clippy_lints 0.0.141

A bunch of helpful lints to avoid common pitfalls in Rust
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
use rustc::hir;
use rustc::lint::*;
use rustc::middle::const_val::ConstVal;
use rustc::ty::{self, Ty};
use rustc::hir::def::Def;
use rustc_const_eval::ConstContext;
use std::borrow::Cow;
use std::fmt;
use syntax::codemap::Span;
use utils::{get_trait_def_id, implements_trait, in_external_macro, in_macro, is_copy, match_path, match_trait_method,
            match_type, method_chain_args, return_ty, same_tys, snippet, span_lint, span_lint_and_then,
            span_lint_and_sugg, span_note_and_lint, walk_ptrs_ty, walk_ptrs_ty_depth, last_path_segment,
            single_segment_path, match_def_path, is_self, is_self_ty, iter_input_pats, match_path_old};
use utils::paths;
use utils::sugg;

#[derive(Clone)]
pub struct Pass;

/// **What it does:** Checks for `.unwrap()` calls on `Option`s.
///
/// **Why is this bad?** Usually it is better to handle the `None` case, or to
/// at least call `.expect(_)` with a more helpful message. Still, for a lot of
/// quick-and-dirty code, `unwrap` is a good choice, which is why this lint is
/// `Allow` by default.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// x.unwrap()
/// ```
declare_lint! {
    pub OPTION_UNWRAP_USED,
    Allow,
    "using `Option.unwrap()`, which should at least get a better message using `expect()`"
}

/// **What it does:** Checks for `.unwrap()` calls on `Result`s.
///
/// **Why is this bad?** `result.unwrap()` will let the thread panic on `Err`
/// values. Normally, you want to implement more sophisticated error handling,
/// and propagate errors upwards with `try!`.
///
/// Even if you want to panic on errors, not all `Error`s implement good
/// messages on display.  Therefore it may be beneficial to look at the places
/// where they may get displayed. Activate this lint to do just that.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// x.unwrap()
/// ```
declare_lint! {
    pub RESULT_UNWRAP_USED,
    Allow,
    "using `Result.unwrap()`, which might be better handled"
}

/// **What it does:** Checks for methods that should live in a trait
/// implementation of a `std` trait (see [llogiq's blog
/// post](http://llogiq.github.io/2015/07/30/traits.html) for further
/// information) instead of an inherent implementation.
///
/// **Why is this bad?** Implementing the traits improve ergonomics for users of
/// the code, often with very little cost. Also people seeing a `mul(...)` method
/// may expect `*` to work equally, so you should have good reason to disappoint
/// them.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// struct X;
/// impl X {
///    fn add(&self, other: &X) -> X { .. }
/// }
/// ```
declare_lint! {
    pub SHOULD_IMPLEMENT_TRAIT,
    Warn,
    "defining a method that should be implementing a std trait"
}

/// **What it does:** Checks for methods with certain name prefixes and which
/// doesn't match how self is taken. The actual rules are:
///
/// |Prefix |`self` taken          |
/// |-------|----------------------|
/// |`as_`  |`&self` or `&mut self`|
/// |`from_`| none                 |
/// |`into_`|`self`                |
/// |`is_`  |`&self` or none       |
/// |`to_`  |`&self`               |
///
/// **Why is this bad?** Consistency breeds readability. If you follow the
/// conventions, your users won't be surprised that they, e.g., need to supply a
/// mutable reference to a `as_..` function.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// impl X {
///     fn as_str(self) -> &str { .. }
/// }
/// ```
declare_lint! {
    pub WRONG_SELF_CONVENTION,
    Warn,
    "defining a method named with an established prefix (like \"into_\") that takes \
     `self` with the wrong convention"
}

/// **What it does:** This is the same as
/// [`wrong_self_convention`](#wrong_self_convention), but for public items.
///
/// **Why is this bad?** See [`wrong_self_convention`](#wrong_self_convention).
///
/// **Known problems:** Actually *renaming* the function may break clients if
/// the function is part of the public interface. In that case, be mindful of
/// the stability guarantees you've given your users.
///
/// **Example:**
/// ```rust
/// impl X {
///     pub fn as_str(self) -> &str { .. }
/// }
/// ```
declare_lint! {
    pub WRONG_PUB_SELF_CONVENTION,
    Allow,
    "defining a public method named with an established prefix (like \"into_\") that takes \
     `self` with the wrong convention"
}

/// **What it does:** Checks for usage of `ok().expect(..)`.
///
/// **Why is this bad?** Because you usually call `expect()` on the `Result`
/// directly to get a better error message.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// x.ok().expect("why did I do this again?")
/// ```
declare_lint! {
    pub OK_EXPECT,
    Warn,
    "using `ok().expect()`, which gives worse error messages than \
     calling `expect` directly on the Result"
}

/// **What it does:** Checks for usage of `_.map(_).unwrap_or(_)`.
///
/// **Why is this bad?** Readability, this can be written more concisely as
/// `_.map_or(_, _)`.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// x.map(|a| a + 1).unwrap_or(0)
/// ```
declare_lint! {
    pub OPTION_MAP_UNWRAP_OR,
    Allow,
    "using `Option.map(f).unwrap_or(a)`, which is more succinctly expressed as \
     `map_or(a, f)`"
}

/// **What it does:** Checks for usage of `_.map(_).unwrap_or_else(_)`.
///
/// **Why is this bad?** Readability, this can be written more concisely as
/// `_.map_or_else(_, _)`.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// x.map(|a| a + 1).unwrap_or_else(some_function)
/// ```
declare_lint! {
    pub OPTION_MAP_UNWRAP_OR_ELSE,
    Allow,
    "using `Option.map(f).unwrap_or_else(g)`, which is more succinctly expressed as \
     `map_or_else(g, f)`"
}

/// **What it does:** Checks for usage of `_.filter(_).next()`.
///
/// **Why is this bad?** Readability, this can be written more concisely as
/// `_.find(_)`.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// iter.filter(|x| x == 0).next()
/// ```
declare_lint! {
    pub FILTER_NEXT,
    Warn,
    "using `filter(p).next()`, which is more succinctly expressed as `.find(p)`"
}

/// **What it does:** Checks for usage of `_.filter(_).map(_)`,
/// `_.filter(_).flat_map(_)`, `_.filter_map(_).flat_map(_)` and similar.
///
/// **Why is this bad?** Readability, this can be written more concisely as a
/// single method call.
///
/// **Known problems:** Often requires a condition + Option/Iterator creation
/// inside the closure.
///
/// **Example:**
/// ```rust
/// iter.filter(|x| x == 0).map(|x| x * 2)
/// ```
declare_lint! {
    pub FILTER_MAP,
    Allow,
    "using combinations of `filter`, `map`, `filter_map` and `flat_map` which can \
     usually be written as a single method call"
}

/// **What it does:** Checks for an iterator search (such as `find()`,
/// `position()`, or `rposition()`) followed by a call to `is_some()`.
///
/// **Why is this bad?** Readability, this can be written more concisely as
/// `_.any(_)`.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// iter.find(|x| x == 0).is_some()
/// ```
declare_lint! {
    pub SEARCH_IS_SOME,
    Warn,
    "using an iterator search followed by `is_some()`, which is more succinctly \
     expressed as a call to `any()`"
}

/// **What it does:** Checks for usage of `.chars().next()` on a `str` to check
/// if it starts with a given char.
///
/// **Why is this bad?** Readability, this can be written more concisely as
/// `_.starts_with(_)`.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// name.chars().next() == Some('_')
/// ```
declare_lint! {
    pub CHARS_NEXT_CMP,
    Warn,
    "using `.chars().next()` to check if a string starts with a char"
}

/// **What it does:** Checks for calls to `.or(foo(..))`, `.unwrap_or(foo(..))`,
/// etc., and suggests to use `or_else`, `unwrap_or_else`, etc., or
/// `unwrap_or_default` instead.
///
/// **Why is this bad?** The function will always be called and potentially
/// allocate an object acting as the default.
///
/// **Known problems:** If the function has side-effects, not calling it will
/// change the semantic of the program, but you shouldn't rely on that anyway.
///
/// **Example:**
/// ```rust
/// foo.unwrap_or(String::new())
/// ```
/// this can instead be written:
/// ```rust
/// foo.unwrap_or_else(String::new)
/// ```
/// or
/// ```rust
/// foo.unwrap_or_default()
/// ```
declare_lint! {
    pub OR_FUN_CALL,
    Warn,
    "using any `*or` method with a function call, which suggests `*or_else`"
}

/// **What it does:** Checks for usage of `.clone()` on a `Copy` type.
///
/// **Why is this bad?** The only reason `Copy` types implement `Clone` is for
/// generics, not for using the `clone` method on a concrete type.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// 42u64.clone()
/// ```
declare_lint! {
    pub CLONE_ON_COPY,
    Warn,
    "using `clone` on a `Copy` type"
}

/// **What it does:** Checks for usage of `.clone()` on an `&&T`.
///
/// **Why is this bad?** Cloning an `&&T` copies the inner `&T`, instead of
/// cloning the underlying `T`.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// fn main() {
///    let x = vec![1];
///    let y = &&x;
///    let z = y.clone();
///    println!("{:p} {:p}",*y, z); // prints out the same pointer
/// }
/// ```
declare_lint! {
    pub CLONE_DOUBLE_REF,
    Warn,
    "using `clone` on `&&T`"
}

/// **What it does:** Checks for `new` not returning `Self`.
///
/// **Why is this bad?** As a convention, `new` methods are used to make a new
/// instance of a type.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// impl Foo {
///     fn new(..) -> NotAFoo {
///     }
/// }
/// ```
declare_lint! {
    pub NEW_RET_NO_SELF,
    Warn,
    "not returning `Self` in a `new` method"
}

/// **What it does:** Checks for string methods that receive a single-character
/// `str` as an argument, e.g. `_.split("x")`.
///
/// **Why is this bad?** Performing these methods using a `char` is faster than
/// using a `str`.
///
/// **Known problems:** Does not catch multi-byte unicode characters.
///
/// **Example:**
/// `_.split("x")` could be `_.split('x')
declare_lint! {
    pub SINGLE_CHAR_PATTERN,
    Warn,
    "using a single-character str where a char could be used, e.g. \
     `_.split(\"x\")`"
}

/// **What it does:** Checks for getting the inner pointer of a temporary `CString`.
///
/// **Why is this bad?** The inner pointer of a `CString` is only valid as long
/// as the `CString` is alive.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust,ignore
/// let c_str = CString::new("foo").unwrap().as_ptr();
/// unsafe {
/// call_some_ffi_func(c_str);
/// }
/// ```
/// Here `c_str` point to a freed address. The correct use would be:
/// ```rust,ignore
/// let c_str = CString::new("foo").unwrap();
/// unsafe {
///     call_some_ffi_func(c_str.as_ptr());
/// }
/// ```
declare_lint! {
    pub TEMPORARY_CSTRING_AS_PTR,
    Warn,
    "getting the inner pointer of a temporary `CString`"
}

/// **What it does:** Checks for use of `.iter().nth()` (and the related
/// `.iter_mut().nth()`) on standard library types with O(1) element access.
///
/// **Why is this bad?** `.get()` and `.get_mut()` are more efficient and more
/// readable.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// let some_vec = vec![0, 1, 2, 3];
/// let bad_vec = some_vec.iter().nth(3);
/// let bad_slice = &some_vec[..].iter().nth(3);
/// ```
/// The correct use would be:
/// ```rust
/// let some_vec = vec![0, 1, 2, 3];
/// let bad_vec = some_vec.get(3);
/// let bad_slice = &some_vec[..].get(3);
/// ```
declare_lint! {
    pub ITER_NTH,
    Warn,
    "using `.iter().nth()` on a standard library type with O(1) element access"
}

/// **What it does:** Checks for use of `.skip(x).next()` on iterators.
///
/// **Why is this bad?** `.nth(x)` is cleaner
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// let some_vec = vec![0, 1, 2, 3];
/// let bad_vec = some_vec.iter().skip(3).next();
/// let bad_slice = &some_vec[..].iter().skip(3).next();
/// ```
/// The correct use would be:
/// ```rust
/// let some_vec = vec![0, 1, 2, 3];
/// let bad_vec = some_vec.iter().nth(3);
/// let bad_slice = &some_vec[..].iter().nth(3);
/// ```
declare_lint! {
    pub ITER_SKIP_NEXT,
    Warn,
    "using `.skip(x).next()` on an iterator"
}

/// **What it does:** Checks for use of `.get().unwrap()` (or
/// `.get_mut().unwrap`) on a standard library type which implements `Index`
///
/// **Why is this bad?** Using the Index trait (`[]`) is more clear and more
/// concise.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// let some_vec = vec![0, 1, 2, 3];
/// let last = some_vec.get(3).unwrap();
/// *some_vec.get_mut(0).unwrap() = 1;
/// ```
/// The correct use would be:
/// ```rust
/// let some_vec = vec![0, 1, 2, 3];
/// let last = some_vec[3];
/// some_vec[0] = 1;
/// ```
declare_lint! {
    pub GET_UNWRAP,
    Warn,
    "using `.get().unwrap()` or `.get_mut().unwrap()` when using `[]` would work instead"
}

/// **What it does:** Checks for the use of `.extend(s.chars())` where s is a
/// `&str` or `String`.
///
/// **Why is this bad?** `.push_str(s)` is clearer
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// let abc = "abc";
/// let def = String::from("def");
/// let mut s = String::new();
/// s.extend(abc.chars());
/// s.extend(def.chars());
/// ```
/// The correct use would be:
/// ```rust
/// let abc = "abc";
/// let def = String::from("def");
/// let mut s = String::new();
/// s.push_str(abc);
/// s.push_str(&def));
/// ```
declare_lint! {
    pub STRING_EXTEND_CHARS,
    Warn,
    "using `x.extend(s.chars())` where s is a `&str` or `String`"
}

/// **What it does:** Checks for the use of `.cloned().collect()` on slice to create a `Vec`.
///
/// **Why is this bad?** `.to_vec()` is clearer
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// let s = [1,2,3,4,5];
/// let s2 : Vec<isize> = s[..].iter().cloned().collect();
/// ```
/// The better use would be:
/// ```rust
/// let s = [1,2,3,4,5];
/// let s2 : Vec<isize> = s.to_vec();
/// ```
declare_lint! {
    pub ITER_CLONED_COLLECT,
    Warn,
    "using `.cloned().collect()` on slice to create a `Vec`"
}

impl LintPass for Pass {
    fn get_lints(&self) -> LintArray {
        lint_array!(OPTION_UNWRAP_USED,
                    RESULT_UNWRAP_USED,
                    SHOULD_IMPLEMENT_TRAIT,
                    WRONG_SELF_CONVENTION,
                    WRONG_PUB_SELF_CONVENTION,
                    OK_EXPECT,
                    OPTION_MAP_UNWRAP_OR,
                    OPTION_MAP_UNWRAP_OR_ELSE,
                    OR_FUN_CALL,
                    CHARS_NEXT_CMP,
                    CLONE_ON_COPY,
                    CLONE_DOUBLE_REF,
                    NEW_RET_NO_SELF,
                    SINGLE_CHAR_PATTERN,
                    SEARCH_IS_SOME,
                    TEMPORARY_CSTRING_AS_PTR,
                    FILTER_NEXT,
                    FILTER_MAP,
                    ITER_NTH,
                    ITER_SKIP_NEXT,
                    GET_UNWRAP,
                    STRING_EXTEND_CHARS,
                    ITER_CLONED_COLLECT)
    }
}

impl<'a, 'tcx> LateLintPass<'a, 'tcx> for Pass {
    #[allow(unused_attributes)]
    // ^ required because `cyclomatic_complexity` attribute shows up as unused
    #[cyclomatic_complexity = "30"]
    fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, expr: &'tcx hir::Expr) {
        if in_macro(expr.span) {
            return;
        }

        match expr.node {
            hir::ExprMethodCall(name, _, ref args) => {
                // Chain calls
                // GET_UNWRAP needs to be checked before general `UNWRAP` lints
                if let Some(arglists) = method_chain_args(expr, &["get", "unwrap"]) {
                    lint_get_unwrap(cx, expr, arglists[0], false);
                } else if let Some(arglists) = method_chain_args(expr, &["get_mut", "unwrap"]) {
                    lint_get_unwrap(cx, expr, arglists[0], true);
                } else if let Some(arglists) = method_chain_args(expr, &["unwrap"]) {
                    lint_unwrap(cx, expr, arglists[0]);
                } else if let Some(arglists) = method_chain_args(expr, &["ok", "expect"]) {
                    lint_ok_expect(cx, expr, arglists[0]);
                } else if let Some(arglists) = method_chain_args(expr, &["map", "unwrap_or"]) {
                    lint_map_unwrap_or(cx, expr, arglists[0], arglists[1]);
                } else if let Some(arglists) = method_chain_args(expr, &["map", "unwrap_or_else"]) {
                    lint_map_unwrap_or_else(cx, expr, arglists[0], arglists[1]);
                } else if let Some(arglists) = method_chain_args(expr, &["filter", "next"]) {
                    lint_filter_next(cx, expr, arglists[0]);
                } else if let Some(arglists) = method_chain_args(expr, &["filter", "map"]) {
                    lint_filter_map(cx, expr, arglists[0], arglists[1]);
                } else if let Some(arglists) = method_chain_args(expr, &["filter_map", "map"]) {
                    lint_filter_map_map(cx, expr, arglists[0], arglists[1]);
                } else if let Some(arglists) = method_chain_args(expr, &["filter", "flat_map"]) {
                    lint_filter_flat_map(cx, expr, arglists[0], arglists[1]);
                } else if let Some(arglists) = method_chain_args(expr, &["filter_map", "flat_map"]) {
                    lint_filter_map_flat_map(cx, expr, arglists[0], arglists[1]);
                } else if let Some(arglists) = method_chain_args(expr, &["find", "is_some"]) {
                    lint_search_is_some(cx, expr, "find", arglists[0], arglists[1]);
                } else if let Some(arglists) = method_chain_args(expr, &["position", "is_some"]) {
                    lint_search_is_some(cx, expr, "position", arglists[0], arglists[1]);
                } else if let Some(arglists) = method_chain_args(expr, &["rposition", "is_some"]) {
                    lint_search_is_some(cx, expr, "rposition", arglists[0], arglists[1]);
                } else if let Some(arglists) = method_chain_args(expr, &["extend"]) {
                    lint_extend(cx, expr, arglists[0]);
                } else if let Some(arglists) = method_chain_args(expr, &["unwrap", "as_ptr"]) {
                    lint_cstring_as_ptr(cx, expr, &arglists[0][0], &arglists[1][0]);
                } else if let Some(arglists) = method_chain_args(expr, &["iter", "nth"]) {
                    lint_iter_nth(cx, expr, arglists[0], false);
                } else if let Some(arglists) = method_chain_args(expr, &["iter_mut", "nth"]) {
                    lint_iter_nth(cx, expr, arglists[0], true);
                } else if method_chain_args(expr, &["skip", "next"]).is_some() {
                    lint_iter_skip_next(cx, expr);
                } else if let Some(arglists) = method_chain_args(expr, &["cloned", "collect"]) {
                    lint_iter_cloned_collect(cx, expr, arglists[0]);
                }

                lint_or_fun_call(cx, expr, &name.node.as_str(), args);

                let self_ty = cx.tables.expr_ty_adjusted(&args[0]);
                if args.len() == 1 && name.node == "clone" {
                    lint_clone_on_copy(cx, expr, &args[0], self_ty);
                }

                match self_ty.sty {
                    ty::TyRef(_, ty) if ty.ty.sty == ty::TyStr => {
                        for &(method, pos) in &PATTERN_METHODS {
                            if name.node == method && args.len() > pos {
                                lint_single_char_pattern(cx, expr, &args[pos]);
                            }
                        }
                    },
                    _ => (),
                }
            },
            hir::ExprBinary(op, ref lhs, ref rhs) if op.node == hir::BiEq || op.node == hir::BiNe => {
                if !lint_chars_next(cx, expr, lhs, rhs, op.node == hir::BiEq) {
                    lint_chars_next(cx, expr, rhs, lhs, op.node == hir::BiEq);
                }
            },
            _ => (),
        }
    }

    fn check_impl_item(&mut self, cx: &LateContext<'a, 'tcx>, implitem: &'tcx hir::ImplItem) {
        if in_external_macro(cx, implitem.span) {
            return;
        }
        let name = implitem.name;
        let parent = cx.tcx.hir.get_parent(implitem.id);
        let item = cx.tcx.hir.expect_item(parent);
        if_let_chain! {[
            let hir::ImplItemKind::Method(ref sig, id) = implitem.node,
            let Some(first_arg_ty) = sig.decl.inputs.get(0),
            let Some(first_arg) = iter_input_pats(&sig.decl, cx.tcx.hir.body(id)).next(),
            let hir::ItemImpl(_, _, _, _, None, ref self_ty, _) = item.node,
        ], {
            // check missing trait implementations
            for &(method_name, n_args, self_kind, out_type, trait_name) in &TRAIT_METHODS {
                if name == method_name &&
                   sig.decl.inputs.len() == n_args &&
                   out_type.matches(&sig.decl.output) &&
                   self_kind.matches(first_arg_ty, first_arg, self_ty, false, &sig.generics) {
                    span_lint(cx, SHOULD_IMPLEMENT_TRAIT, implitem.span, &format!(
                        "defining a method called `{}` on this type; consider implementing \
                         the `{}` trait or choosing a less ambiguous name", name, trait_name));
                }
            }

            // check conventions w.r.t. conversion method names and predicates
            let def_id = cx.tcx.hir.local_def_id(item.id);
            let ty = cx.tcx.type_of(def_id);
            let is_copy = is_copy(cx, ty);
            for &(ref conv, self_kinds) in &CONVENTIONS {
                if_let_chain! {[
                    conv.check(&name.as_str()),
                    !self_kinds.iter().any(|k| k.matches(first_arg_ty, first_arg, self_ty, is_copy, &sig.generics)),
                ], {
                    let lint = if item.vis == hir::Visibility::Public {
                        WRONG_PUB_SELF_CONVENTION
                    } else {
                        WRONG_SELF_CONVENTION
                    };
                    span_lint(cx,
                              lint,
                              first_arg.pat.span,
                              &format!("methods called `{}` usually take {}; consider choosing a less \
                                        ambiguous name",
                                       conv,
                                       &self_kinds.iter()
                                                  .map(|k| k.description())
                                                  .collect::<Vec<_>>()
                                                  .join(" or ")));
                }}
            }

            let ret_ty = return_ty(cx, implitem.id);
            if name == "new" &&
               !ret_ty.walk().any(|t| same_tys(cx, t, ty)) {
                span_lint(cx,
                          NEW_RET_NO_SELF,
                          implitem.span,
                          "methods called `new` usually return `Self`");
            }
        }}
    }
}

/// Checks for the `OR_FUN_CALL` lint.
fn lint_or_fun_call(cx: &LateContext, expr: &hir::Expr, name: &str, args: &[hir::Expr]) {
    /// Check for `unwrap_or(T::new())` or `unwrap_or(T::default())`.
    fn check_unwrap_or_default(
        cx: &LateContext,
        name: &str,
        fun: &hir::Expr,
        self_expr: &hir::Expr,
        arg: &hir::Expr,
        or_has_args: bool,
        span: Span
    ) -> bool {
        if or_has_args {
            return false;
        }

        if name == "unwrap_or" {
            if let hir::ExprPath(ref qpath) = fun.node {
                let path = &*last_path_segment(qpath).name.as_str();

                if ["default", "new"].contains(&path) {
                    let arg_ty = cx.tables.expr_ty(arg);
                    let default_trait_id = if let Some(default_trait_id) =
                        get_trait_def_id(cx, &paths::DEFAULT_TRAIT) {
                        default_trait_id
                    } else {
                        return false;
                    };

                    if implements_trait(cx, arg_ty, default_trait_id, &[]) {
                        span_lint_and_sugg(cx,
                                           OR_FUN_CALL,
                                           span,
                                           &format!("use of `{}` followed by a call to `{}`", name, path),
                                           "try this",
                                           format!("{}.unwrap_or_default()", snippet(cx, self_expr.span, "_")));
                        return true;
                    }
                }
            }
        }

        false
    }

    /// Check for `*or(foo())`.
    fn check_general_case(
        cx: &LateContext,
        name: &str,
        fun_span: Span,
        self_expr: &hir::Expr,
        arg: &hir::Expr,
        or_has_args: bool,
        span: Span
    ) {
        // don't lint for constant values
        // FIXME: can we `expect` here instead of match?
        let promotable = cx.tcx
            .rvalue_promotable_to_static
            .borrow()
            .get(&arg.id)
            .cloned()
            .unwrap_or(true);
        if promotable {
            return;
        }

        // (path, fn_has_argument, methods, suffix)
        let know_types: &[(&[_], _, &[_], _)] =
            &[(&paths::BTREEMAP_ENTRY, false, &["or_insert"], "with"),
              (&paths::HASHMAP_ENTRY, false, &["or_insert"], "with"),
              (&paths::OPTION, false, &["map_or", "ok_or", "or", "unwrap_or"], "else"),
              (&paths::RESULT, true, &["or", "unwrap_or"], "else")];

        let self_ty = cx.tables.expr_ty(self_expr);

        let (fn_has_arguments, poss, suffix) = if let Some(&(_, fn_has_arguments, poss, suffix)) =
            know_types.iter().find(|&&i| match_type(cx, self_ty, i.0)) {
            (fn_has_arguments, poss, suffix)
        } else {
            return;
        };

        if !poss.contains(&name) {
            return;
        }

        let sugg: Cow<_> = match (fn_has_arguments, !or_has_args) {
            (true, _) => format!("|_| {}", snippet(cx, arg.span, "..")).into(),
            (false, false) => format!("|| {}", snippet(cx, arg.span, "..")).into(),
            (false, true) => snippet(cx, fun_span, ".."),
        };

        span_lint_and_sugg(cx,
                           OR_FUN_CALL,
                           span,
                           &format!("use of `{}` followed by a function call", name),
                           "try this",
                           format!("{}.{}_{}({})", snippet(cx, self_expr.span, "_"), name, suffix, sugg));
    }

    if args.len() == 2 {
        match args[1].node {
            hir::ExprCall(ref fun, ref or_args) => {
                let or_has_args = !or_args.is_empty();
                if !check_unwrap_or_default(cx, name, fun, &args[0], &args[1], or_has_args, expr.span) {
                    check_general_case(cx, name, fun.span, &args[0], &args[1], or_has_args, expr.span);
                }
            },
            hir::ExprMethodCall(fun, _, ref or_args) => {
                check_general_case(cx, name, fun.span, &args[0], &args[1], !or_args.is_empty(), expr.span)
            },
            _ => {},
        }
    }
}

/// Checks for the `CLONE_ON_COPY` lint.
fn lint_clone_on_copy(cx: &LateContext, expr: &hir::Expr, arg: &hir::Expr, arg_ty: Ty) {
    let ty = cx.tables.expr_ty(expr);
    if let ty::TyRef(_, ty::TypeAndMut { ty: inner, .. }) = arg_ty.sty {
        if let ty::TyRef(..) = inner.sty {
            span_lint_and_then(cx,
                               CLONE_DOUBLE_REF,
                               expr.span,
                               "using `clone` on a double-reference; \
                                this will copy the reference instead of cloning the inner type",
                               |db| if let Some(snip) = sugg::Sugg::hir_opt(cx, arg) {
                                   db.span_suggestion(expr.span,
                                                      "try dereferencing it",
                                                      format!("({}).clone()", snip.deref()));
                               });
            return; // don't report clone_on_copy
        }
    }

    if is_copy(cx, ty) {
        span_lint_and_then(cx,
                           CLONE_ON_COPY,
                           expr.span,
                           "using `clone` on a `Copy` type",
                           |db| if let Some(snip) = sugg::Sugg::hir_opt(cx, arg) {
                               if let ty::TyRef(..) = cx.tables.expr_ty(arg).sty {
                                   db.span_suggestion(expr.span, "try dereferencing it", format!("{}", snip.deref()));
                               } else {
                                   db.span_suggestion(expr.span, "try removing the `clone` call", format!("{}", snip));
                               }
                           });
    }
}

fn lint_string_extend(cx: &LateContext, expr: &hir::Expr, args: &[hir::Expr]) {
    let arg = &args[1];
    if let Some(arglists) = method_chain_args(arg, &["chars"]) {
        let target = &arglists[0][0];
        let (self_ty, _) = walk_ptrs_ty_depth(cx.tables.expr_ty(target));
        let ref_str = if self_ty.sty == ty::TyStr {
            ""
        } else if match_type(cx, self_ty, &paths::STRING) {
            "&"
        } else {
            return;
        };

        span_lint_and_sugg(cx,
                           STRING_EXTEND_CHARS,
                           expr.span,
                           "calling `.extend(_.chars())`",
                           "try this",
                           format!("{}.push_str({}{})",
                                   snippet(cx, args[0].span, "_"),
                                   ref_str,
                                   snippet(cx, target.span, "_")));
    }
}

fn lint_extend(cx: &LateContext, expr: &hir::Expr, args: &[hir::Expr]) {
    let (obj_ty, _) = walk_ptrs_ty_depth(cx.tables.expr_ty(&args[0]));
    if match_type(cx, obj_ty, &paths::STRING) {
        lint_string_extend(cx, expr, args);
    }
}

fn lint_cstring_as_ptr(cx: &LateContext, expr: &hir::Expr, new: &hir::Expr, unwrap: &hir::Expr) {
    if_let_chain!{[
        let hir::ExprCall(ref fun, ref args) = new.node,
        args.len() == 1,
        let hir::ExprPath(ref path) = fun.node,
        let Def::Method(did) = cx.tables.qpath_def(path, fun.id),
        match_def_path(cx.tcx, did, &paths::CSTRING_NEW)
    ], {
        span_lint_and_then(cx, TEMPORARY_CSTRING_AS_PTR, expr.span,
                           "you are getting the inner pointer of a temporary `CString`",
                           |db| {
                               db.note("that pointer will be invalid outside this expression");
                               db.span_help(unwrap.span, "assign the `CString` to a variable to extend its lifetime");
                           });
    }}
}

fn lint_iter_cloned_collect(cx: &LateContext, expr: &hir::Expr, iter_args: &[hir::Expr]) {
    if match_type(cx, cx.tables.expr_ty(expr), &paths::VEC) &&
       derefs_to_slice(cx, &iter_args[0], cx.tables.expr_ty(&iter_args[0])).is_some() {
        span_lint(cx,
                  ITER_CLONED_COLLECT,
                  expr.span,
                  "called `cloned().collect()` on a slice to create a `Vec`. Calling `to_vec()` is both faster and \
                   more readable");
    }
}

fn lint_iter_nth(cx: &LateContext, expr: &hir::Expr, iter_args: &[hir::Expr], is_mut: bool) {
    let mut_str = if is_mut { "_mut" } else { "" };
    let caller_type = if derefs_to_slice(cx, &iter_args[0], cx.tables.expr_ty(&iter_args[0])).is_some() {
        "slice"
    } else if match_type(cx, cx.tables.expr_ty(&iter_args[0]), &paths::VEC) {
        "Vec"
    } else if match_type(cx, cx.tables.expr_ty(&iter_args[0]), &paths::VEC_DEQUE) {
        "VecDeque"
    } else {
        return; // caller is not a type that we want to lint
    };

    span_lint(cx,
              ITER_NTH,
              expr.span,
              &format!("called `.iter{0}().nth()` on a {1}. Calling `.get{0}()` is both faster and more readable",
                       mut_str,
                       caller_type));
}

fn lint_get_unwrap(cx: &LateContext, expr: &hir::Expr, get_args: &[hir::Expr], is_mut: bool) {
    // Note: we don't want to lint `get_mut().unwrap` for HashMap or BTreeMap,
    // because they do not implement `IndexMut`
    let expr_ty = cx.tables.expr_ty(&get_args[0]);
    let caller_type = if derefs_to_slice(cx, &get_args[0], expr_ty).is_some() {
        "slice"
    } else if match_type(cx, expr_ty, &paths::VEC) {
        "Vec"
    } else if match_type(cx, expr_ty, &paths::VEC_DEQUE) {
        "VecDeque"
    } else if !is_mut && match_type(cx, expr_ty, &paths::HASHMAP) {
        "HashMap"
    } else if !is_mut && match_type(cx, expr_ty, &paths::BTREEMAP) {
        "BTreeMap"
    } else {
        return; // caller is not a type that we want to lint
    };

    let mut_str = if is_mut { "_mut" } else { "" };
    let borrow_str = if is_mut { "&mut " } else { "&" };
    span_lint_and_sugg(cx,
                       GET_UNWRAP,
                       expr.span,
                       &format!("called `.get{0}().unwrap()` on a {1}. Using `[]` is more clear and more concise",
                                mut_str,
                                caller_type),
                       "try this",
                       format!("{}{}[{}]",
                               borrow_str,
                               snippet(cx, get_args[0].span, "_"),
                               snippet(cx, get_args[1].span, "_")));
}

fn lint_iter_skip_next(cx: &LateContext, expr: &hir::Expr) {
    // lint if caller of skip is an Iterator
    if match_trait_method(cx, expr, &paths::ITERATOR) {
        span_lint(cx,
                  ITER_SKIP_NEXT,
                  expr.span,
                  "called `skip(x).next()` on an iterator. This is more succinctly expressed by calling `nth(x)`");
    }
}

fn derefs_to_slice(cx: &LateContext, expr: &hir::Expr, ty: Ty) -> Option<sugg::Sugg<'static>> {
    fn may_slice(cx: &LateContext, ty: Ty) -> bool {
        match ty.sty {
            ty::TySlice(_) => true,
            ty::TyAdt(def, _) if def.is_box() => may_slice(cx, ty.boxed_ty()),
            ty::TyAdt(..) => match_type(cx, ty, &paths::VEC),
            ty::TyArray(_, size) => size < 32,
            ty::TyRef(_, ty::TypeAndMut { ty: inner, .. }) => may_slice(cx, inner),
            _ => false,
        }
    }

    if let hir::ExprMethodCall(name, _, ref args) = expr.node {
        if name.node == "iter" && may_slice(cx, cx.tables.expr_ty(&args[0])) {
            sugg::Sugg::hir_opt(cx, &args[0]).map(|sugg| sugg.addr())
        } else {
            None
        }
    } else {
        match ty.sty {
            ty::TySlice(_) => sugg::Sugg::hir_opt(cx, expr),
            ty::TyAdt(def, _) if def.is_box() && may_slice(cx, ty.boxed_ty()) => sugg::Sugg::hir_opt(cx, expr),
            ty::TyRef(_, ty::TypeAndMut { ty: inner, .. }) => {
                if may_slice(cx, inner) {
                    sugg::Sugg::hir_opt(cx, expr)
                } else {
                    None
                }
            },
            _ => None,
        }
    }
}

/// lint use of `unwrap()` for `Option`s and `Result`s
fn lint_unwrap(cx: &LateContext, expr: &hir::Expr, unwrap_args: &[hir::Expr]) {
    let (obj_ty, _) = walk_ptrs_ty_depth(cx.tables.expr_ty(&unwrap_args[0]));

    let mess = if match_type(cx, obj_ty, &paths::OPTION) {
        Some((OPTION_UNWRAP_USED, "an Option", "None"))
    } else if match_type(cx, obj_ty, &paths::RESULT) {
        Some((RESULT_UNWRAP_USED, "a Result", "Err"))
    } else {
        None
    };

    if let Some((lint, kind, none_value)) = mess {
        span_lint(cx,
                  lint,
                  expr.span,
                  &format!("used unwrap() on {} value. If you don't want to handle the {} case gracefully, consider \
                            using expect() to provide a better panic \
                            message",
                           kind,
                           none_value));
    }
}

/// lint use of `ok().expect()` for `Result`s
fn lint_ok_expect(cx: &LateContext, expr: &hir::Expr, ok_args: &[hir::Expr]) {
    // lint if the caller of `ok()` is a `Result`
    if match_type(cx, cx.tables.expr_ty(&ok_args[0]), &paths::RESULT) {
        let result_type = cx.tables.expr_ty(&ok_args[0]);
        if let Some(error_type) = get_error_type(cx, result_type) {
            if has_debug_impl(error_type, cx) {
                span_lint(cx,
                          OK_EXPECT,
                          expr.span,
                          "called `ok().expect()` on a Result value. You can call `expect` directly on the `Result`");
            }
        }
    }
}

/// lint use of `map().unwrap_or()` for `Option`s
fn lint_map_unwrap_or(cx: &LateContext, expr: &hir::Expr, map_args: &[hir::Expr], unwrap_args: &[hir::Expr]) {
    // lint if the caller of `map()` is an `Option`
    if match_type(cx, cx.tables.expr_ty(&map_args[0]), &paths::OPTION) {
        // lint message
        let msg = "called `map(f).unwrap_or(a)` on an Option value. This can be done more directly by calling \
                   `map_or(a, f)` instead";
        // get snippets for args to map() and unwrap_or()
        let map_snippet = snippet(cx, map_args[1].span, "..");
        let unwrap_snippet = snippet(cx, unwrap_args[1].span, "..");
        // lint, with note if neither arg is > 1 line and both map() and
        // unwrap_or() have the same span
        let multiline = map_snippet.lines().count() > 1 || unwrap_snippet.lines().count() > 1;
        let same_span = map_args[1].span.ctxt == unwrap_args[1].span.ctxt;
        if same_span && !multiline {
            span_note_and_lint(cx,
                               OPTION_MAP_UNWRAP_OR,
                               expr.span,
                               msg,
                               expr.span,
                               &format!("replace `map({0}).unwrap_or({1})` with `map_or({1}, {0})`",
                                        map_snippet,
                                        unwrap_snippet));
        } else if same_span && multiline {
            span_lint(cx, OPTION_MAP_UNWRAP_OR, expr.span, msg);
        };
    }
}

/// lint use of `map().unwrap_or_else()` for `Option`s
fn lint_map_unwrap_or_else(cx: &LateContext, expr: &hir::Expr, map_args: &[hir::Expr], unwrap_args: &[hir::Expr]) {
    // lint if the caller of `map()` is an `Option`
    if match_type(cx, cx.tables.expr_ty(&map_args[0]), &paths::OPTION) {
        // lint message
        let msg = "called `map(f).unwrap_or_else(g)` on an Option value. This can be done more directly by calling \
                   `map_or_else(g, f)` instead";
        // get snippets for args to map() and unwrap_or_else()
        let map_snippet = snippet(cx, map_args[1].span, "..");
        let unwrap_snippet = snippet(cx, unwrap_args[1].span, "..");
        // lint, with note if neither arg is > 1 line and both map() and
        // unwrap_or_else() have the same span
        let multiline = map_snippet.lines().count() > 1 || unwrap_snippet.lines().count() > 1;
        let same_span = map_args[1].span.ctxt == unwrap_args[1].span.ctxt;
        if same_span && !multiline {
            span_note_and_lint(cx,
                               OPTION_MAP_UNWRAP_OR_ELSE,
                               expr.span,
                               msg,
                               expr.span,
                               &format!("replace `map({0}).unwrap_or_else({1})` with `map_or_else({1}, {0})`",
                                        map_snippet,
                                        unwrap_snippet));
        } else if same_span && multiline {
            span_lint(cx, OPTION_MAP_UNWRAP_OR_ELSE, expr.span, msg);
        };
    }
}

/// lint use of `filter().next()` for `Iterators`
fn lint_filter_next(cx: &LateContext, expr: &hir::Expr, filter_args: &[hir::Expr]) {
    // lint if caller of `.filter().next()` is an Iterator
    if match_trait_method(cx, expr, &paths::ITERATOR) {
        let msg = "called `filter(p).next()` on an `Iterator`. This is more succinctly expressed by calling \
                   `.find(p)` instead.";
        let filter_snippet = snippet(cx, filter_args[1].span, "..");
        if filter_snippet.lines().count() <= 1 {
            // add note if not multi-line
            span_note_and_lint(cx,
                               FILTER_NEXT,
                               expr.span,
                               msg,
                               expr.span,
                               &format!("replace `filter({0}).next()` with `find({0})`", filter_snippet));
        } else {
            span_lint(cx, FILTER_NEXT, expr.span, msg);
        }
    }
}

/// lint use of `filter().map()` for `Iterators`
fn lint_filter_map(cx: &LateContext, expr: &hir::Expr, _filter_args: &[hir::Expr], _map_args: &[hir::Expr]) {
    // lint if caller of `.filter().map()` is an Iterator
    if match_trait_method(cx, expr, &paths::ITERATOR) {
        let msg = "called `filter(p).map(q)` on an `Iterator`. \
                   This is more succinctly expressed by calling `.filter_map(..)` instead.";
        span_lint(cx, FILTER_MAP, expr.span, msg);
    }
}

/// lint use of `filter().map()` for `Iterators`
fn lint_filter_map_map(cx: &LateContext, expr: &hir::Expr, _filter_args: &[hir::Expr], _map_args: &[hir::Expr]) {
    // lint if caller of `.filter().map()` is an Iterator
    if match_trait_method(cx, expr, &paths::ITERATOR) {
        let msg = "called `filter_map(p).map(q)` on an `Iterator`. \
                   This is more succinctly expressed by only calling `.filter_map(..)` instead.";
        span_lint(cx, FILTER_MAP, expr.span, msg);
    }
}

/// lint use of `filter().flat_map()` for `Iterators`
fn lint_filter_flat_map(cx: &LateContext, expr: &hir::Expr, _filter_args: &[hir::Expr], _map_args: &[hir::Expr]) {
    // lint if caller of `.filter().flat_map()` is an Iterator
    if match_trait_method(cx, expr, &paths::ITERATOR) {
        let msg = "called `filter(p).flat_map(q)` on an `Iterator`. \
                   This is more succinctly expressed by calling `.flat_map(..)` \
                   and filtering by returning an empty Iterator.";
        span_lint(cx, FILTER_MAP, expr.span, msg);
    }
}

/// lint use of `filter_map().flat_map()` for `Iterators`
fn lint_filter_map_flat_map(cx: &LateContext, expr: &hir::Expr, _filter_args: &[hir::Expr], _map_args: &[hir::Expr]) {
    // lint if caller of `.filter_map().flat_map()` is an Iterator
    if match_trait_method(cx, expr, &paths::ITERATOR) {
        let msg = "called `filter_map(p).flat_map(q)` on an `Iterator`. \
                   This is more succinctly expressed by calling `.flat_map(..)` \
                   and filtering by returning an empty Iterator.";
        span_lint(cx, FILTER_MAP, expr.span, msg);
    }
}

/// lint searching an Iterator followed by `is_some()`
fn lint_search_is_some(
    cx: &LateContext,
    expr: &hir::Expr,
    search_method: &str,
    search_args: &[hir::Expr],
    is_some_args: &[hir::Expr]
) {
    // lint if caller of search is an Iterator
    if match_trait_method(cx, &is_some_args[0], &paths::ITERATOR) {
        let msg = format!("called `is_some()` after searching an `Iterator` with {}. This is more succinctly \
                           expressed by calling `any()`.",
                          search_method);
        let search_snippet = snippet(cx, search_args[1].span, "..");
        if search_snippet.lines().count() <= 1 {
            // add note if not multi-line
            span_note_and_lint(cx,
                               SEARCH_IS_SOME,
                               expr.span,
                               &msg,
                               expr.span,
                               &format!("replace `{0}({1}).is_some()` with `any({1})`", search_method, search_snippet));
        } else {
            span_lint(cx, SEARCH_IS_SOME, expr.span, &msg);
        }
    }
}

/// Checks for the `CHARS_NEXT_CMP` lint.
fn lint_chars_next(cx: &LateContext, expr: &hir::Expr, chain: &hir::Expr, other: &hir::Expr, eq: bool) -> bool {
    if_let_chain! {[
        let Some(args) = method_chain_args(chain, &["chars", "next"]),
        let hir::ExprCall(ref fun, ref arg_char) = other.node,
        arg_char.len() == 1,
        let hir::ExprPath(ref qpath) = fun.node,
        let Some(segment) = single_segment_path(qpath),
        segment.name == "Some"
    ], {
        let self_ty = walk_ptrs_ty(cx.tables.expr_ty_adjusted(&args[0][0]));

        if self_ty.sty != ty::TyStr {
            return false;
        }

        span_lint_and_sugg(cx,
                           CHARS_NEXT_CMP,
                           expr.span,
                           "you should use the `starts_with` method",
                           "like this",
                           format!("{}{}.starts_with({})",
                                   if eq { "" } else { "!" },
                                   snippet(cx, args[0][0].span, "_"),
                                   snippet(cx, arg_char[0].span, "_")));

        return true;
    }}

    false
}

/// lint for length-1 `str`s for methods in `PATTERN_METHODS`
fn lint_single_char_pattern(cx: &LateContext, expr: &hir::Expr, arg: &hir::Expr) {
    if let Ok(ConstVal::Str(r)) = ConstContext::with_tables(cx.tcx, cx.tables).eval(arg) {
        if r.len() == 1 {
            let hint = snippet(cx, expr.span, "..").replace(&format!("\"{}\"", r), &format!("'{}'", r));
            span_lint_and_then(cx,
                               SINGLE_CHAR_PATTERN,
                               arg.span,
                               "single-character string constant used as pattern",
                               |db| { db.span_suggestion(expr.span, "try using a char instead:", hint); });
        }
    }
}

/// Given a `Result<T, E>` type, return its error type (`E`).
fn get_error_type<'a>(cx: &LateContext, ty: Ty<'a>) -> Option<Ty<'a>> {
    if let ty::TyAdt(_, substs) = ty.sty {
        if match_type(cx, ty, &paths::RESULT) {
            substs.types().nth(1)
        } else {
            None
        }
    } else {
        None
    }
}

/// This checks whether a given type is known to implement Debug.
fn has_debug_impl<'a, 'b>(ty: Ty<'a>, cx: &LateContext<'b, 'a>) -> bool {
    match cx.tcx.lang_items.debug_trait() {
        Some(debug) => implements_trait(cx, ty, debug, &[]),
        None => false,
    }
}

enum Convention {
    Eq(&'static str),
    StartsWith(&'static str),
}

#[cfg_attr(rustfmt, rustfmt_skip)]
const CONVENTIONS: [(Convention, &'static [SelfKind]); 6] = [
    (Convention::Eq("new"), &[SelfKind::No]),
    (Convention::StartsWith("as_"), &[SelfKind::Ref, SelfKind::RefMut]),
    (Convention::StartsWith("from_"), &[SelfKind::No]),
    (Convention::StartsWith("into_"), &[SelfKind::Value]),
    (Convention::StartsWith("is_"), &[SelfKind::Ref, SelfKind::No]),
    (Convention::StartsWith("to_"), &[SelfKind::Ref]),
];

#[cfg_attr(rustfmt, rustfmt_skip)]
const TRAIT_METHODS: [(&'static str, usize, SelfKind, OutType, &'static str); 30] = [
    ("add", 2, SelfKind::Value, OutType::Any, "std::ops::Add"),
    ("as_mut", 1, SelfKind::RefMut, OutType::Ref, "std::convert::AsMut"),
    ("as_ref", 1, SelfKind::Ref, OutType::Ref, "std::convert::AsRef"),
    ("bitand", 2, SelfKind::Value, OutType::Any, "std::ops::BitAnd"),
    ("bitor", 2, SelfKind::Value, OutType::Any, "std::ops::BitOr"),
    ("bitxor", 2, SelfKind::Value, OutType::Any, "std::ops::BitXor"),
    ("borrow", 1, SelfKind::Ref, OutType::Ref, "std::borrow::Borrow"),
    ("borrow_mut", 1, SelfKind::RefMut, OutType::Ref, "std::borrow::BorrowMut"),
    ("clone", 1, SelfKind::Ref, OutType::Any, "std::clone::Clone"),
    ("cmp", 2, SelfKind::Ref, OutType::Any, "std::cmp::Ord"),
    ("default", 0, SelfKind::No, OutType::Any, "std::default::Default"),
    ("deref", 1, SelfKind::Ref, OutType::Ref, "std::ops::Deref"),
    ("deref_mut", 1, SelfKind::RefMut, OutType::Ref, "std::ops::DerefMut"),
    ("div", 2, SelfKind::Value, OutType::Any, "std::ops::Div"),
    ("drop", 1, SelfKind::RefMut, OutType::Unit, "std::ops::Drop"),
    ("eq", 2, SelfKind::Ref, OutType::Bool, "std::cmp::PartialEq"),
    ("from_iter", 1, SelfKind::No, OutType::Any, "std::iter::FromIterator"),
    ("from_str", 1, SelfKind::No, OutType::Any, "std::str::FromStr"),
    ("hash", 2, SelfKind::Ref, OutType::Unit, "std::hash::Hash"),
    ("index", 2, SelfKind::Ref, OutType::Ref, "std::ops::Index"),
    ("index_mut", 2, SelfKind::RefMut, OutType::Ref, "std::ops::IndexMut"),
    ("into_iter", 1, SelfKind::Value, OutType::Any, "std::iter::IntoIterator"),
    ("mul", 2, SelfKind::Value, OutType::Any, "std::ops::Mul"),
    ("neg", 1, SelfKind::Value, OutType::Any, "std::ops::Neg"),
    ("next", 1, SelfKind::RefMut, OutType::Any, "std::iter::Iterator"),
    ("not", 1, SelfKind::Value, OutType::Any, "std::ops::Not"),
    ("rem", 2, SelfKind::Value, OutType::Any, "std::ops::Rem"),
    ("shl", 2, SelfKind::Value, OutType::Any, "std::ops::Shl"),
    ("shr", 2, SelfKind::Value, OutType::Any, "std::ops::Shr"),
    ("sub", 2, SelfKind::Value, OutType::Any, "std::ops::Sub"),
];

#[cfg_attr(rustfmt, rustfmt_skip)]
const PATTERN_METHODS: [(&'static str, usize); 17] = [
    ("contains", 1),
    ("starts_with", 1),
    ("ends_with", 1),
    ("find", 1),
    ("rfind", 1),
    ("split", 1),
    ("rsplit", 1),
    ("split_terminator", 1),
    ("rsplit_terminator", 1),
    ("splitn", 2),
    ("rsplitn", 2),
    ("matches", 1),
    ("rmatches", 1),
    ("match_indices", 1),
    ("rmatch_indices", 1),
    ("trim_left_matches", 1),
    ("trim_right_matches", 1),
];


#[derive(Clone, Copy, PartialEq, Debug)]
enum SelfKind {
    Value,
    Ref,
    RefMut,
    No,
}

impl SelfKind {
    fn matches(
        self,
        ty: &hir::Ty,
        arg: &hir::Arg,
        self_ty: &hir::Ty,
        allow_value_for_ref: bool,
        generics: &hir::Generics
    ) -> bool {
        // Self types in the HIR are desugared to explicit self types. So it will always be `self:
        // SomeType`,
        // where SomeType can be `Self` or an explicit impl self type (e.g. `Foo` if the impl is on `Foo`)
        // Thus, we only need to test equality against the impl self type or if it is an explicit
        // `Self`. Furthermore, the only possible types for `self: ` are `&Self`, `Self`, `&mut Self`,
        // and `Box<Self>`, including the equivalent types with `Foo`.

        let is_actually_self = |ty| is_self_ty(ty) || ty == self_ty;
        if is_self(arg) {
            match self {
                SelfKind::Value => is_actually_self(ty),
                SelfKind::Ref | SelfKind::RefMut => {
                    if allow_value_for_ref && is_actually_self(ty) {
                        return true;
                    }
                    match ty.node {
                        hir::TyRptr(_, ref mt_ty) => {
                            let mutability_match = if self == SelfKind::Ref {
                                mt_ty.mutbl == hir::MutImmutable
                            } else {
                                mt_ty.mutbl == hir::MutMutable
                            };
                            is_actually_self(&mt_ty.ty) && mutability_match
                        },
                        _ => false,
                    }
                },
                _ => false,
            }
        } else {
            match self {
                SelfKind::Value => false,
                SelfKind::Ref => is_as_ref_or_mut_trait(ty, self_ty, generics, &paths::ASREF_TRAIT),
                SelfKind::RefMut => is_as_ref_or_mut_trait(ty, self_ty, generics, &paths::ASMUT_TRAIT),
                SelfKind::No => true,
            }
        }
    }

    fn description(&self) -> &'static str {
        match *self {
            SelfKind::Value => "self by value",
            SelfKind::Ref => "self by reference",
            SelfKind::RefMut => "self by mutable reference",
            SelfKind::No => "no self",
        }
    }
}

fn is_as_ref_or_mut_trait(ty: &hir::Ty, self_ty: &hir::Ty, generics: &hir::Generics, name: &[&str]) -> bool {
    single_segment_ty(ty).map_or(false, |seg| {
        generics.ty_params.iter().any(|param| {
            param.name == seg.name &&
            param.bounds.iter().any(|bound| if let hir::TyParamBound::TraitTyParamBound(ref ptr, ..) = *bound {
                let path = &ptr.trait_ref.path;
                match_path_old(path, name) &&
                path.segments.last().map_or(false, |s| if let hir::PathParameters::AngleBracketedParameters(ref data) =
                    s.parameters {
                    data.types.len() == 1 && (is_self_ty(&data.types[0]) || is_ty(&*data.types[0], self_ty))
                } else {
                    false
                })
            } else {
                false
            })
        })
    })
}

fn is_ty(ty: &hir::Ty, self_ty: &hir::Ty) -> bool {
    match (&ty.node, &self_ty.node) {
        (&hir::TyPath(hir::QPath::Resolved(_, ref ty_path)),
         &hir::TyPath(hir::QPath::Resolved(_, ref self_ty_path))) => {
            ty_path.segments.iter().map(|seg| seg.name).eq(self_ty_path.segments.iter().map(|seg| seg.name))
        },
        _ => false,
    }
}

fn single_segment_ty(ty: &hir::Ty) -> Option<&hir::PathSegment> {
    if let hir::TyPath(ref path) = ty.node {
        single_segment_path(path)
    } else {
        None
    }
}

impl Convention {
    fn check(&self, other: &str) -> bool {
        match *self {
            Convention::Eq(this) => this == other,
            Convention::StartsWith(this) => other.starts_with(this) && this != other,
        }
    }
}

impl fmt::Display for Convention {
    fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
        match *self {
            Convention::Eq(this) => this.fmt(f),
            Convention::StartsWith(this) => this.fmt(f).and_then(|_| '*'.fmt(f)),
        }
    }
}

#[derive(Clone, Copy)]
enum OutType {
    Unit,
    Bool,
    Any,
    Ref,
}

impl OutType {
    fn matches(&self, ty: &hir::FunctionRetTy) -> bool {
        match (self, ty) {
            (&OutType::Unit, &hir::DefaultReturn(_)) => true,
            (&OutType::Unit, &hir::Return(ref ty)) if ty.node == hir::TyTup(vec![].into()) => true,
            (&OutType::Bool, &hir::Return(ref ty)) if is_bool(ty) => true,
            (&OutType::Any, &hir::Return(ref ty)) if ty.node != hir::TyTup(vec![].into()) => true,
            (&OutType::Ref, &hir::Return(ref ty)) => matches!(ty.node, hir::TyRptr(_, _)),
            _ => false,
        }
    }
}

fn is_bool(ty: &hir::Ty) -> bool {
    if let hir::TyPath(ref p) = ty.node {
        match_path(p, &["bool"])
    } else {
        false
    }
}