clippy_lints 0.0.84

A bunch of helpful lints to avoid common pitfalls in Rust
use rustc::hir;
use rustc::lint::*;
use rustc::middle::const_val::ConstVal;
use rustc::middle::const_qualif::ConstQualif;
use rustc::ty;
use rustc_const_eval::EvalHint::ExprTypeChecked;
use rustc_const_eval::eval_const_expr_partial;
use std::borrow::Cow;
use std::fmt;
use syntax::codemap::Span;
use syntax::ptr::P;
use utils::{get_trait_def_id, implements_trait, in_external_macro, in_macro, is_copy, match_path,
            match_trait_method, match_type, method_chain_args, return_ty, same_tys, snippet,
            span_lint, span_lint_and_then, span_note_and_lint, walk_ptrs_ty, walk_ptrs_ty_depth};
use utils::MethodArgs;
use utils::paths;
use utils::sugg;

#[derive(Clone)]
pub struct Pass;

/// **What it does:** Checks for `.unwrap()` calls on `Option`s.
///
/// **Why is this bad?** Usually it is better to handle the `None` case, or to
/// at least call `.expect(_)` with a more helpful message. Still, for a lot of
/// quick-and-dirty code, `unwrap` is a good choice, which is why this lint is
/// `Allow` by default.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// x.unwrap()
/// ```
declare_lint! {
    pub OPTION_UNWRAP_USED,
    Allow,
    "using `Option.unwrap()`, which should at least get a better message using `expect()`"
}

/// **What it does:** Checks for `.unwrap()` calls on `Result`s.
///
/// **Why is this bad?** `result.unwrap()` will let the thread panic on `Err`
/// values. Normally, you want to implement more sophisticated error handling,
/// and propagate errors upwards with `try!`.
///
/// Even if you want to panic on errors, not all `Error`s implement good
/// messages on display.  Therefore it may be beneficial to look at the places
/// where they may get displayed. Activate this lint to do just that.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// x.unwrap()
/// ```
declare_lint! {
    pub RESULT_UNWRAP_USED,
    Allow,
    "using `Result.unwrap()`, which might be better handled"
}

/// **What it does:** Checks for methods that should live in a trait
/// implementation of a `std` trait (see [llogiq's blog
/// post](http://llogiq.github.io/2015/07/30/traits.html) for further
/// information) instead of an inherent implementation.
///
/// **Why is this bad?** Implementing the traits improve ergonomics for users of
/// the code, often with very little cost. Also people seeing a `mul(...)` method
/// may expect `*` to work equally, so you should have good reason to disappoint
/// them.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// struct X;
/// impl X {
///    fn add(&self, other: &X) -> X { .. }
/// }
/// ```
declare_lint! {
    pub SHOULD_IMPLEMENT_TRAIT,
    Warn,
    "defining a method that should be implementing a std trait"
}

/// **What it does:** Checks for methods with certain name prefixes and which
/// doesn't match how self is taken. The actual rules are:
///
/// |Prefix |`self` taken          |
/// |-------|----------------------|
/// |`as_`  |`&self` or `&mut self`|
/// |`from_`| none                 |
/// |`into_`|`self`                |
/// |`is_`  |`&self` or none       |
/// |`to_`  |`&self`               |
///
/// **Why is this bad?** Consistency breeds readability. If you follow the
/// conventions, your users won't be surprised that they, e.g., need to supply a
/// mutable reference to a `as_..` function.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// impl X {
///     fn as_str(self) -> &str { .. }
/// }
/// ```
declare_lint! {
    pub WRONG_SELF_CONVENTION,
    Warn,
    "defining a method named with an established prefix (like \"into_\") that takes \
     `self` with the wrong convention"
}

/// **What it does:** This is the same as
/// [`wrong_self_convention`](#wrong_self_convention), but for public items.
///
/// **Why is this bad?** See [`wrong_self_convention`](#wrong_self_convention).
///
/// **Known problems:** Actually *renaming* the function may break clients if
/// the function is part of the public interface. In that case, be mindful of
/// the stability guarantees you've given your users.
///
/// **Example:**
/// ```rust
/// impl X {
///     pub fn as_str(self) -> &str { .. }
/// }
/// ```
declare_lint! {
    pub WRONG_PUB_SELF_CONVENTION,
    Allow,
    "defining a public method named with an established prefix (like \"into_\") that takes \
     `self` with the wrong convention"
}

/// **What it does:** Checks for usage of `ok().expect(..)`.
///
/// **Why is this bad?** Because you usually call `expect()` on the `Result`
/// directly to get a better error message.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// x.ok().expect("why did I do this again?")
/// ```
declare_lint! {
    pub OK_EXPECT,
    Warn,
    "using `ok().expect()`, which gives worse error messages than \
     calling `expect` directly on the Result"
}

/// **What it does:** Checks for usage of `_.map(_).unwrap_or(_)`.
///
/// **Why is this bad?** Readability, this can be written more concisely as
/// `_.map_or(_, _)`.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// x.map(|a| a + 1).unwrap_or(0)
/// ```
declare_lint! {
    pub OPTION_MAP_UNWRAP_OR,
    Warn,
    "using `Option.map(f).unwrap_or(a)`, which is more succinctly expressed as \
     `map_or(a, f)`"
}

/// **What it does:** Checks for usage of `_.map(_).unwrap_or_else(_)`.
///
/// **Why is this bad?** Readability, this can be written more concisely as
/// `_.map_or_else(_, _)`.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// x.map(|a| a + 1).unwrap_or_else(some_function)
/// ```
declare_lint! {
    pub OPTION_MAP_UNWRAP_OR_ELSE,
    Warn,
    "using `Option.map(f).unwrap_or_else(g)`, which is more succinctly expressed as \
     `map_or_else(g, f)`"
}

/// **What it does:** Checks for usage of `_.filter(_).next()`.
///
/// **Why is this bad?** Readability, this can be written more concisely as
/// `_.find(_)`.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// iter.filter(|x| x == 0).next()
/// ```
declare_lint! {
    pub FILTER_NEXT,
    Warn,
    "using `filter(p).next()`, which is more succinctly expressed as `.find(p)`"
}

/// **What it does:** Checks for usage of `_.filter(_).map(_)`,
/// `_.filter(_).flat_map(_)`, `_.filter_map(_).flat_map(_)` and similar.
///
/// **Why is this bad?** Readability, this can be written more concisely as a
/// single method call.
///
/// **Known problems:** Often requires a condition + Option/Iterator creation
/// inside the closure.
///
/// **Example:**
/// ```rust
/// iter.filter(|x| x == 0).map(|x| x * 2)
/// ```
declare_lint! {
    pub FILTER_MAP,
    Allow,
    "using combinations of `filter`, `map`, `filter_map` and `flat_map` which can \
     usually be written as a single method call"
}

/// **What it does:** Checks for an iterator search (such as `find()`,
/// `position()`, or `rposition()`) followed by a call to `is_some()`.
///
/// **Why is this bad?** Readability, this can be written more concisely as
/// `_.any(_)`.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// iter.find(|x| x == 0).is_some()
/// ```
declare_lint! {
    pub SEARCH_IS_SOME,
    Warn,
    "using an iterator search followed by `is_some()`, which is more succinctly \
     expressed as a call to `any()`"
}

/// **What it does:** Checks for usage of `.chars().next()` on a `str` to check
/// if it starts with a given char.
///
/// **Why is this bad?** Readability, this can be written more concisely as
/// `_.starts_with(_)`.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// name.chars().next() == Some('_')
/// ```
declare_lint! {
    pub CHARS_NEXT_CMP,
    Warn,
    "using `.chars().next()` to check if a string starts with a char"
}

/// **What it does:** Checks for calls to `.or(foo(..))`, `.unwrap_or(foo(..))`,
/// etc., and suggests to use `or_else`, `unwrap_or_else`, etc., or
/// `unwrap_or_default` instead.
///
/// **Why is this bad?** The function will always be called and potentially
/// allocate an object acting as the default.
///
/// **Known problems:** If the function has side-effects, not calling it will
/// change the semantic of the program, but you shouldn't rely on that anyway.
///
/// **Example:**
/// ```rust
/// foo.unwrap_or(String::new())
/// ```
/// this can instead be written:
/// ```rust
/// foo.unwrap_or_else(String::new)
/// ```
/// or
/// ```rust
/// foo.unwrap_or_default()
/// ```
declare_lint! {
    pub OR_FUN_CALL,
    Warn,
    "using any `*or` method with a function call, which suggests `*or_else`"
}

/// **What it does:** Checks for usage of `.extend(s)` on a `Vec` to extend the
/// vector by a slice.
///
/// **Why is this bad?** Since Rust 1.6, the `extend_from_slice(_)` method is
/// stable and at least for now faster.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// my_vec.extend(&xs)
/// ```
declare_lint! {
    pub EXTEND_FROM_SLICE,
    Warn,
    "`.extend_from_slice(_)` is a faster way to extend a Vec by a slice"
}

/// **What it does:** Checks for usage of `.clone()` on a `Copy` type.
///
/// **Why is this bad?** The only reason `Copy` types implement `Clone` is for
/// generics, not for using the `clone` method on a concrete type.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// 42u64.clone()
/// ```
declare_lint! {
    pub CLONE_ON_COPY,
    Warn,
    "using `clone` on a `Copy` type"
}

/// **What it does:** Checks for usage of `.clone()` on an `&&T`.
///
/// **Why is this bad?** Cloning an `&&T` copies the inner `&T`, instead of
/// cloning the underlying `T`.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// fn main() {
///    let x = vec![1];
///    let y = &&x;
///    let z = y.clone();
///    println!("{:p} {:p}",*y, z); // prints out the same pointer
/// }
/// ```
declare_lint! {
    pub CLONE_DOUBLE_REF,
    Warn,
    "using `clone` on `&&T`"
}

/// **What it does:** Checks for `new` not returning `Self`.
///
/// **Why is this bad?** As a convention, `new` methods are used to make a new
/// instance of a type.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// impl Foo {
///     fn new(..) -> NotAFoo {
///     }
/// }
/// ```
declare_lint! {
    pub NEW_RET_NO_SELF,
    Warn,
    "not returning `Self` in a `new` method"
}

/// **What it does:** Checks for string methods that receive a single-character
/// `str` as an argument, e.g. `_.split("x")`.
///
/// **Why is this bad?** Performing these methods using a `char` is faster than
/// using a `str`.
///
/// **Known problems:** Does not catch multi-byte unicode characters.
///
/// **Example:**
/// ```rust
/// _.split("x")` could be `_.split('x')
/// ```
declare_lint! {
    pub SINGLE_CHAR_PATTERN,
    Warn,
    "using a single-character str where a char could be used, e.g. \
     `_.split(\"x\")`"
}

/// **What it does:** Checks for getting the inner pointer of a temporary `CString`.
///
/// **Why is this bad?** The inner pointer of a `CString` is only valid as long
/// as the `CString` is alive.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust,ignore
/// let c_str = CString::new("foo").unwrap().as_ptr();
/// unsafe {
/// call_some_ffi_func(c_str);
/// }
/// ```
/// Here `c_str` point to a freed address. The correct use would be:
/// ```rust,ignore
/// let c_str = CString::new("foo").unwrap();
/// unsafe {
///     call_some_ffi_func(c_str.as_ptr());
/// }
/// ```
declare_lint! {
    pub TEMPORARY_CSTRING_AS_PTR,
    Warn,
    "getting the inner pointer of a temporary `CString`"
}

/// **What it does:** Checks for use of `.iter().nth()` (and the related
/// `.iter_mut().nth()`) on standard library types with O(1) element access.
///
/// **Why is this bad?** `.get()` and `.get_mut()` are more efficient and more
/// readable.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// let some_vec = vec![0, 1, 2, 3];
/// let bad_vec = some_vec.iter().nth(3);
/// let bad_slice = &some_vec[..].iter().nth(3);
/// ```
/// The correct use would be:
/// ```rust
/// let some_vec = vec![0, 1, 2, 3];
/// let bad_vec = some_vec.get(3);
/// let bad_slice = &some_vec[..].get(3);
/// ```
declare_lint! {
    pub ITER_NTH,
    Warn,
    "using `.iter().nth()` on a standard library type with O(1) element access"
}

impl LintPass for Pass {
    fn get_lints(&self) -> LintArray {
        lint_array!(EXTEND_FROM_SLICE,
                    OPTION_UNWRAP_USED,
                    RESULT_UNWRAP_USED,
                    SHOULD_IMPLEMENT_TRAIT,
                    WRONG_SELF_CONVENTION,
                    WRONG_PUB_SELF_CONVENTION,
                    OK_EXPECT,
                    OPTION_MAP_UNWRAP_OR,
                    OPTION_MAP_UNWRAP_OR_ELSE,
                    OR_FUN_CALL,
                    CHARS_NEXT_CMP,
                    CLONE_ON_COPY,
                    CLONE_DOUBLE_REF,
                    NEW_RET_NO_SELF,
                    SINGLE_CHAR_PATTERN,
                    SEARCH_IS_SOME,
                    TEMPORARY_CSTRING_AS_PTR,
                    FILTER_MAP,
                    ITER_NTH)
    }
}

impl LateLintPass for Pass {
    fn check_expr(&mut self, cx: &LateContext, expr: &hir::Expr) {
        if in_macro(cx, expr.span) {
            return;
        }

        match expr.node {
            hir::ExprMethodCall(name, _, ref args) => {
                // Chain calls
                if let Some(arglists) = method_chain_args(expr, &["unwrap"]) {
                    lint_unwrap(cx, expr, arglists[0]);
                } else if let Some(arglists) = method_chain_args(expr, &["ok", "expect"]) {
                    lint_ok_expect(cx, expr, arglists[0]);
                } else if let Some(arglists) = method_chain_args(expr, &["map", "unwrap_or"]) {
                    lint_map_unwrap_or(cx, expr, arglists[0], arglists[1]);
                } else if let Some(arglists) = method_chain_args(expr, &["map", "unwrap_or_else"]) {
                    lint_map_unwrap_or_else(cx, expr, arglists[0], arglists[1]);
                } else if let Some(arglists) = method_chain_args(expr, &["filter", "next"]) {
                    lint_filter_next(cx, expr, arglists[0]);
                } else if let Some(arglists) = method_chain_args(expr, &["filter", "map"]) {
                    lint_filter_map(cx, expr, arglists[0], arglists[1]);
                } else if let Some(arglists) = method_chain_args(expr, &["filter_map", "map"]) {
                    lint_filter_map_map(cx, expr, arglists[0], arglists[1]);
                } else if let Some(arglists) = method_chain_args(expr, &["filter", "flat_map"]) {
                    lint_filter_flat_map(cx, expr, arglists[0], arglists[1]);
                } else if let Some(arglists) = method_chain_args(expr, &["filter_map", "flat_map"]) {
                    lint_filter_map_flat_map(cx, expr, arglists[0], arglists[1]);
                } else if let Some(arglists) = method_chain_args(expr, &["find", "is_some"]) {
                    lint_search_is_some(cx, expr, "find", arglists[0], arglists[1]);
                } else if let Some(arglists) = method_chain_args(expr, &["position", "is_some"]) {
                    lint_search_is_some(cx, expr, "position", arglists[0], arglists[1]);
                } else if let Some(arglists) = method_chain_args(expr, &["rposition", "is_some"]) {
                    lint_search_is_some(cx, expr, "rposition", arglists[0], arglists[1]);
                } else if let Some(arglists) = method_chain_args(expr, &["extend"]) {
                    lint_extend(cx, expr, arglists[0]);
                } else if let Some(arglists) = method_chain_args(expr, &["unwrap", "as_ptr"]) {
                    lint_cstring_as_ptr(cx, expr, &arglists[0][0], &arglists[1][0]);
                } else if let Some(arglists) = method_chain_args(expr, &["iter", "nth"]) {
                    lint_iter_nth(cx, expr, arglists[0], false);
                } else if let Some(arglists) = method_chain_args(expr, &["iter_mut", "nth"]) {
                    lint_iter_nth(cx, expr, arglists[0], true);
                }

                lint_or_fun_call(cx, expr, &name.node.as_str(), args);

                let self_ty = cx.tcx.expr_ty_adjusted(&args[0]);
                if args.len() == 1 && name.node.as_str() == "clone" {
                    lint_clone_on_copy(cx, expr, &args[0], self_ty);
                }

                match self_ty.sty {
                    ty::TyRef(_, ty) if ty.ty.sty == ty::TyStr => {
                        for &(method, pos) in &PATTERN_METHODS {
                            if name.node.as_str() == method && args.len() > pos {
                                lint_single_char_pattern(cx, expr, &args[pos]);
                            }
                        }
                    }
                    _ => (),
                }
            }
            hir::ExprBinary(op, ref lhs, ref rhs) if op.node == hir::BiEq || op.node == hir::BiNe => {
                if !lint_chars_next(cx, expr, lhs, rhs, op.node == hir::BiEq) {
                    lint_chars_next(cx, expr, rhs, lhs, op.node == hir::BiEq);
                }
            }
            _ => (),
        }
    }

    fn check_impl_item(&mut self, cx: &LateContext, implitem: &hir::ImplItem) {
        if in_external_macro(cx, implitem.span) {
            return;
        }
        let name = implitem.name;
        let parent = cx.tcx.map.get_parent(implitem.id);
        let item = cx.tcx.map.expect_item(parent);
        if_let_chain! {[
            let hir::ImplItemKind::Method(ref sig, _) = implitem.node,
            let Some(explicit_self) = sig.decl.inputs.get(0).and_then(hir::Arg::to_self),
            let hir::ItemImpl(_, _, _, None, _, _) = item.node,
        ], {
            // check missing trait implementations
            for &(method_name, n_args, self_kind, out_type, trait_name) in &TRAIT_METHODS {
                if name.as_str() == method_name &&
                   sig.decl.inputs.len() == n_args &&
                   out_type.matches(&sig.decl.output) &&
                   self_kind.matches(&explicit_self, false) {
                    span_lint(cx, SHOULD_IMPLEMENT_TRAIT, implitem.span, &format!(
                        "defining a method called `{}` on this type; consider implementing \
                         the `{}` trait or choosing a less ambiguous name", name, trait_name));
                }
            }

            // check conventions w.r.t. conversion method names and predicates
            let ty = cx.tcx.lookup_item_type(cx.tcx.map.local_def_id(item.id)).ty;
            let is_copy = is_copy(cx, ty, item.id);
            for &(ref conv, self_kinds) in &CONVENTIONS {
                if_let_chain! {[
                    conv.check(&name.as_str()),
                    let Some(explicit_self) = sig.decl.inputs.get(0).and_then(hir::Arg::to_self),
                    !self_kinds.iter().any(|k| k.matches(&explicit_self, is_copy)),
                ], {
                    let lint = if item.vis == hir::Visibility::Public {
                        WRONG_PUB_SELF_CONVENTION
                    } else {
                        WRONG_SELF_CONVENTION
                    };
                    span_lint(cx,
                              lint,
                              explicit_self.span,
                              &format!("methods called `{}` usually take {}; consider choosing a less \
                                        ambiguous name",
                                       conv,
                                       &self_kinds.iter()
                                                  .map(|k| k.description())
                                                  .collect::<Vec<_>>()
                                                  .join(" or ")));
                }}
            }

            let ret_ty = return_ty(cx, implitem.id);
            if &name.as_str() == &"new" &&
               !ret_ty.walk().any(|t| same_tys(cx, t, ty, implitem.id)) {
                span_lint(cx,
                          NEW_RET_NO_SELF,
                          explicit_self.span,
                          "methods called `new` usually return `Self`");
            }
        }}
    }
}

/// Checks for the `OR_FUN_CALL` lint.
fn lint_or_fun_call(cx: &LateContext, expr: &hir::Expr, name: &str, args: &[P<hir::Expr>]) {
    /// Check for `unwrap_or(T::new())` or `unwrap_or(T::default())`.
    fn check_unwrap_or_default(cx: &LateContext, name: &str, fun: &hir::Expr, self_expr: &hir::Expr, arg: &hir::Expr,
                               or_has_args: bool, span: Span)
                               -> bool {
        if or_has_args {
            return false;
        }

        if name == "unwrap_or" {
            if let hir::ExprPath(_, ref path) = fun.node {
                let path: &str = &path.segments
                                      .last()
                                      .expect("A path must have at least one segment")
                                      .name
                                      .as_str();

                if ["default", "new"].contains(&path) {
                    let arg_ty = cx.tcx.expr_ty(arg);
                    let default_trait_id = if let Some(default_trait_id) = get_trait_def_id(cx, &paths::DEFAULT_TRAIT) {
                        default_trait_id
                    } else {
                        return false;
                    };

                    if implements_trait(cx, arg_ty, default_trait_id, Vec::new()) {
                        span_lint_and_then(cx,
                                  OR_FUN_CALL,
                                  span,
                                  &format!("use of `{}` followed by a call to `{}`", name, path),
                                  |db| {
                                      db.span_suggestion(span, "try this",
                                                          format!("{}.unwrap_or_default()", snippet(cx, self_expr.span, "_")));
                                  });
                        return true;
                    }
                }
            }
        }

        false
    }

    /// Check for `*or(foo())`.
    fn check_general_case(cx: &LateContext, name: &str, fun: &hir::Expr, self_expr: &hir::Expr, arg: &hir::Expr, or_has_args: bool,
                          span: Span) {
        // don't lint for constant values
        // FIXME: can we `expect` here instead of match?
        if let Some(qualif) = cx.tcx.const_qualif_map.borrow().get(&arg.id) {
            if !qualif.contains(ConstQualif::NOT_CONST) {
                return;
            }
        }
        // (path, fn_has_argument, methods, suffix)
        let know_types: &[(&[_], _, &[_], _)] = &[(&paths::BTREEMAP_ENTRY, false, &["or_insert"], "with"),
                                                  (&paths::HASHMAP_ENTRY, false, &["or_insert"], "with"),
                                                  (&paths::OPTION,
                                                   false,
                                                   &["map_or", "ok_or", "or", "unwrap_or"],
                                                   "else"),
                                                  (&paths::RESULT, true, &["or", "unwrap_or"], "else")];

        let self_ty = cx.tcx.expr_ty(self_expr);

        let (fn_has_arguments, poss, suffix) = if let Some(&(_, fn_has_arguments, poss, suffix)) =
                                                      know_types.iter().find(|&&i| match_type(cx, self_ty, i.0)) {
            (fn_has_arguments, poss, suffix)
        } else {
            return;
        };

        if !poss.contains(&name) {
            return;
        }

        let sugg: Cow<_> = match (fn_has_arguments, !or_has_args) {
            (true, _) => format!("|_| {}", snippet(cx, arg.span, "..")).into(),
            (false, false) => format!("|| {}", snippet(cx, arg.span, "..")).into(),
            (false, true) => snippet(cx, fun.span, ".."),
        };

        span_lint_and_then(cx, OR_FUN_CALL, span, &format!("use of `{}` followed by a function call", name), |db| {
            db.span_suggestion(span,
                               "try this",
                               format!("{}.{}_{}({})", snippet(cx, self_expr.span, "_"), name, suffix, sugg));
        });
    }

    if args.len() == 2 {
        if let hir::ExprCall(ref fun, ref or_args) = args[1].node {
            let or_has_args = !or_args.is_empty();
            if !check_unwrap_or_default(cx, name, fun, &args[0], &args[1], or_has_args, expr.span) {
                check_general_case(cx, name, fun, &args[0], &args[1], or_has_args, expr.span);
            }
        }
    }
}

/// Checks for the `CLONE_ON_COPY` lint.
fn lint_clone_on_copy(cx: &LateContext, expr: &hir::Expr, arg: &hir::Expr, arg_ty: ty::Ty) {
    let ty = cx.tcx.expr_ty(expr);
    let parent = cx.tcx.map.get_parent(expr.id);
    let parameter_environment = ty::ParameterEnvironment::for_item(cx.tcx, parent);
    if let ty::TyRef(_, ty::TypeAndMut { ty: inner, .. }) = arg_ty.sty {
        if let ty::TyRef(..) = inner.sty {
            span_lint_and_then(cx,
                               CLONE_DOUBLE_REF,
                               expr.span,
                               "using `clone` on a double-reference; \
                                this will copy the reference instead of cloning the inner type",
                               |db| if let Some(snip) = sugg::Sugg::hir_opt(cx, arg) {
                                   db.span_suggestion(expr.span, "try dereferencing it", format!("({}).clone()", snip.deref()));
                               });
            return; // don't report clone_on_copy
        }
    }

    if !ty.moves_by_default(cx.tcx.global_tcx(), &parameter_environment, expr.span) {
        span_lint_and_then(cx,
                           CLONE_ON_COPY,
                           expr.span,
                           "using `clone` on a `Copy` type",
                           |db| if let Some(snip) = sugg::Sugg::hir_opt(cx, arg) {
                               if let ty::TyRef(..) = cx.tcx.expr_ty(arg).sty {
                                   db.span_suggestion(expr.span, "try dereferencing it", format!("{}", snip.deref()));
                               } else {
                                   db.span_suggestion(expr.span, "try removing the `clone` call", format!("{}", snip));
                               }
                           });
    }
}

fn lint_extend(cx: &LateContext, expr: &hir::Expr, args: &MethodArgs) {
    let (obj_ty, _) = walk_ptrs_ty_depth(cx.tcx.expr_ty(&args[0]));
    if !match_type(cx, obj_ty, &paths::VEC) {
        return;
    }
    let arg_ty = cx.tcx.expr_ty(&args[1]);
    if let Some(slice) = derefs_to_slice(cx, &args[1], arg_ty) {
        span_lint_and_then(cx, EXTEND_FROM_SLICE, expr.span, "use of `extend` to extend a Vec by a slice", |db| {
            db.span_suggestion(expr.span,
                               "try this",
                               format!("{}.extend_from_slice({})",
                                       snippet(cx, args[0].span, "_"),
                                       slice));
        });
    }
}

fn lint_cstring_as_ptr(cx: &LateContext, expr: &hir::Expr, new: &hir::Expr, unwrap: &hir::Expr) {
    if_let_chain!{[
        let hir::ExprCall(ref fun, ref args) = new.node,
        args.len() == 1,
        let hir::ExprPath(None, ref path) = fun.node,
        match_path(path, &paths::CSTRING_NEW),
    ], {
        span_lint_and_then(cx, TEMPORARY_CSTRING_AS_PTR, expr.span,
                           "you are getting the inner pointer of a temporary `CString`",
                           |db| {
                               db.note("that pointer will be invalid outside this expression");
                               db.span_help(unwrap.span, "assign the `CString` to a variable to extend its lifetime");
                           });
    }}
}

#[allow(ptr_arg)]
// Type of MethodArgs is potentially a Vec
fn lint_iter_nth(cx: &LateContext, expr: &hir::Expr, iter_args: &MethodArgs, is_mut: bool){
    let mut_str = if is_mut { "_mut" } else {""};
    let caller_type = if let Some(_) = derefs_to_slice(cx, &iter_args[0], cx.tcx.expr_ty(&iter_args[0])) {
        "slice"
    }
    else if match_type(cx, cx.tcx.expr_ty(&iter_args[0]), &paths::VEC) {
        "Vec"
    }
    else if match_type(cx, cx.tcx.expr_ty(&iter_args[0]), &paths::VEC_DEQUE) {
        "VecDeque"
    }
    else {
        return; // caller is not a type that we want to lint
    };

    span_lint(
        cx,
        ITER_NTH,
        expr.span,
        &format!("called `.iter{0}().nth()` on a {1}. Calling `.get{0}()` is both faster and more readable",
                 mut_str, caller_type)
    );
}

fn derefs_to_slice(cx: &LateContext, expr: &hir::Expr, ty: ty::Ty) -> Option<sugg::Sugg<'static>> {
    fn may_slice(cx: &LateContext, ty: ty::Ty) -> bool {
        match ty.sty {
            ty::TySlice(_) => true,
            ty::TyStruct(..) => match_type(cx, ty, &paths::VEC),
            ty::TyArray(_, size) => size < 32,
            ty::TyRef(_, ty::TypeAndMut { ty: inner, .. }) |
            ty::TyBox(inner) => may_slice(cx, inner),
            _ => false,
        }
    }

    if let hir::ExprMethodCall(name, _, ref args) = expr.node {
        if &name.node.as_str() == &"iter" && may_slice(cx, cx.tcx.expr_ty(&args[0])) {
            sugg::Sugg::hir_opt(cx, &*args[0]).map(|sugg| {
                sugg.addr()
            })
        } else {
            None
        }
    } else {
        match ty.sty {
            ty::TySlice(_) => sugg::Sugg::hir_opt(cx, expr),
            ty::TyRef(_, ty::TypeAndMut { ty: inner, .. }) |
            ty::TyBox(inner) => {
                if may_slice(cx, inner) {
                    sugg::Sugg::hir_opt(cx, expr)
                } else {
                    None
                }
            }
            _ => None,
        }
    }
}

#[allow(ptr_arg)]
// Type of MethodArgs is potentially a Vec
/// lint use of `unwrap()` for `Option`s and `Result`s
fn lint_unwrap(cx: &LateContext, expr: &hir::Expr, unwrap_args: &MethodArgs) {
    let (obj_ty, _) = walk_ptrs_ty_depth(cx.tcx.expr_ty(&unwrap_args[0]));

    let mess = if match_type(cx, obj_ty, &paths::OPTION) {
        Some((OPTION_UNWRAP_USED, "an Option", "None"))
    } else if match_type(cx, obj_ty, &paths::RESULT) {
        Some((RESULT_UNWRAP_USED, "a Result", "Err"))
    } else {
        None
    };

    if let Some((lint, kind, none_value)) = mess {
        span_lint(cx,
                  lint,
                  expr.span,
                  &format!("used unwrap() on {} value. If you don't want to handle the {} case gracefully, consider \
                            using expect() to provide a better panic
                            message",
                           kind,
                           none_value));
    }
}

#[allow(ptr_arg)]
// Type of MethodArgs is potentially a Vec
/// lint use of `ok().expect()` for `Result`s
fn lint_ok_expect(cx: &LateContext, expr: &hir::Expr, ok_args: &MethodArgs) {
    // lint if the caller of `ok()` is a `Result`
    if match_type(cx, cx.tcx.expr_ty(&ok_args[0]), &paths::RESULT) {
        let result_type = cx.tcx.expr_ty(&ok_args[0]);
        if let Some(error_type) = get_error_type(cx, result_type) {
            if has_debug_impl(error_type, cx) {
                span_lint(cx,
                          OK_EXPECT,
                          expr.span,
                          "called `ok().expect()` on a Result value. You can call `expect` directly on the `Result`");
            }
        }
    }
}

#[allow(ptr_arg)]
// Type of MethodArgs is potentially a Vec
/// lint use of `map().unwrap_or()` for `Option`s
fn lint_map_unwrap_or(cx: &LateContext, expr: &hir::Expr, map_args: &MethodArgs, unwrap_args: &MethodArgs) {
    // lint if the caller of `map()` is an `Option`
    if match_type(cx, cx.tcx.expr_ty(&map_args[0]), &paths::OPTION) {
        // lint message
        let msg = "called `map(f).unwrap_or(a)` on an Option value. This can be done more directly by calling \
                   `map_or(a, f)` instead";
        // get snippets for args to map() and unwrap_or()
        let map_snippet = snippet(cx, map_args[1].span, "..");
        let unwrap_snippet = snippet(cx, unwrap_args[1].span, "..");
        // lint, with note if neither arg is > 1 line and both map() and
        // unwrap_or() have the same span
        let multiline = map_snippet.lines().count() > 1 || unwrap_snippet.lines().count() > 1;
        let same_span = map_args[1].span.expn_id == unwrap_args[1].span.expn_id;
        if same_span && !multiline {
            span_note_and_lint(cx,
                               OPTION_MAP_UNWRAP_OR,
                               expr.span,
                               msg,
                               expr.span,
                               &format!("replace `map({0}).unwrap_or({1})` with `map_or({1}, {0})`",
                                        map_snippet,
                                        unwrap_snippet));
        } else if same_span && multiline {
            span_lint(cx, OPTION_MAP_UNWRAP_OR, expr.span, msg);
        };
    }
}

#[allow(ptr_arg)]
// Type of MethodArgs is potentially a Vec
/// lint use of `map().unwrap_or_else()` for `Option`s
fn lint_map_unwrap_or_else(cx: &LateContext, expr: &hir::Expr, map_args: &MethodArgs, unwrap_args: &MethodArgs) {
    // lint if the caller of `map()` is an `Option`
    if match_type(cx, cx.tcx.expr_ty(&map_args[0]), &paths::OPTION) {
        // lint message
        let msg = "called `map(f).unwrap_or_else(g)` on an Option value. This can be done more directly by calling \
                   `map_or_else(g, f)` instead";
        // get snippets for args to map() and unwrap_or_else()
        let map_snippet = snippet(cx, map_args[1].span, "..");
        let unwrap_snippet = snippet(cx, unwrap_args[1].span, "..");
        // lint, with note if neither arg is > 1 line and both map() and
        // unwrap_or_else() have the same span
        let multiline = map_snippet.lines().count() > 1 || unwrap_snippet.lines().count() > 1;
        let same_span = map_args[1].span.expn_id == unwrap_args[1].span.expn_id;
        if same_span && !multiline {
            span_note_and_lint(cx,
                               OPTION_MAP_UNWRAP_OR_ELSE,
                               expr.span,
                               msg,
                               expr.span,
                               &format!("replace `map({0}).unwrap_or_else({1})` with `with map_or_else({1}, {0})`",
                                        map_snippet,
                                        unwrap_snippet));
        } else if same_span && multiline {
            span_lint(cx, OPTION_MAP_UNWRAP_OR_ELSE, expr.span, msg);
        };
    }
}

#[allow(ptr_arg)]
// Type of MethodArgs is potentially a Vec
/// lint use of `filter().next()` for `Iterators`
fn lint_filter_next(cx: &LateContext, expr: &hir::Expr, filter_args: &MethodArgs) {
    // lint if caller of `.filter().next()` is an Iterator
    if match_trait_method(cx, expr, &paths::ITERATOR) {
        let msg = "called `filter(p).next()` on an `Iterator`. This is more succinctly expressed by calling `.find(p)` \
                   instead.";
        let filter_snippet = snippet(cx, filter_args[1].span, "..");
        if filter_snippet.lines().count() <= 1 {
            // add note if not multi-line
            span_note_and_lint(cx,
                               FILTER_NEXT,
                               expr.span,
                               msg,
                               expr.span,
                               &format!("replace `filter({0}).next()` with `find({0})`", filter_snippet));
        } else {
            span_lint(cx, FILTER_NEXT, expr.span, msg);
        }
    }
}

// Type of MethodArgs is potentially a Vec
/// lint use of `filter().map()` for `Iterators`
fn lint_filter_map(cx: &LateContext, expr: &hir::Expr, _filter_args: &MethodArgs, _map_args: &MethodArgs) {
    // lint if caller of `.filter().map()` is an Iterator
    if match_trait_method(cx, expr, &paths::ITERATOR) {
        let msg = "called `filter(p).map(q)` on an `Iterator`. \
                   This is more succinctly expressed by calling `.filter_map(..)` instead.";
        span_lint(cx, FILTER_MAP, expr.span, msg);
    }
}

// Type of MethodArgs is potentially a Vec
/// lint use of `filter().map()` for `Iterators`
fn lint_filter_map_map(cx: &LateContext, expr: &hir::Expr, _filter_args: &MethodArgs, _map_args: &MethodArgs) {
    // lint if caller of `.filter().map()` is an Iterator
    if match_trait_method(cx, expr, &paths::ITERATOR) {
        let msg = "called `filter_map(p).map(q)` on an `Iterator`. \
                   This is more succinctly expressed by only calling `.filter_map(..)` instead.";
        span_lint(cx, FILTER_MAP, expr.span, msg);
    }
}

// Type of MethodArgs is potentially a Vec
/// lint use of `filter().flat_map()` for `Iterators`
fn lint_filter_flat_map(cx: &LateContext, expr: &hir::Expr, _filter_args: &MethodArgs, _map_args: &MethodArgs) {
    // lint if caller of `.filter().flat_map()` is an Iterator
    if match_trait_method(cx, expr, &paths::ITERATOR) {
        let msg = "called `filter(p).flat_map(q)` on an `Iterator`. \
                   This is more succinctly expressed by calling `.flat_map(..)` \
                   and filtering by returning an empty Iterator.";
        span_lint(cx, FILTER_MAP, expr.span, msg);
    }
}

// Type of MethodArgs is potentially a Vec
/// lint use of `filter_map().flat_map()` for `Iterators`
fn lint_filter_map_flat_map(cx: &LateContext, expr: &hir::Expr, _filter_args: &MethodArgs, _map_args: &MethodArgs) {
    // lint if caller of `.filter_map().flat_map()` is an Iterator
    if match_trait_method(cx, expr, &paths::ITERATOR) {
        let msg = "called `filter_map(p).flat_map(q)` on an `Iterator`. \
                   This is more succinctly expressed by calling `.flat_map(..)` \
                   and filtering by returning an empty Iterator.";
        span_lint(cx, FILTER_MAP, expr.span, msg);
    }
}

#[allow(ptr_arg)]
// Type of MethodArgs is potentially a Vec
/// lint searching an Iterator followed by `is_some()`
fn lint_search_is_some(cx: &LateContext, expr: &hir::Expr, search_method: &str, search_args: &MethodArgs,
                       is_some_args: &MethodArgs) {
    // lint if caller of search is an Iterator
    if match_trait_method(cx, &*is_some_args[0], &paths::ITERATOR) {
        let msg = format!("called `is_some()` after searching an `Iterator` with {}. This is more succinctly expressed \
                           by calling `any()`.",
                          search_method);
        let search_snippet = snippet(cx, search_args[1].span, "..");
        if search_snippet.lines().count() <= 1 {
            // add note if not multi-line
            span_note_and_lint(cx,
                               SEARCH_IS_SOME,
                               expr.span,
                               &msg,
                               expr.span,
                               &format!("replace `{0}({1}).is_some()` with `any({1})`", search_method, search_snippet));
        } else {
            span_lint(cx, SEARCH_IS_SOME, expr.span, &msg);
        }
    }
}

/// Checks for the `CHARS_NEXT_CMP` lint.
fn lint_chars_next(cx: &LateContext, expr: &hir::Expr, chain: &hir::Expr, other: &hir::Expr, eq: bool) -> bool {
    if_let_chain! {[
        let Some(args) = method_chain_args(chain, &["chars", "next"]),
        let hir::ExprCall(ref fun, ref arg_char) = other.node,
        arg_char.len() == 1,
        let hir::ExprPath(None, ref path) = fun.node,
        path.segments.len() == 1 && path.segments[0].name.as_str() == "Some"
    ], {
        let self_ty = walk_ptrs_ty(cx.tcx.expr_ty_adjusted(&args[0][0]));

        if self_ty.sty != ty::TyStr {
            return false;
        }

        span_lint_and_then(cx,
                           CHARS_NEXT_CMP,
                           expr.span,
                           "you should use the `starts_with` method",
                           |db| {
                               let sugg = format!("{}{}.starts_with({})",
                                                  if eq { "" } else { "!" },
                                                  snippet(cx, args[0][0].span, "_"),
                                                  snippet(cx, arg_char[0].span, "_")
                                                  );

                               db.span_suggestion(expr.span, "like this", sugg);
                           });

        return true;
    }}

    false
}

/// lint for length-1 `str`s for methods in `PATTERN_METHODS`
fn lint_single_char_pattern(cx: &LateContext, expr: &hir::Expr, arg: &hir::Expr) {
    if let Ok(ConstVal::Str(r)) = eval_const_expr_partial(cx.tcx, arg, ExprTypeChecked, None) {
        if r.len() == 1 {
            let hint = snippet(cx, expr.span, "..").replace(&format!("\"{}\"", r), &format!("'{}'", r));
            span_lint_and_then(cx,
                               SINGLE_CHAR_PATTERN,
                               arg.span,
                               "single-character string constant used as pattern",
                               |db| {
                                   db.span_suggestion(expr.span, "try using a char instead:", hint);
                               });
        }
    }
}

/// Given a `Result<T, E>` type, return its error type (`E`).
fn get_error_type<'a>(cx: &LateContext, ty: ty::Ty<'a>) -> Option<ty::Ty<'a>> {
    if !match_type(cx, ty, &paths::RESULT) {
        return None;
    }
    if let ty::TyEnum(_, substs) = ty.sty {
        if let Some(err_ty) = substs.types.get(1) {
            return Some(err_ty);
        }
    }
    None
}

/// This checks whether a given type is known to implement Debug.
fn has_debug_impl<'a, 'b>(ty: ty::Ty<'a>, cx: &LateContext<'b, 'a>) -> bool {
    match cx.tcx.lang_items.debug_trait() {
        Some(debug) => implements_trait(cx, ty, debug, Vec::new()),
        None => false,
    }
}

enum Convention {
    Eq(&'static str),
    StartsWith(&'static str),
}

#[cfg_attr(rustfmt, rustfmt_skip)]
const CONVENTIONS: [(Convention, &'static [SelfKind]); 6] = [
    (Convention::Eq("new"), &[SelfKind::No]),
    (Convention::StartsWith("as_"), &[SelfKind::Ref, SelfKind::RefMut]),
    (Convention::StartsWith("from_"), &[SelfKind::No]),
    (Convention::StartsWith("into_"), &[SelfKind::Value]),
    (Convention::StartsWith("is_"), &[SelfKind::Ref, SelfKind::No]),
    (Convention::StartsWith("to_"), &[SelfKind::Ref]),
];

#[cfg_attr(rustfmt, rustfmt_skip)]
const TRAIT_METHODS: [(&'static str, usize, SelfKind, OutType, &'static str); 30] = [
    ("add", 2, SelfKind::Value, OutType::Any, "std::ops::Add"),
    ("as_mut", 1, SelfKind::RefMut, OutType::Ref, "std::convert::AsMut"),
    ("as_ref", 1, SelfKind::Ref, OutType::Ref, "std::convert::AsRef"),
    ("bitand", 2, SelfKind::Value, OutType::Any, "std::ops::BitAnd"),
    ("bitor", 2, SelfKind::Value, OutType::Any, "std::ops::BitOr"),
    ("bitxor", 2, SelfKind::Value, OutType::Any, "std::ops::BitXor"),
    ("borrow", 1, SelfKind::Ref, OutType::Ref, "std::borrow::Borrow"),
    ("borrow_mut", 1, SelfKind::RefMut, OutType::Ref, "std::borrow::BorrowMut"),
    ("clone", 1, SelfKind::Ref, OutType::Any, "std::clone::Clone"),
    ("cmp", 2, SelfKind::Ref, OutType::Any, "std::cmp::Ord"),
    ("default", 0, SelfKind::No, OutType::Any, "std::default::Default"),
    ("deref", 1, SelfKind::Ref, OutType::Ref, "std::ops::Deref"),
    ("deref_mut", 1, SelfKind::RefMut, OutType::Ref, "std::ops::DerefMut"),
    ("div", 2, SelfKind::Value, OutType::Any, "std::ops::Div"),
    ("drop", 1, SelfKind::RefMut, OutType::Unit, "std::ops::Drop"),
    ("eq", 2, SelfKind::Ref, OutType::Bool, "std::cmp::PartialEq"),
    ("from_iter", 1, SelfKind::No, OutType::Any, "std::iter::FromIterator"),
    ("from_str", 1, SelfKind::No, OutType::Any, "std::str::FromStr"),
    ("hash", 2, SelfKind::Ref, OutType::Unit, "std::hash::Hash"),
    ("index", 2, SelfKind::Ref, OutType::Ref, "std::ops::Index"),
    ("index_mut", 2, SelfKind::RefMut, OutType::Ref, "std::ops::IndexMut"),
    ("into_iter", 1, SelfKind::Value, OutType::Any, "std::iter::IntoIterator"),
    ("mul", 2, SelfKind::Value, OutType::Any, "std::ops::Mul"),
    ("neg", 1, SelfKind::Value, OutType::Any, "std::ops::Neg"),
    ("next", 1, SelfKind::RefMut, OutType::Any, "std::iter::Iterator"),
    ("not", 1, SelfKind::Value, OutType::Any, "std::ops::Not"),
    ("rem", 2, SelfKind::Value, OutType::Any, "std::ops::Rem"),
    ("shl", 2, SelfKind::Value, OutType::Any, "std::ops::Shl"),
    ("shr", 2, SelfKind::Value, OutType::Any, "std::ops::Shr"),
    ("sub", 2, SelfKind::Value, OutType::Any, "std::ops::Sub"),
];

#[cfg_attr(rustfmt, rustfmt_skip)]
const PATTERN_METHODS: [(&'static str, usize); 17] = [
    ("contains", 1),
    ("starts_with", 1),
    ("ends_with", 1),
    ("find", 1),
    ("rfind", 1),
    ("split", 1),
    ("rsplit", 1),
    ("split_terminator", 1),
    ("rsplit_terminator", 1),
    ("splitn", 2),
    ("rsplitn", 2),
    ("matches", 1),
    ("rmatches", 1),
    ("match_indices", 1),
    ("rmatch_indices", 1),
    ("trim_left_matches", 1),
    ("trim_right_matches", 1),
];


#[derive(Clone, Copy)]
enum SelfKind {
    Value,
    Ref,
    RefMut,
    No,
}

impl SelfKind {
    fn matches(self, slf: &hir::ExplicitSelf, allow_value_for_ref: bool) -> bool {
        match (self, &slf.node) {
            (SelfKind::Value, &hir::SelfKind::Value(_)) |
            (SelfKind::Ref, &hir::SelfKind::Region(_, hir::Mutability::MutImmutable)) |
            (SelfKind::RefMut, &hir::SelfKind::Region(_, hir::Mutability::MutMutable)) => true,
            (SelfKind::Ref, &hir::SelfKind::Value(_)) |
            (SelfKind::RefMut, &hir::SelfKind::Value(_)) => allow_value_for_ref,
            (_, &hir::SelfKind::Explicit(ref ty, _)) => self.matches_explicit_type(ty, allow_value_for_ref),

            _ => false,
        }
    }

    fn matches_explicit_type(self, ty: &hir::Ty, allow_value_for_ref: bool) -> bool {
        match (self, &ty.node) {
            (SelfKind::Value, &hir::TyPath(..)) |
            (SelfKind::Ref, &hir::TyRptr(_, hir::MutTy { mutbl: hir::Mutability::MutImmutable, .. })) |
            (SelfKind::RefMut, &hir::TyRptr(_, hir::MutTy { mutbl: hir::Mutability::MutMutable, .. })) => true,
            (SelfKind::Ref, &hir::TyPath(..)) |
            (SelfKind::RefMut, &hir::TyPath(..)) => allow_value_for_ref,
            _ => false,
        }
    }

    fn description(&self) -> &'static str {
        match *self {
            SelfKind::Value => "self by value",
            SelfKind::Ref => "self by reference",
            SelfKind::RefMut => "self by mutable reference",
            SelfKind::No => "no self",
        }
    }
}

impl Convention {
    fn check(&self, other: &str) -> bool {
        match *self {
            Convention::Eq(this) => this == other,
            Convention::StartsWith(this) => other.starts_with(this),
        }
    }
}

impl fmt::Display for Convention {
    fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
        match *self {
            Convention::Eq(this) => this.fmt(f),
            Convention::StartsWith(this) => this.fmt(f).and_then(|_| '*'.fmt(f)),
        }
    }
}

#[derive(Clone, Copy)]
enum OutType {
    Unit,
    Bool,
    Any,
    Ref,
}

impl OutType {
    fn matches(&self, ty: &hir::FunctionRetTy) -> bool {
        match (self, ty) {
            (&OutType::Unit, &hir::DefaultReturn(_)) => true,
            (&OutType::Unit, &hir::Return(ref ty)) if ty.node == hir::TyTup(vec![].into()) => true,
            (&OutType::Bool, &hir::Return(ref ty)) if is_bool(ty) => true,
            (&OutType::Any, &hir::Return(ref ty)) if ty.node != hir::TyTup(vec![].into()) => true,
            (&OutType::Ref, &hir::Return(ref ty)) => matches!(ty.node, hir::TyRptr(_, _)),
            _ => false,
        }
    }
}

fn is_bool(ty: &hir::Ty) -> bool {
    if let hir::TyPath(None, ref p) = ty.node {
        match_path(p, &["bool"])
    } else {
        false
    }
}