()) {
lora_down = to_f32(compute_ctx, lora_tensors[lora_down_name]);
applied_lora_tensors.insert(lora_down_name);
}
if (lora_tensors.find(lora_mid_name) != lora_tensors.end()) {
lora_mid = to_f32(compute_ctx, lora_tensors[lora_mid_name]);
applied_lora_tensors.insert(lora_mid_name);
}
}
if (lora_up == NULL || lora_down == NULL) {
continue;
}
int64_t rank = lora_down->ne[ggml_n_dims(lora_down) - 1];
if (lora_tensors.find(scale_name) != lora_tensors.end()) {
scale_value = ggml_backend_tensor_get_f32(lora_tensors[scale_name]);
applied_lora_tensors.insert(scale_name);
} else if (lora_tensors.find(alpha_name) != lora_tensors.end()) {
float alpha = ggml_backend_tensor_get_f32(lora_tensors[alpha_name]);
scale_value = alpha / rank;
applied_lora_tensors.insert(alpha_name);
}
updown = ggml_merge_lora(compute_ctx, lora_down, lora_up, lora_mid);
}
scale_value *= multiplier;
ggml_tensor* original_tensor = model_tensor;
if (!ggml_backend_is_cpu(runtime_backend) && ggml_backend_buffer_is_host(original_tensor->buffer)) {
model_tensor = ggml_dup_tensor(compute_ctx, model_tensor);
set_backend_tensor_data(model_tensor, original_tensor->data);
}
updown = ggml_reshape(compute_ctx, updown, model_tensor);
GGML_ASSERT(ggml_nelements(updown) == ggml_nelements(model_tensor));
updown = ggml_scale_inplace(compute_ctx, updown, scale_value);
ggml_tensor* final_tensor;
if (model_tensor->type != GGML_TYPE_F32 && model_tensor->type != GGML_TYPE_F16) {
final_tensor = to_f32(compute_ctx, model_tensor);
final_tensor = ggml_add_inplace(compute_ctx, final_tensor, updown);
final_tensor = ggml_cpy(compute_ctx, final_tensor, model_tensor);
} else {
final_tensor = ggml_add_inplace(compute_ctx, model_tensor, updown);
}
ggml_build_forward_expand(gf, final_tensor);
if (!ggml_backend_is_cpu(runtime_backend) && ggml_backend_buffer_is_host(original_tensor->buffer)) {
original_tensor_to_final_tensor[original_tensor] = final_tensor;
}
break;
}
}
size_t total_lora_tensors_count = 0;
size_t applied_lora_tensors_count = 0;
for (auto& kv : lora_tensors) {
total_lora_tensors_count++;
if (applied_lora_tensors.find(kv.first) == applied_lora_tensors.end()) {
LOG_WARN("unused lora tensor |%s|", kv.first.c_str());
print_ggml_tensor(kv.second, true);
} else {
applied_lora_tensors_count++;
}
}
if (applied_lora_tensors_count != total_lora_tensors_count) {
LOG_WARN("Only (%lu / %lu) LoRA tensors will be applied",
applied_lora_tensors_count, total_lora_tensors_count);
} else {
LOG_DEBUG("(%lu / %lu) LoRA tensors will be applied",
applied_lora_tensors_count, total_lora_tensors_count);
}
return gf;
}
void apply(std::map<std::string, struct ggml_tensor*> model_tensors, SDVersion version, int n_threads) {
auto get_graph = [&]() -> struct ggml_cgraph* {
return build_lora_graph(model_tensors, version);
};
GGMLRunner::compute(get_graph, n_threads, false);
for (auto item : original_tensor_to_final_tensor) {
ggml_tensor* original_tensor = item.first;
ggml_tensor* final_tensor = item.second;
ggml_backend_tensor_copy(final_tensor, original_tensor);
}
original_tensor_to_final_tensor.clear();
GGMLRunner::free_compute_buffer();
}
};
#endif