chiavdf 1.1.13

Bindings to the chiavdf C++ library.
Documentation
/**
Copyright 2018 Chia Network Inc

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
***/

class vdf_original
{
public:

    struct form {
        // y = ax^2 + bxy + y^2
        mpz_t a;
        mpz_t b;
        mpz_t c;

        //mpz_t d; // discriminant
    };

    mpz_t negative_a, r, denom, old_b, ra, s, x, old_a, g, d, e, q, w, u, a,
        b, m, k, mu, v, sigma, lambda, h, t, l, j;
    form f3;

    void normalize(form& f) {
        mpz_neg(negative_a, f.a);
        if (mpz_cmp(f.b, negative_a) > 0 && mpz_cmp(f.b, f.a) <= 0) {
            // Already normalized
            return;
        }
        // r = (a - b) / 2a
        // a = a
        // b = b + 2ra
        // c = ar^2 + br + c
        mpz_sub(r, f.a, f.b);

        mpz_mul_ui(denom, f.a, 2);

        // r = (a-b) / 2a
        mpz_fdiv_q(r, r, denom);

        mpz_set(old_b, f.b);

        mpz_mul(ra, r, f.a);
        mpz_add(f.b, f.b, ra);
        mpz_add(f.b, f.b, ra);

        // c += ar^2
        mpz_mul(ra, ra, r);
        mpz_add(f.c, f.c, ra);

        // c += rb
        mpz_set(ra, r);
        mpz_mul(ra, ra, old_b);
        mpz_add(f.c, f.c, ra);
    }

    void reduce(form& f) {
        normalize(f);
        while ((mpz_cmp(f.a, f.c) > 0) ||
            (mpz_cmp(f.a, f.c) == 0 && mpz_cmp_si(f.b, 0) < 0)) {
            mpz_add(s, f.c, f.b);

            // x = 2c
            mpz_mul_ui(x, f.c, 2);
            mpz_fdiv_q(s, s, x);

            mpz_set(old_a, f.a);
            mpz_set(old_b, f.b);

            // b = -b
            mpz_set(f.a, f.c);
            mpz_neg(f.b, f.b);

            // x = 2sc
            mpz_mul(x, s, f.c);
            mpz_mul_ui(x, x, 2);

            // b += 2sc
            mpz_add(f.b, f.b, x);

            // c = cs^2
            mpz_mul(f.c, f.c, s);
            mpz_mul(f.c, f.c, s);

            // x = bs
            mpz_mul(x, old_b, s);

            // c -= bs
            mpz_sub(f.c, f.c, x);

            // c += a
            mpz_add(f.c, f.c, old_a);
        }
        normalize(f);
    }

    form generator_for_discriminant(mpz_t* d) {
        form x;
        mpz_init_set_ui(x.a, 2);
        mpz_init_set_ui(x.b, 1);
        mpz_init(x.c);
        //mpz_init_set(x.d, *d);

        // c = b*b - d
        mpz_mul(x.c, x.b, x.b);
        mpz_sub(x.c, x.c, *d);

        // denom = 4a
        mpz_mul_ui(denom, x.a, 4);

        mpz_fdiv_q(x.c, x.c, denom);
        reduce(x);
        mpz_clears(x.a, x.b, x.c, NULL);
        return x;
    }

    // Returns mu and v, solving for x:  ax = b mod m
    // such that x = u + vn (n are all integers). Assumes that mu and v are initialized.
    // Returns 0 on success, -1 on failure
    int solve_linear_congruence(mpz_t& mu, mpz_t& v, mpz_t& a, mpz_t& b, mpz_t& m) {
        // g = gcd(a, m), and da + em = g
        mpz_gcdext(g, d, e, a, m);

        // q = b/g, r = b % g
        mpz_fdiv_qr(q, r, b, g);

        if (mpz_cmp_ui(r, 0) != 0) {
            // No solution, return error. Optimize out for speed..
            cout << "No solution to congruence" << endl;
            return -1;
        }

        mpz_mul(mu, q, d);
        mpz_mod(mu, mu, m);

        mpz_fdiv_q(v, m, g);
        return 0;
    }

    // Faster version without check, and without returning v
    int solve_linear_congruence(mpz_t& mu, mpz_t& a, mpz_t& b, mpz_t& m) {
        mpz_gcdext(g, d, e, a, m);
        mpz_fdiv_q(q, b, g);
        mpz_mul(mu, q, d);
        mpz_mod(mu, mu, m);
        return 0;
    }

    // Takes the gcd of three numbers
    void three_gcd(mpz_t& ret, mpz_t& a, mpz_t& b, mpz_t& c) {
        mpz_gcd(ret, a, b);
        mpz_gcd(ret, ret, c);
    }

    form* multiply(form &f1, form &f2) {
        //assert(mpz_cmp(f1.d, f2.d) == 0);

        // g = (b1 + b2) / 2
        mpz_add(g, f1.b, f2.b);
        mpz_fdiv_q_ui(g, g, 2);


        // h = (b2 - b1) / 2
        mpz_sub(h, f2.b, f1.b);
        mpz_fdiv_q_ui(h, h, 2);

        // w = gcd(a1, a2, g)
        three_gcd(w, f1.a, f2.a, g);

        // j = w
        mpz_set(j, w);

        // r = 0
        mpz_set_ui(r, 0);

        // s = a1/w
        mpz_fdiv_q(s, f1.a, w);

        // t = a2/w
        mpz_fdiv_q(t, f2.a, w);

        // u = g/w
        mpz_fdiv_q(u, g, w);

        // solve (tu)k = (hu + sc1) mod st, of the form k = mu + vn

        // a = tu
        mpz_mul(a, t, u);

        // b = hu + sc1
        mpz_mul(b, h, u);
        mpz_mul(m, s, f1.c);
        mpz_add(b, b, m);

        // m = st
        mpz_mul(m, s, t);

        int ret = solve_linear_congruence(mu, v, a, b, m);

        assert(ret == 0);

        // solve (tv)n = (h - t * mu) mod s, of the form n = lamda + sigma n'

        // a = tv
        mpz_mul(a, t, v);

        // b = h - t * mu
        mpz_mul(m, t, mu); // use m as a temp variable
        mpz_sub(b, h, m);

        // m = s
        mpz_set(m, s);

        ret = solve_linear_congruence(lambda, sigma, a, b, m);
        assert(ret == 0);

        // k = mu + v*lamda
        mpz_mul(a, v, lambda); // use a as a temp variable

        mpz_add(k, mu, a);

        // l = (k*t - h) / s
        mpz_mul(l, k, t);
        mpz_sub(l, l, h);
        mpz_fdiv_q(l, l, s);

        // m = (tuk - hu - cs) / st
        mpz_mul(m, t, u);
        mpz_mul(m, m, k);
        mpz_mul(a, h, u); // use a as a temp variable
        mpz_sub(m, m, a);
        mpz_mul(a, f1.c, s); // use a as a temp variable
        mpz_sub(m, m, a);
        mpz_mul(a, s, t); // use a as a temp variable
        mpz_fdiv_q(m, m, a);

        // A = st - ru
        mpz_mul(f3.a, s, t);
        mpz_mul(a, r, u); // use a as a temp variable
        mpz_sub(f3.a, f3.a, a);

        // B = ju + mr - (kt + ls)
        mpz_mul(f3.b, j, u);
        mpz_mul(a, m, r); // use a as a temp variable
        mpz_add(f3.b, f3.b, a);
        mpz_mul(a, k, t); // use a as a temp variable
        mpz_sub(f3.b, f3.b, a);
        mpz_mul(a, l, s); // use a as a temp variable
        mpz_sub(f3.b, f3.b, a);

        // C = kl - jm
        mpz_mul(f3.c, k, l);
        mpz_mul(a, j, m);
        mpz_sub(f3.c, f3.c, a);

        //mpz_set(f3.d, f1.d);

        reduce(f3);
        return &f3;
    }

    /**
    * This algorithm is the same as the composition/multiply algorithm,
    * but simplified to where both inputs are equal (squaring). It also
    * assumes that the discriminant is a negative prime. Algorithm:
    *
    * 1. solve for mu: b(mu) = c mod a
    * 2.  A = a^2
    *     B = B - 2a * mu
    *     C = mu^2 - (b * mu - c)/a
    * 3. reduce f(A, B, C)
    **/
    form* square(form &f1) {
        int ret = solve_linear_congruence(mu, f1.b, f1.c, f1.a);
        assert(ret == 0);

        mpz_mul(m, f1.b, mu);
        mpz_sub(m, m, f1.c);
        mpz_fdiv_q(m, m, f1.a);

        // New a
        mpz_set(old_a, f1.a);
        mpz_mul(f3.a, f1.a, f1.a);

        // New b
        mpz_mul(a, mu, old_a);
        mpz_mul_ui(a, a, 2);
        mpz_sub(f3.b, f1.b, a);

        // New c
        mpz_mul(f3.c, mu, mu);
        mpz_sub(f3.c, f3.c, m);
        //mpz_set(f3.d, f1.d);
        reduce(f3);
        return &f3;
    }

    // Performs the VDF squaring iterations
    form repeated_square(form *f, uint64_t iterations) {
        for (uint64_t i=0; i < iterations; i++) {
            f = square(*f);
        }
        return *f;
    }

    vdf_original() {
        mpz_inits(negative_a, r, denom, old_a, old_b, ra, s, x, g, d, e, q, w, m,
                u, a, b, k, mu, v, sigma, lambda, f3.a, f3.b, f3.c, //f3.d,
                NULL);
    }

    ~vdf_original() {
        mpz_clears(negative_a, r, denom, old_a, old_b, ra, s, x, g, d, e, q, w, m,
                   u, a, b, k, mu, v, sigma, lambda, f3.a, f3.b, f3.c, NULL); //,);
    }
};