clippy_lints 0.0.84

A bunch of helpful lints to avoid common pitfalls in Rust
use reexport::*;
use rustc::lint::*;
use rustc::hir::def::Def;
use rustc::hir::*;
use rustc::hir::intravisit::{Visitor, FnKind};
use std::ops::Deref;
use syntax::codemap::Span;
use utils::{higher, in_external_macro, snippet, span_lint_and_then};

/// **What it does:** Checks for bindings that shadow other bindings already in
/// scope, while just changing reference level or mutability.
///
/// **Why is this bad?** Not much, in fact it's a very common pattern in Rust
/// code. Still, some may opt to avoid it in their code base, they can set this
/// lint to `Warn`.
///
/// **Known problems:** This lint, as the other shadowing related lints,
/// currently only catches very simple patterns.
///
/// **Example:**
/// ```rust
/// let x = &x;
/// ```
declare_lint! {
    pub SHADOW_SAME,
    Allow,
    "rebinding a name to itself, e.g. `let mut x = &mut x`"
}

/// **What it does:** Checks for bindings that shadow other bindings already in
/// scope, while reusing the original value.
///
/// **Why is this bad?** Not too much, in fact it's a common pattern in Rust
/// code. Still, some argue that name shadowing like this hurts readability,
/// because a value may be bound to different things depending on position in
/// the code.
///
/// **Known problems:** This lint, as the other shadowing related lints,
/// currently only catches very simple patterns.
///
/// **Example:**
/// ```rust
/// let x = x + 1;
/// ```
declare_lint! {
    pub SHADOW_REUSE,
    Allow,
    "rebinding a name to an expression that re-uses the original value, e.g. \
     `let x = x + 1`"
}

/// **What it does:** Checks for bindings that shadow other bindings already in
/// scope, either without a initialization or with one that does not even use
/// the original value.
///
/// **Why is this bad?** Name shadowing can hurt readability, especially in
/// large code bases, because it is easy to lose track of the active binding at
/// any place in the code. This can be alleviated by either giving more specific
/// names to bindings ore introducing more scopes to contain the bindings.
///
/// **Known problems:** This lint, as the other shadowing related lints,
/// currently only catches very simple patterns.
///
/// **Example:**
/// ```rust
/// let x = y; let x = z; // shadows the earlier binding
/// ```
declare_lint! {
    pub SHADOW_UNRELATED,
    Allow,
    "rebinding a name without even using the original value"
}

#[derive(Copy, Clone)]
pub struct Pass;

impl LintPass for Pass {
    fn get_lints(&self) -> LintArray {
        lint_array!(SHADOW_SAME, SHADOW_REUSE, SHADOW_UNRELATED)
    }
}

impl LateLintPass for Pass {
    fn check_fn(&mut self, cx: &LateContext, _: FnKind, decl: &FnDecl, block: &Block, _: Span, _: NodeId) {
        if in_external_macro(cx, block.span) {
            return;
        }
        check_fn(cx, decl, block);
    }
}

fn check_fn(cx: &LateContext, decl: &FnDecl, block: &Block) {
    let mut bindings = Vec::new();
    for arg in &decl.inputs {
        if let PatKind::Binding(_, ident, _) = arg.pat.node {
            bindings.push((ident.node, ident.span))
        }
    }
    check_block(cx, block, &mut bindings);
}

fn check_block(cx: &LateContext, block: &Block, bindings: &mut Vec<(Name, Span)>) {
    let len = bindings.len();
    for stmt in &block.stmts {
        match stmt.node {
            StmtDecl(ref decl, _) => check_decl(cx, decl, bindings),
            StmtExpr(ref e, _) |
            StmtSemi(ref e, _) => check_expr(cx, e, bindings),
        }
    }
    if let Some(ref o) = block.expr {
        check_expr(cx, o, bindings);
    }
    bindings.truncate(len);
}

fn check_decl(cx: &LateContext, decl: &Decl, bindings: &mut Vec<(Name, Span)>) {
    if in_external_macro(cx, decl.span) {
        return;
    }
    if higher::is_from_for_desugar(decl) {
        return;
    }
    if let DeclLocal(ref local) = decl.node {
        let Local { ref pat, ref ty, ref init, span, .. } = **local;
        if let Some(ref t) = *ty {
            check_ty(cx, t, bindings)
        }
        if let Some(ref o) = *init {
            check_expr(cx, o, bindings);
            check_pat(cx, pat, &Some(o), span, bindings);
        } else {
            check_pat(cx, pat, &None, span, bindings);
        }
    }
}

fn is_binding(cx: &LateContext, pat: &Pat) -> bool {
    match cx.tcx.def_map.borrow().get(&pat.id).map(|d| d.full_def()) {
        Some(Def::Variant(..)) |
        Some(Def::Struct(..)) => false,
        _ => true,
    }
}

fn check_pat(cx: &LateContext, pat: &Pat, init: &Option<&Expr>, span: Span, bindings: &mut Vec<(Name, Span)>) {
    // TODO: match more stuff / destructuring
    match pat.node {
        PatKind::Binding(_, ref ident, ref inner) => {
            let name = ident.node;
            if is_binding(cx, pat) {
                let mut new_binding = true;
                for tup in bindings.iter_mut() {
                    if tup.0 == name {
                        lint_shadow(cx, name, span, pat.span, init, tup.1);
                        tup.1 = ident.span;
                        new_binding = false;
                        break;
                    }
                }
                if new_binding {
                    bindings.push((name, ident.span));
                }
            }
            if let Some(ref p) = *inner {
                check_pat(cx, p, init, span, bindings);
            }
        }
        PatKind::Struct(_, ref pfields, _) => {
            if let Some(init_struct) = *init {
                if let ExprStruct(_, ref efields, _) = init_struct.node {
                    for field in pfields {
                        let name = field.node.name;
                        let efield = efields.iter()
                                            .find(|f| f.name.node == name)
                                            .map(|f| &*f.expr);
                        check_pat(cx, &field.node.pat, &efield, span, bindings);
                    }
                } else {
                    for field in pfields {
                        check_pat(cx, &field.node.pat, init, span, bindings);
                    }
                }
            } else {
                for field in pfields {
                    check_pat(cx, &field.node.pat, &None, span, bindings);
                }
            }
        }
        PatKind::Tuple(ref inner, _) => {
            if let Some(init_tup) = *init {
                if let ExprTup(ref tup) = init_tup.node {
                    for (i, p) in inner.iter().enumerate() {
                        check_pat(cx, p, &Some(&tup[i]), p.span, bindings);
                    }
                } else {
                    for p in inner {
                        check_pat(cx, p, init, span, bindings);
                    }
                }
            } else {
                for p in inner {
                    check_pat(cx, p, &None, span, bindings);
                }
            }
        }
        PatKind::Box(ref inner) => {
            if let Some(initp) = *init {
                if let ExprBox(ref inner_init) = initp.node {
                    check_pat(cx, inner, &Some(&**inner_init), span, bindings);
                } else {
                    check_pat(cx, inner, init, span, bindings);
                }
            } else {
                check_pat(cx, inner, init, span, bindings);
            }
        }
        PatKind::Ref(ref inner, _) => check_pat(cx, inner, init, span, bindings),
        // PatVec(Vec<P<Pat>>, Option<P<Pat>>, Vec<P<Pat>>),
        _ => (),
    }
}

fn lint_shadow<T>(cx: &LateContext, name: Name, span: Span, pattern_span: Span, init: &Option<T>, prev_span: Span)
    where T: Deref<Target = Expr>
{
    if let Some(ref expr) = *init {
        if is_self_shadow(name, expr) {
            span_lint_and_then(cx,
                               SHADOW_SAME,
                               span,
                               &format!("`{}` is shadowed by itself in `{}`",
                                        snippet(cx, pattern_span, "_"),
                                        snippet(cx, expr.span, "..")),
                               |db| { db.span_note(prev_span, "previous binding is here"); },
            );
        } else if contains_self(name, expr) {
            span_lint_and_then(cx,
                               SHADOW_REUSE,
                               pattern_span,
                               &format!("`{}` is shadowed by `{}` which reuses the original value",
                                        snippet(cx, pattern_span, "_"),
                                        snippet(cx, expr.span, "..")),
                               |db| {
                                   db.span_note(expr.span, "initialization happens here");
                                   db.span_note(prev_span, "previous binding is here");
                               });
        } else {
            span_lint_and_then(cx,
                               SHADOW_UNRELATED,
                               pattern_span,
                               &format!("`{}` is shadowed by `{}`",
                                        snippet(cx, pattern_span, "_"),
                                        snippet(cx, expr.span, "..")),
                               |db| {
                                   db.span_note(expr.span, "initialization happens here");
                                   db.span_note(prev_span, "previous binding is here");
                               });
        }

    } else {
        span_lint_and_then(cx,
                           SHADOW_UNRELATED,
                           span,
                           &format!("{} shadows a previous declaration", snippet(cx, pattern_span, "_")),
                           |db| { db.span_note(prev_span, "previous binding is here"); });
    }
}

fn check_expr(cx: &LateContext, expr: &Expr, bindings: &mut Vec<(Name, Span)>) {
    if in_external_macro(cx, expr.span) {
        return;
    }
    match expr.node {
        ExprUnary(_, ref e) |
        ExprField(ref e, _) |
        ExprTupField(ref e, _) |
        ExprAddrOf(_, ref e) |
        ExprBox(ref e) => check_expr(cx, e, bindings),
        ExprBlock(ref block) |
        ExprLoop(ref block, _) => check_block(cx, block, bindings),
        // ExprCall
        // ExprMethodCall
        ExprVec(ref v) | ExprTup(ref v) => {
            for e in v {
                check_expr(cx, e, bindings)
            }
        }
        ExprIf(ref cond, ref then, ref otherwise) => {
            check_expr(cx, cond, bindings);
            check_block(cx, then, bindings);
            if let Some(ref o) = *otherwise {
                check_expr(cx, o, bindings);
            }
        }
        ExprWhile(ref cond, ref block, _) => {
            check_expr(cx, cond, bindings);
            check_block(cx, block, bindings);
        }
        ExprMatch(ref init, ref arms, _) => {
            check_expr(cx, init, bindings);
            let len = bindings.len();
            for arm in arms {
                for pat in &arm.pats {
                    check_pat(cx, pat, &Some(&**init), pat.span, bindings);
                    // This is ugly, but needed to get the right type
                    if let Some(ref guard) = arm.guard {
                        check_expr(cx, guard, bindings);
                    }
                    check_expr(cx, &arm.body, bindings);
                    bindings.truncate(len);
                }
            }
        }
        _ => (),
    }
}

fn check_ty(cx: &LateContext, ty: &Ty, bindings: &mut Vec<(Name, Span)>) {
    match ty.node {
        TyObjectSum(ref sty, _) |
        TyVec(ref sty) => check_ty(cx, sty, bindings),
        TyFixedLengthVec(ref fty, ref expr) => {
            check_ty(cx, fty, bindings);
            check_expr(cx, expr, bindings);
        }
        TyPtr(MutTy { ty: ref mty, .. }) |
        TyRptr(_, MutTy { ty: ref mty, .. }) => check_ty(cx, mty, bindings),
        TyTup(ref tup) => {
            for t in tup {
                check_ty(cx, t, bindings)
            }
        }
        TyTypeof(ref expr) => check_expr(cx, expr, bindings),
        _ => (),
    }
}

fn is_self_shadow(name: Name, expr: &Expr) -> bool {
    match expr.node {
        ExprBox(ref inner) |
        ExprAddrOf(_, ref inner) => is_self_shadow(name, inner),
        ExprBlock(ref block) => {
            block.stmts.is_empty() && block.expr.as_ref().map_or(false, |e| is_self_shadow(name, e))
        }
        ExprUnary(op, ref inner) => (UnDeref == op) && is_self_shadow(name, inner),
        ExprPath(_, ref path) => path_eq_name(name, path),
        _ => false,
    }
}

fn path_eq_name(name: Name, path: &Path) -> bool {
    !path.global && path.segments.len() == 1 && path.segments[0].name.as_str() == name.as_str()
}

struct ContainsSelf {
    name: Name,
    result: bool,
}

impl<'v> Visitor<'v> for ContainsSelf {
    fn visit_name(&mut self, _: Span, name: Name) {
        if self.name == name {
            self.result = true;
        }
    }
}

fn contains_self(name: Name, expr: &Expr) -> bool {
    let mut cs = ContainsSelf {
        name: name,
        result: false,
    };
    cs.visit_expr(expr);
    cs.result
}