# CUDA-Rust-WASM Implementation Status
## ✅ Completed Core APIs
### 1. Error Handling System (`src/error.rs`)
- Comprehensive error types for all subsystems
- Result type alias for convenient error handling
- Helper macros for creating specific error types
- Full test coverage
### 2. Device Management (`src/runtime/device.rs`)
- Device abstraction supporting multiple backends (Native, WebGPU, CPU)
- Device properties querying
- Automatic backend detection based on target architecture
- Device enumeration and selection
### 3. Memory Allocation Primitives
#### Device Memory (`src/memory/device_memory.rs`)
- `DevicePtr` - Raw device memory management
- `DeviceBuffer<T>` - Type-safe device memory buffer
- Backend-specific allocation strategies
- Host-to-device and device-to-host memory transfers
- Memory safety with proper cleanup in Drop implementations
#### Host Memory (`src/memory/host_memory.rs`)
- `HostBuffer<T>` - Page-locked host memory for efficient transfers
- Slice-based access patterns
- Index trait implementations for convenient access
- Memory copy operations with bounds checking
### 4. Kernel Launch Mechanism (`src/runtime/kernel.rs`)
- `KernelFunction` trait for defining kernels
- `ThreadContext` for accessing thread/block indices
- `LaunchConfig` for specifying grid/block dimensions
- CPU backend executor (sequential execution for testing)
- `kernel_function!` macro for easy kernel definition
### 5. Runtime Infrastructure
- Grid and Block dimension types (`Dim3`)
- Stream abstraction for asynchronous operations
- Runtime context managing device and default stream
- Thread and block index access helpers
### 6. Example Implementation (`examples/vector_add.rs`)
- Complete vector addition example demonstrating:
- Memory allocation on host and device
- Data transfer between host and device
- Kernel definition using the macro
- Kernel launch with proper configuration
- Result verification
- Device property querying
### 7. Build Configuration (`build.rs`)
- WASM target detection and configuration
- CUDA backend detection (when available)
- Optimization flags for release builds
- Native bindings generation support
### 8. Module Organization
- Prelude module for convenient imports
- Proper module exports and re-exports
- Macro availability throughout the crate
## 🚧 TODO / Future Enhancements
### Backend Implementations
1. **Native CUDA Backend**
- Real CUDA memory allocation (cudaMalloc)
- CUDA kernel launching
- CUDA stream management
- CUDA event synchronization
2. **WebGPU Backend**
- WebGPU buffer creation
- Compute pipeline setup
- Shader compilation from kernels
- WebGPU command encoding
3. **Optimizations**
- Parallel CPU execution using Rayon
- Memory pooling for allocation reuse
- Kernel caching and JIT compilation
- Auto-tuning for optimal block sizes
### Additional Features
1. **Advanced Memory**
- Unified memory support
- Memory pools for efficient allocation
- Texture memory support
- Constant memory
2. **Kernel Features**
- Shared memory support
- Warp primitives (shuffle, vote)
- Atomic operations
- Dynamic parallelism
3. **Developer Experience**
- Procedural macros for kernel attributes
- Better error messages
- Performance profiling tools
- Debug visualization
## Usage Example
```rust
use cuda_rust_wasm::prelude::*;
use cuda_rust_wasm::kernel_function;
// Define a kernel
kernel_function!(MyKernel, (&mut [f32], &[f32]), |(output, input), ctx| {
let tid = ctx.global_thread_id();
if tid < input.len() {
output[tid] = input[tid] * 2.0;
}
});
fn main() -> Result<()> {
// Initialize runtime
let runtime = Runtime::new()?;
let device = runtime.device();
// Allocate memory
let mut d_input = DeviceBuffer::new(1024, device.clone())?;
let mut d_output = DeviceBuffer::new(1024, device.clone())?;
// Launch kernel
let config = LaunchConfig::new(
Grid::new(4),
Block::new(256)
);
launch_kernel(MyKernel, config, (&mut d_output, &d_input))?;
Ok(())
}
```
## Testing
To test the implementation:
1. Install Rust: `curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh`
2. Run tests: `cargo test`
3. Run example: `cargo run --example vector_add`
4. Build for WASM: `cargo build --target wasm32-unknown-unknown`
The implementation provides a solid foundation for CUDA-to-Rust transpilation with support for multiple backends and WASM compilation.