clippy_lints 0.0.141

A bunch of helpful lints to avoid common pitfalls in Rust
use rustc::hir::*;
use rustc::lint::*;
use rustc::middle::const_val::ConstVal;
use rustc::ty::{self, Ty};
use rustc_const_eval::ConstContext;
use rustc_const_math::ConstInt;
use std::cmp::Ordering;
use std::collections::Bound;
use syntax::ast::LitKind;
use syntax::codemap::Span;
use utils::paths;
use utils::{match_type, snippet, span_note_and_lint, span_lint_and_then, span_lint_and_sugg, in_external_macro,
            expr_block, walk_ptrs_ty, is_expn_of, remove_blocks};
use utils::sugg::Sugg;

/// **What it does:** Checks for matches with a single arm where an `if let`
/// will usually suffice.
///
/// **Why is this bad?** Just readability – `if let` nests less than a `match`.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// match x {
///     Some(ref foo) => bar(foo),
///     _ => ()
/// }
/// ```
declare_lint! {
    pub SINGLE_MATCH,
    Warn,
    "a match statement with a single nontrivial arm (i.e. where the other arm \
     is `_ => {}`) instead of `if let`"
}

/// **What it does:** Checks for matches with a two arms where an `if let` will
/// usually suffice.
///
/// **Why is this bad?** Just readability – `if let` nests less than a `match`.
///
/// **Known problems:** Personal style preferences may differ.
///
/// **Example:**
/// ```rust
/// match x {
///     Some(ref foo) => bar(foo),
///     _ => bar(other_ref),
/// }
/// ```
declare_lint! {
    pub SINGLE_MATCH_ELSE,
    Allow,
    "a match statement with a two arms where the second arm's pattern is a wildcard \
     instead of `if let`"
}

/// **What it does:** Checks for matches where all arms match a reference,
/// suggesting to remove the reference and deref the matched expression
/// instead. It also checks for `if let &foo = bar` blocks.
///
/// **Why is this bad?** It just makes the code less readable. That reference
/// destructuring adds nothing to the code.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// match x {
///     &A(ref y) => foo(y),
///     &B => bar(),
///     _ => frob(&x),
/// }
/// ```
declare_lint! {
    pub MATCH_REF_PATS,
    Warn,
    "a match or `if let` with all arms prefixed with `&` instead of deref-ing the match expression"
}

/// **What it does:** Checks for matches where match expression is a `bool`. It
/// suggests to replace the expression with an `if...else` block.
///
/// **Why is this bad?** It makes the code less readable.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// let condition: bool = true;
/// match condition {
///     true => foo(),
///     false => bar(),
/// }
/// ```
declare_lint! {
    pub MATCH_BOOL,
    Warn,
    "a match on a boolean expression instead of an `if..else` block"
}

/// **What it does:** Checks for overlapping match arms.
///
/// **Why is this bad?** It is likely to be an error and if not, makes the code
/// less obvious.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// let x = 5;
/// match x {
///     1 ... 10 => println!("1 ... 10"),
///     5 ... 15 => println!("5 ... 15"),
///     _ => (),
/// }
/// ```
declare_lint! {
    pub MATCH_OVERLAPPING_ARM,
    Warn,
    "a match with overlapping arms"
}

/// **What it does:** Checks for arm which matches all errors with `Err(_)`
/// and take drastic actions like `panic!`.
///
/// **Why is this bad?** It is generally a bad practice, just like
/// catching all exceptions in java with `catch(Exception)`
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// let x : Result(i32, &str) = Ok(3);
/// match x {
///     Ok(_) => println!("ok"),
///     Err(_) => panic!("err"),
/// }
/// ```
declare_lint! {
    pub MATCH_WILD_ERR_ARM,
    Warn,
    "a match with `Err(_)` arm and take drastic actions"
}

#[allow(missing_copy_implementations)]
pub struct MatchPass;

impl LintPass for MatchPass {
    fn get_lints(&self) -> LintArray {
        lint_array!(SINGLE_MATCH,
                    MATCH_REF_PATS,
                    MATCH_BOOL,
                    SINGLE_MATCH_ELSE,
                    MATCH_OVERLAPPING_ARM,
                    MATCH_WILD_ERR_ARM)
    }
}

impl<'a, 'tcx> LateLintPass<'a, 'tcx> for MatchPass {
    fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, expr: &'tcx Expr) {
        if in_external_macro(cx, expr.span) {
            return;
        }
        if let ExprMatch(ref ex, ref arms, MatchSource::Normal) = expr.node {
            check_single_match(cx, ex, arms, expr);
            check_match_bool(cx, ex, arms, expr);
            check_overlapping_arms(cx, ex, arms);
            check_wild_err_arm(cx, ex, arms);
        }
        if let ExprMatch(ref ex, ref arms, source) = expr.node {
            check_match_ref_pats(cx, ex, arms, source, expr);
        }
    }
}

#[cfg_attr(rustfmt, rustfmt_skip)]
fn check_single_match(cx: &LateContext, ex: &Expr, arms: &[Arm], expr: &Expr) {
    if arms.len() == 2 &&
      arms[0].pats.len() == 1 && arms[0].guard.is_none() &&
      arms[1].pats.len() == 1 && arms[1].guard.is_none() {
        let els = remove_blocks(&arms[1].body);
        let els = if is_unit_expr(els) {
            None
        } else if let ExprBlock(_) = els.node {
            // matches with blocks that contain statements are prettier as `if let + else`
            Some(els)
        } else {
            // allow match arms with just expressions
            return;
        };
        let ty = cx.tables.expr_ty(ex);
        if ty.sty != ty::TyBool || cx.current_level(MATCH_BOOL) == Allow {
            check_single_match_single_pattern(cx, ex, arms, expr, els);
            check_single_match_opt_like(cx, ex, arms, expr, ty, els);
        }
    }
}

fn check_single_match_single_pattern(cx: &LateContext, ex: &Expr, arms: &[Arm], expr: &Expr, els: Option<&Expr>) {
    if arms[1].pats[0].node == PatKind::Wild {
        report_single_match_single_pattern(cx, ex, arms, expr, els);
    }
}

fn report_single_match_single_pattern(cx: &LateContext, ex: &Expr, arms: &[Arm], expr: &Expr, els: Option<&Expr>) {
    let lint = if els.is_some() {
        SINGLE_MATCH_ELSE
    } else {
        SINGLE_MATCH
    };
    let els_str = els.map_or(String::new(), |els| format!(" else {}", expr_block(cx, els, None, "..")));
    span_lint_and_sugg(cx,
                       lint,
                       expr.span,
                       "you seem to be trying to use match for destructuring a single pattern. Consider using `if \
                        let`",
                       "try this",
                       format!("if let {} = {} {}{}",
                               snippet(cx, arms[0].pats[0].span, ".."),
                               snippet(cx, ex.span, ".."),
                               expr_block(cx, &arms[0].body, None, ".."),
                               els_str));
}

fn check_single_match_opt_like(cx: &LateContext, ex: &Expr, arms: &[Arm], expr: &Expr, ty: Ty, els: Option<&Expr>) {
    // list of candidate Enums we know will never get any more members
    let candidates = &[(&paths::COW, "Borrowed"),
                       (&paths::COW, "Cow::Borrowed"),
                       (&paths::COW, "Cow::Owned"),
                       (&paths::COW, "Owned"),
                       (&paths::OPTION, "None"),
                       (&paths::RESULT, "Err"),
                       (&paths::RESULT, "Ok")];

    let path = match arms[1].pats[0].node {
        PatKind::TupleStruct(ref path, ref inner, _) => {
            // contains any non wildcard patterns? e.g. Err(err)
            if inner.iter().any(|pat| pat.node != PatKind::Wild) {
                return;
            }
            print::to_string(print::NO_ANN, |s| s.print_qpath(path, false))
        },
        PatKind::Binding(BindByValue(MutImmutable), _, ident, None) => ident.node.to_string(),
        PatKind::Path(ref path) => print::to_string(print::NO_ANN, |s| s.print_qpath(path, false)),
        _ => return,
    };

    for &(ty_path, pat_path) in candidates {
        if path == *pat_path && match_type(cx, ty, ty_path) {
            report_single_match_single_pattern(cx, ex, arms, expr, els);
        }
    }
}

fn check_match_bool(cx: &LateContext, ex: &Expr, arms: &[Arm], expr: &Expr) {
    // type of expression == bool
    if cx.tables.expr_ty(ex).sty == ty::TyBool {
        span_lint_and_then(cx,
                           MATCH_BOOL,
                           expr.span,
                           "you seem to be trying to match on a boolean expression",
                           move |db| {
            if arms.len() == 2 && arms[0].pats.len() == 1 {
                // no guards
                let exprs = if let PatKind::Lit(ref arm_bool) = arms[0].pats[0].node {
                    if let ExprLit(ref lit) = arm_bool.node {
                        match lit.node {
                            LitKind::Bool(true) => Some((&*arms[0].body, &*arms[1].body)),
                            LitKind::Bool(false) => Some((&*arms[1].body, &*arms[0].body)),
                            _ => None,
                        }
                    } else {
                        None
                    }
                } else {
                    None
                };

                if let Some((true_expr, false_expr)) = exprs {
                    let sugg = match (is_unit_expr(true_expr), is_unit_expr(false_expr)) {
                        (false, false) => {
                            Some(format!("if {} {} else {}",
                                         snippet(cx, ex.span, "b"),
                                         expr_block(cx, true_expr, None, ".."),
                                         expr_block(cx, false_expr, None, "..")))
                        },
                        (false, true) => {
                            Some(format!("if {} {}", snippet(cx, ex.span, "b"), expr_block(cx, true_expr, None, "..")))
                        },
                        (true, false) => {
                            let test = Sugg::hir(cx, ex, "..");
                            Some(format!("if {} {}", !test, expr_block(cx, false_expr, None, "..")))
                        },
                        (true, true) => None,
                    };

                    if let Some(sugg) = sugg {
                        db.span_suggestion(expr.span, "consider using an if/else expression", sugg);
                    }
                }
            }

        });
    }
}

fn check_overlapping_arms(cx: &LateContext, ex: &Expr, arms: &[Arm]) {
    if arms.len() >= 2 && cx.tables.expr_ty(ex).is_integral() {
        let ranges = all_ranges(cx, arms);
        let type_ranges = type_ranges(&ranges);
        if !type_ranges.is_empty() {
            if let Some((start, end)) = overlapping(&type_ranges) {
                span_note_and_lint(cx,
                                   MATCH_OVERLAPPING_ARM,
                                   start.span,
                                   "some ranges overlap",
                                   end.span,
                                   "overlaps with this");
            }
        }
    }
}

fn check_wild_err_arm(cx: &LateContext, ex: &Expr, arms: &[Arm]) {
    let ex_ty = walk_ptrs_ty(cx.tables.expr_ty(ex));
    if match_type(cx, ex_ty, &paths::RESULT) {
        for arm in arms {
            if let PatKind::TupleStruct(ref path, ref inner, _) = arm.pats[0].node {
                let path_str = print::to_string(print::NO_ANN, |s| s.print_qpath(path, false));
                if_let_chain! {[
                    path_str == "Err",
                    inner.iter().any(|pat| pat.node == PatKind::Wild),
                    let ExprBlock(ref block) = arm.body.node,
                    is_panic_block(block)
                ], {
                    // `Err(_)` arm with `panic!` found
                    span_note_and_lint(cx,
                                       MATCH_WILD_ERR_ARM,
                                       arm.pats[0].span,
                                       "Err(_) will match all errors, maybe not a good idea",
                                       arm.pats[0].span,
                                       "to remove this warning, match each error seperately \
                                        or use unreachable macro");
                }}
            }
        }
    }
}

// If the block contains only a `panic!` macro (as expression or statement)
fn is_panic_block(block: &Block) -> bool {
    match (&block.expr, block.stmts.len(), block.stmts.first()) {
        (&Some(ref exp), 0, _) => {
            is_expn_of(exp.span, "panic").is_some() && is_expn_of(exp.span, "unreachable").is_none()
        },
        (&None, 1, Some(stmt)) => {
            is_expn_of(stmt.span, "panic").is_some() && is_expn_of(stmt.span, "unreachable").is_none()
        },
        _ => false,
    }
}

fn check_match_ref_pats(cx: &LateContext, ex: &Expr, arms: &[Arm], source: MatchSource, expr: &Expr) {
    if has_only_ref_pats(arms) {
        if let ExprAddrOf(Mutability::MutImmutable, ref inner) = ex.node {
            span_lint_and_then(cx,
                               MATCH_REF_PATS,
                               expr.span,
                               "you don't need to add `&` to both the expression and the patterns",
                               |db| {
                let inner = Sugg::hir(cx, inner, "..");
                let template = match_template(expr.span, source, &inner);
                db.span_suggestion(expr.span, "try", template);
            });
        } else {
            span_lint_and_then(cx,
                               MATCH_REF_PATS,
                               expr.span,
                               "you don't need to add `&` to all patterns",
                               |db| {
                let ex = Sugg::hir(cx, ex, "..");
                let template = match_template(expr.span, source, &ex.deref());
                db.span_suggestion(expr.span,
                                   "instead of prefixing all patterns with `&`, you can dereference the expression",
                                   template);
            });
        }
    }
}

/// Get all arms that are unbounded `PatRange`s.
fn all_ranges<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, arms: &[Arm]) -> Vec<SpannedRange<ConstVal<'tcx>>> {
    let constcx = ConstContext::with_tables(cx.tcx, cx.tables);
    arms.iter()
        .flat_map(|arm| {
            if let Arm { ref pats, guard: None, .. } = *arm {
                    pats.iter()
                } else {
                    [].iter()
                }
                .filter_map(|pat| {
                    if_let_chain! {[
                    let PatKind::Range(ref lhs, ref rhs, ref range_end) = pat.node,
                    let Ok(lhs) = constcx.eval(lhs),
                    let Ok(rhs) = constcx.eval(rhs)
                ], {
                    let rhs = match *range_end {
                        RangeEnd::Included => Bound::Included(rhs),
                        RangeEnd::Excluded => Bound::Excluded(rhs),
                    };
                    return Some(SpannedRange { span: pat.span, node: (lhs, rhs) });
                }}

                    if_let_chain! {[
                    let PatKind::Lit(ref value) = pat.node,
                    let Ok(value) = constcx.eval(value)
                ], {
                    return Some(SpannedRange { span: pat.span, node: (value.clone(), Bound::Included(value)) });
                }}

                    None
                })
        })
        .collect()
}

#[derive(Debug, Eq, PartialEq)]
pub struct SpannedRange<T> {
    pub span: Span,
    pub node: (T, Bound<T>),
}

type TypedRanges = Vec<SpannedRange<ConstInt>>;

/// Get all `Int` ranges or all `Uint` ranges. Mixed types are an error anyway and other types than
/// `Uint` and `Int` probably don't make sense.
fn type_ranges(ranges: &[SpannedRange<ConstVal>]) -> TypedRanges {
    ranges.iter()
        .filter_map(|range| match range.node {
            (ConstVal::Integral(start), Bound::Included(ConstVal::Integral(end))) => {
                Some(SpannedRange {
                    span: range.span,
                    node: (start, Bound::Included(end)),
                })
            },
            (ConstVal::Integral(start), Bound::Excluded(ConstVal::Integral(end))) => {
                Some(SpannedRange {
                    span: range.span,
                    node: (start, Bound::Excluded(end)),
                })
            },
            (ConstVal::Integral(start), Bound::Unbounded) => {
                Some(SpannedRange {
                    span: range.span,
                    node: (start, Bound::Unbounded),
                })
            },
            _ => None,
        })
        .collect()
}

fn is_unit_expr(expr: &Expr) -> bool {
    match expr.node {
        ExprTup(ref v) if v.is_empty() => true,
        ExprBlock(ref b) if b.stmts.is_empty() && b.expr.is_none() => true,
        _ => false,
    }
}

fn has_only_ref_pats(arms: &[Arm]) -> bool {
    let mapped = arms.iter()
        .flat_map(|a| &a.pats)
        .map(|p| {
            match p.node {
                PatKind::Ref(..) => Some(true),  // &-patterns
                PatKind::Wild => Some(false),   // an "anything" wildcard is also fine
                _ => None,                    // any other pattern is not fine
            }
        })
        .collect::<Option<Vec<bool>>>();
    // look for Some(v) where there's at least one true element
    mapped.map_or(false, |v| v.iter().any(|el| *el))
}

fn match_template(span: Span, source: MatchSource, expr: &Sugg) -> String {
    match source {
        MatchSource::Normal => format!("match {} {{ .. }}", expr),
        MatchSource::IfLetDesugar { .. } => format!("if let .. = {} {{ .. }}", expr),
        MatchSource::WhileLetDesugar => format!("while let .. = {} {{ .. }}", expr),
        MatchSource::ForLoopDesugar => span_bug!(span, "for loop desugared to match with &-patterns!"),
        MatchSource::TryDesugar => span_bug!(span, "`?` operator desugared to match with &-patterns!"),
    }
}

pub fn overlapping<T>(ranges: &[SpannedRange<T>]) -> Option<(&SpannedRange<T>, &SpannedRange<T>)>
    where T: Copy + Ord
{
    #[derive(Copy, Clone, Debug, Eq, PartialEq)]
    enum Kind<'a, T: 'a> {
        Start(T, &'a SpannedRange<T>),
        End(Bound<T>, &'a SpannedRange<T>),
    }

    impl<'a, T: Copy> Kind<'a, T> {
        fn range(&self) -> &'a SpannedRange<T> {
            match *self {
                Kind::Start(_, r) |
                Kind::End(_, r) => r,
            }
        }

        fn value(self) -> Bound<T> {
            match self {
                Kind::Start(t, _) => Bound::Included(t),
                Kind::End(t, _) => t,
            }
        }
    }

    impl<'a, T: Copy + Ord> PartialOrd for Kind<'a, T> {
        fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
            Some(self.cmp(other))
        }
    }

    impl<'a, T: Copy + Ord> Ord for Kind<'a, T> {
        fn cmp(&self, other: &Self) -> Ordering {
            match (self.value(), other.value()) {
                (Bound::Included(a), Bound::Included(b)) |
                (Bound::Excluded(a), Bound::Excluded(b)) => a.cmp(&b),
                // Range patterns cannot be unbounded (yet)
                (Bound::Unbounded, _) |
                (_, Bound::Unbounded) => unimplemented!(),
                (Bound::Included(a), Bound::Excluded(b)) => {
                    match a.cmp(&b) {
                        Ordering::Equal => Ordering::Greater,
                        other => other,
                    }
                },
                (Bound::Excluded(a), Bound::Included(b)) => {
                    match a.cmp(&b) {
                        Ordering::Equal => Ordering::Less,
                        other => other,
                    }
                },
            }
        }
    }

    let mut values = Vec::with_capacity(2 * ranges.len());

    for r in ranges {
        values.push(Kind::Start(r.node.0, r));
        values.push(Kind::End(r.node.1, r));
    }

    values.sort();

    for (a, b) in values.iter().zip(values.iter().skip(1)) {
        match (a, b) {
            (&Kind::Start(_, ra), &Kind::End(_, rb)) => {
                if ra.node != rb.node {
                    return Some((ra, rb));
                }
            },
            (&Kind::End(a, _), &Kind::Start(b, _)) if a != Bound::Included(b) => (),
            _ => return Some((a.range(), b.range())),
        }
    }

    None
}