chiavdf 1.1.13

Bindings to the chiavdf C++ library.
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
#ifndef GCD_BASE_CONTINUED_FRACTIONS_H
#define GCD_BASE_CONTINUED_FRACTIONS_H

typedef array<double, 2> vector2;
typedef array<vector2, 2> matrix2;

matrix2 identity_matrix() {
    return {
        vector2{1, 0},
        vector2{0, 1}
    };
}

matrix2 quotient_matrix(double q) {
    assert(int64(q)==q);

    return {
        vector2{0,  1},
        vector2{1, -q}
    };
}

bool range_check(double v) {
    //this is the smallest value where you can add 1 exactly
    //if you add 2, you get the same value as if you added 1
    //if two floats are added/subtracted and there is a loss of precision, the absolute value of the result will be greater than this
    //same with multiplication and fma
    //(all of the doubles are integers whether they are exact or not)
    return abs(v)<=double((1ull<<53)-1);
}

bool dot_product_exact(vector2 a, vector2 b, double& v, bool result_always_in_range=false) {
    v=a[0]*b[0];
    if (!range_check(v)) {
        return false;
    }

    if (hasAVX2()) {
        v=fma(a[1], b[1], v);
    } else {
        double v2=a[1]*b[1];
        if (!range_check(v2)) {
            return false;
        }

        v+=v2;
    }

    if (result_always_in_range) {
        //still need the first range_check since the intermediate value might not be in range
        assert(range_check(v));
    }

    return range_check(v);
}

//result_always_in_range ignored
bool dot_product_exact(array<uint64,2> a, array<uint64,2> b, uint64& v, bool result_always_in_range=false) {
    uint64 t1;
    if (__builtin_mul_overflow(a[0], b[0], &t1)) {
        return false;
    }

    uint64 t2;
    if (__builtin_mul_overflow(a[1], b[1], &t2)) {
        return false;
    }

    return !__builtin_add_overflow(t1, t2, &v);
}

template<class type> bool multiply_exact(
    array<array<type,2>,2> a, array<type,2> b, array<type,2>& v, bool result_always_in_range=false) {
    return
        dot_product_exact(a[0], b, v[0], result_always_in_range) &&
        dot_product_exact(a[1], b, v[1], result_always_in_range)
    ;
}

template<class type> bool multiply_exact(
    array<array<type,2>,2> a, array<array<type,2>,2> b, array<array<type,2>,2>& v, bool result_always_in_range=false
) {
    return
        dot_product_exact(a[0], array<type,2>{b[0][0], b[1][0]}, v[0][0], result_always_in_range) &&
        dot_product_exact(a[0], array<type,2>{b[0][1], b[1][1]}, v[0][1], result_always_in_range) &&
        dot_product_exact(a[1], array<type,2>{b[0][0], b[1][0]}, v[1][0], result_always_in_range) &&
        dot_product_exact(a[1], array<type,2>{b[0][1], b[1][1]}, v[1][1], result_always_in_range)
    ;
}

struct continued_fraction {
    vector<int> values;

    matrix2 get_matrix() {
        matrix2 res=identity_matrix();

        for (int i : values) {
            bool is_exact=multiply_exact(quotient_matrix(i), res, res);
            assert(is_exact);
        }

        return res;
    }

    bool truncate(double max_matrix_value) {
        bool res=false;

        while (true) {
            matrix2 m=get_matrix();
            double max_value=max(
                max(abs(m[0][0]), abs(m[0][1])),
                max(abs(m[1][0]), abs(m[1][1]))
            );

            if (max_value>max_matrix_value) {
                assert(!values.empty());
                values.pop_back();
                res=true;
            } else {
                break;
            }
        }

        return res;
    }

    bool is_superset_of(continued_fraction& targ) {
        if (values.size()>targ.values.size()) {
            return false;
        }

        for (int x=0;x<values.size();++x) {
            if (values[x]!=targ.values[x]) {
                return false;
            }
        }

        return true;
    }

    //rounds to 0; need to add 1 ulp to the fraction to get the possible range
    //if is_exact is true then the result is inside the continued fraction
    double get_bound(bool parity, bool& is_exact) {
        assert(!values.empty());

        bool first=true;
        mpq_class res=0;
        mpq_class one=1;

        for (int x=values.size()-1;x>=0;--x) {
            assert(values[x]>=1);

            if (first) {
                //the denominator of each fraction is between 1 and infinity
                //this is already canonicalized
                res=values[x] + (parity? 1 : 0);
            } else {
                //mpq_class(values[x]) is already canonicalized
                res=mpq_class(values[x]) + one/res;
            }

            first=false;
        }

        double res_double=res.get_d();
        {
            mpq_class res_double_mpq(res_double);
            res_double_mpq.canonicalize();

            is_exact=(res_double_mpq==res);
        }
        return res_double;
    }

    //everything inside the bound starts with this continued fraction
    //something outside the bound might also start with this continued fraction
    //>= first, < second
    pair<double, double> get_bound() {
        bool a_exact=false;
        double a=get_bound(false, a_exact);

        bool b_exact=false;
        double b=get_bound(true, b_exact);

        if (a>b) {
            swap(a, b);
            swap(a_exact, b_exact);
        }

        if (!a_exact) {
            //if a isn't exact, the next double value after a is inside the continued fraction (since it got rounded down). this assumes
            // the bound isn't so small that it is close to the double machine epsilon; this is checked later by the double_table code
            //if a is exact then it is inside the continued fraction
            a=nextafter(a, HUGE_VAL);
        }

        //if b isn't exact, then it got rounded down and the b value is inside the continued fraction. the next value after b will
        // be outside the continued fraction
        //if b is exact then it is also inside the continued fraction and the next value is outside
        b=nextafter(b, HUGE_VAL);

        return make_pair(a, b);
    }
};

//if you add 1 to the integer representation of a positive double, it will increase the value by 1 machine epsilon (assuming no overflow)
template<class type> struct double_table {
    vector<type> data; //data[x] is >= range_start+x*delta and < range_start+(x+1)*delta

    int exponent_bits;
    int fraction_bits;

    int64 range_start=0;
    int64 range_end=0;
    int64 delta=0;

    double range_start_double=0;
    double range_end_double=0;

    int right_shift_amount=0;
    uint64 range_start_shifted=0;
    uint64 range_end_shifted=0;

    //min value is 1
    double_table(int t_exponent_bits, int t_fraction_bits) {
        exponent_bits=t_exponent_bits;
        fraction_bits=t_fraction_bits;

        assert(exponent_bits>=0);
        assert(fraction_bits>=1);

        double_bits range_start_bits;
        range_start_bits.sign=false;
        range_start_bits.set_exponent(0);
        range_start_bits.fraction=0;
        range_start=range_start_bits.to_uint64();
        range_start_double=range_start_bits.to_double();

        double_bits range_end_bits;
        range_end_bits.sign=false;
        range_end_bits.set_exponent(1<<exponent_bits);
        range_end_bits.fraction=0;
        range_end=range_end_bits.to_uint64();
        range_end_double=range_end_bits.to_double();

        double_bits delta_bits;
        delta_bits.sign=false;
        delta_bits.exponent=0;
        delta_bits.fraction=1ull<<(double_bits::fraction_num_bits-fraction_bits);
        delta=delta_bits.to_uint64();

        assert(range_end>range_start);
        assert(range_start%delta==0);
        assert(range_end%delta==0);
        assert((range_end-range_start)/delta==1ull<<(exponent_bits+fraction_bits));

        data.resize(1ull<<(exponent_bits+fraction_bits));

        right_shift_amount=double_bits::fraction_num_bits-fraction_bits;
        range_start_shifted=uint64(range_start)>>right_shift_amount;
        range_end_shifted=uint64(range_end)>>right_shift_amount;
    }

    pair<double, double> index_range(int x) {
        int64 res_low=range_start+x*delta;
        int64 res_high=range_start+(x+1)*delta;
        return make_pair(*(double*)&res_low, *(double*)&res_high);
    }

    bool lookup(double v, type& res) {
        assert(v>=1);

        res=type();

        uint64 v_bits=*(uint64*)&v;
        uint64 v_bits_shifted=v_bits>>right_shift_amount;

        assert(v_bits_shifted>=range_start_shifted); //since v>=1
        if (v_bits_shifted<range_start_shifted || v_bits_shifted>=range_end_shifted) {
            return false;
        }

        //the table doesn't work if v is exactly between two slots
        //happens if the remainder is 0 for one of the quotients
        if (
            (v_bits & (delta-1)) == 0 ||
            (v_bits & (delta-1)) == delta-1
        ) {
            return false;
        }

        res=data.at(v_bits_shifted-range_start_shifted);
        return true;
    }

    //will assign all entries >= range.first and < range.second
    //returns true if the range is at least 0.5 entries wide (for that area of the table) and is within the table bounds
    bool assign(pair<double, double> range, type value, vector<type>& old_values) {
        old_values.clear();

        double start_double=range.first;
        double end_double=range.second;

        assert(start_double>0 && end_double>0 && end_double>=start_double && isfinite(start_double) && isfinite(end_double));

        if (end_double<range_start_double || start_double>range_end_double) {
            return false;
        }

        int64 start_bits=*(int64*)&start_double;
        int64 end_bits=*(int64*)&end_double;

        if (end_bits<=start_bits || 2*(end_bits-start_bits)<delta) {
            return false;
        }

        int64 start_pos=(start_bits-range_start)/delta;
        int64 end_pos=(end_bits-range_start)/delta + 1;
        assert(end_pos>=start_pos);

        if (start_pos<0) {
            start_pos=0;
        }

        if (end_pos>data.size()) {
            end_pos=data.size();
        }

        for (uint64 pos=start_pos;pos<end_pos;++pos) {
            pair<double, double> slot_range=index_range(pos);

            //if start_double==slot_range.first, then both ranges have the same starting double so that's fine
            //if end_double==slot_range.second, then both ranges have the same ending double which is also fine
            if (start_double<=slot_range.first && end_double>=slot_range.second) {
                old_values.push_back(data[pos]);
                data[pos]=value;
            }
        }

        return true;
    }
};

bool add_to_table(double_table<continued_fraction>& c_table, continued_fraction f) {
    vector<continued_fraction> old_values;
    if (!c_table.assign(f.get_bound(), f, old_values)) {
        return false;
    }

    for (continued_fraction& c : old_values) {
        assert(c.is_superset_of(f));
    }

    return true;
}

void add_children_to_table(double_table<continued_fraction>& c_table, continued_fraction f) {
    f.values.push_back(1);

    while (true) {
        if (!add_to_table(c_table, f)) {
            break;
        }

        add_children_to_table(c_table, f);

        assert(f.values.back()<INT_MAX);
        ++f.values.back();
    }
}

double_table<continued_fraction> generate_table(
    int exponent_bits, int fraction_bits, uint64 truncate_max_value=1ull<<53, bool output_stats=false, bool dump=false
) {
    double_table<continued_fraction> c_table(exponent_bits, fraction_bits);
    add_children_to_table(c_table, continued_fraction());

    bool any_truncated=false;
    for (continued_fraction& c : c_table.data) {
        assert(double(truncate_max_value)==truncate_max_value);
        any_truncated |= c.truncate(truncate_max_value);
    }

    //if the exponent has too many bits, some of the table entries will span multiple integers and won't have any entries
    //all of the full entries are at the start of the table, and all of the empty entires are at the end. they aren't interleaved
    //when setting up the table range checks, should truncate off all of the empty values so they won't affect cache coherency
    int num_empty=0;

    for (int x=0;x<c_table.data.size();++x) {
        if (dump) {
            cerr << c_table.index_range(x).first << ", " << c_table.index_range(x).second << " : ";
            for (int i : c_table.data[x].values) {
                cerr << i << ", ";
            }
            cerr << "\n";
        }

        bool is_empty=(c_table.data[x].values.empty());
        if (is_empty) {
            ++num_empty;
        } else {
            //all of the empty values are supposed to be before the non-empty values
            assert(num_empty==0);
        }
    }

    assert(num_empty==0); //gcd algorithm won't check for this

    if (output_stats) {
        print( "non-empty:", c_table.data.size()-num_empty, "; empty:", num_empty );
        if (any_truncated) {
            print( "truncated" );
        }
    }

    return c_table;
}

//initial uv is the identity matrix
//parity is the number of quotients mod 2
//
//if uv is unsigned:
//-the parity is the sign of uv[1][1] (1 if negative)
//-to calculate the next uv, just multiply the unsigned matricies together. also add the parities modulo 2
//-to calculate ab from the starting ab, do a subtraction in the dot product instead of adding, then take the absolute value of the
// result. can also use the parity to decide what way to do the subtraction.
// - odd parity: b-a, a-b
// -even parity: a-b, b-a
// -can calculate assuming even parity. then sign extend the parity to 64 bits (from 1 bit) and use the parity as the carry in,
//  then xor the result by the sign extended parity and add the carry. this can also determine the parity if it is unknown
//
//  odd parity uv: { <=0 > 0
//                   > 0 < 0}
// even parity uv: { >=0 <=0s
//                   <=0 > 0}

//if this returns false then the new values are invalid and the old values are valid
//this works if u/v are unsigned, if v[1]-v[0] is replaced with |v[1]|+|v[0]| and -u[1] is replaced with |u1| etc
bool check_lehmer(array<int64, 2> a, array<int64, 2> u, array<int64, 2> v) {
    // a[0]-a[1] is always >= 0 ; also a[1]>=0
    // odd parity  ; u[0]<=0 ; u[1]> 0 ; v[0]> 0 ; v[1]< 0
    // even parity ; u[0]>=0 ; u[1]<=0 ; v[0]<=0 ; v[1]> 0
    return
        a[1]>=-u[1] && int128(a[0])-int128(a[1]) >= int128(v[1])-int128(v[0]) && // even parity
        a[1]>=-v[1] && int128(a[0])-int128(a[1]) >= int128(u[1])-int128(u[0])    //  odd parity
    ;
}

bool gcd_base_continued_fraction(vector2& ab, matrix2& uv, bool is_lehmer, double ab_threshold=0) {
    static double_table<continued_fraction> c_table=generate_table(gcd_table_num_exponent_bits, gcd_table_num_fraction_bits);

    static int test_asm_counter=0;
    ++test_asm_counter;

    bool test_asm_run=true;
    bool test_asm_print=false; //(test_asm_counter%1000==0);
    bool debug_output=false;

    assert(ab[0]>=ab[1] && ab[1]>=0);

    uv=identity_matrix();

    auto ab_start=ab;

    bool progress=false;
    bool enable_table=true;

    int iter=0;
    int iter_table=0;
    int iter_slow=0;

    if (debug_output) {
        cerr.setf(ios::fixed, ios::floatfield);
        //cerr.setf(ios::showpoint);
    }

    while (true) {
        if (debug_output) print( "======== 1:", iter, ab[1], ab_threshold);

        if (ab[1]<=ab_threshold) {
            if (debug_output) print( "1.5:" );
            break;
        }

        //print( "        gcd_base", uint64(ab[0]) );

        assert(ab[0]>=ab[1] && ab[1]>=0);

        double q=ab[0]/ab[1];

        if (debug_output) print( "2:", q );

        vector2 new_ab;
        matrix2 new_uv;

        bool used_table=false;

        continued_fraction f;
        if (enable_table && c_table.lookup(q, f)) {
            assert(!f.values.empty()); //table should be set up not to have empty values

            if (debug_output) print( "3:", f.get_matrix()[0][0], f.get_matrix()[1][0], f.get_matrix()[0][1], f.get_matrix()[1][1] );

            bool new_ab_valid=multiply_exact(f.get_matrix(), ab, new_ab, true); //a and b can only be reduced in magnitude
            bool new_uv_valid=multiply_exact(f.get_matrix(), uv, new_uv);
            bool new_a_valid=(new_ab[0]>ab_threshold);

            if (debug_output) print( "4:", new_ab_valid, new_uv_valid, new_a_valid );
            if (debug_output) print( "5:", new_ab[0], new_ab[1], new_uv[0][0], new_uv[1][0], new_uv[0][1], new_uv[1][1] );

            if (new_ab_valid && new_uv_valid && new_a_valid) {
                used_table=true;
                ++iter_table;
            } else {
                //this should be disabled to make the output the same as the non-table version
                //this is disabled in the asm version
                //if (is_lehmer && ab_threshold==0) {
                    //can also bypass the table but it is probably slower
                    //if ab_threshold is not 0, need to keep going since the partial gcd is about to terminate
                    //break;
                //}
            }
        }

        if (!used_table) {
            //the native instruction is as fast as adding then subtracting some magic number
            q=floor(q);
            ++iter_slow;

            if (debug_output) print( "6:", q );

            matrix2 m=quotient_matrix(q);

            bool new_ab_valid=multiply_exact(m, ab, new_ab, true);
            bool new_uv_valid=multiply_exact(m, uv, new_uv);

            if (debug_output) print( "6.5:", new_ab[0], new_ab[1], new_uv[0][0], new_uv[1][0], new_uv[0][1], new_uv[1][1] );

            if (!new_ab_valid || !new_uv_valid) {
                if (debug_output) print( "7:" );
                break;
            }

            //double new_b=fma(-q, ab[1], ab[0]);

            //double new_u;
            //double new_v;

            //iter 0 is unrolled separately
            //can probably just unroll all 6 iterations
            //if (iter==0) {
                //new_u=1;
                //new_v=-q;
            //} else {//}

            //new_u=fma(-q, uv[1][0], uv[0][0]);
            //new_v=fma(-q, uv[1][1], uv[0][1]);

            //if (debug_output) print( "6:", q, new_b, new_u, new_v );

            //if (!range_check(new_u) || !range_check(new_v)) {
                //if (debug_output) print( "7" );
                //break;
            //}

            //assert(range_check(new_b)); //a and b can only be reduced in magnitude

            //new_ab={ab[1], new_b};
            //new_uv={
                //vector2{uv[1][0], uv[1][1]},
                //vector2{   new_u,    new_v}
            //};
        }

        //this has to be checked on the first iteration if the table is not used (since there could be a giant quotient e.g. a=b)
        //will check it even if the table is used. shouldn't affect performance
        if (is_lehmer) {
            double ab_delta=new_ab[0]-new_ab[1];
            assert(range_check(ab_delta)); //both are nonnegative so the subtraction can't increase the magnitude
            assert(ab_delta>=0); //ab[0] has to be greater

            //the magnitudes add for these
            //however, the comparison is ab_delta >= u_delta or v_delta, and ab_delta>=0, so the values of u_delta and v_delta can
            // be increased. if the calculation is not exact, the values will be ceil'ed so they are exact or increased; never reduced
            //double u_delta=uv[1][0]-uv[0][0];
            //double v_delta=uv[1][1]-uv[0][1];

            //even parity:
            //don't care what the result of the odd comparison is as far as correctness goes. for performance, it has to be true most
            // of the time
            // uv[0][1]<=0 ; uv[1][1]>=0
            //ab_delta+uv[0][1] is exact because the signs are opposite
            //ab_delta+uv[0][0] is <= the true value so the comparison might return false wrongly. should be fine

            bool even=(new_uv[1][1]>=0);

            if (even) {
                assert(range_check(ab_delta+new_uv[0][1]));
            } else {
                assert(range_check(ab_delta+new_uv[0][0]));
            }

            bool passed=
                new_ab[1]>=-new_uv[1][0] && ab_delta+new_uv[0][1]>=new_uv[1][1] && // even parity. for odd parity this is always true
                new_ab[1]>=-new_uv[1][1] && ab_delta+new_uv[0][0]>=new_uv[1][0]    //  odd parity. for even parity this is always true
            ;

            if (debug_output) print( "8:", new_ab[1], new_uv[1][0], ab_delta, new_uv[0][1], new_uv[1][1] );
            if (debug_output) print( "9:", new_ab[1], new_uv[1][1], ab_delta, new_uv[0][0], new_uv[1][0] );
            if (debug_output) print( "10:", passed );

            if (!passed) {
                if (debug_output) print( "11:" );

                if (enable_table) {
                    //this will make the table not change the output of the algorithm
                    //can just do a break in the actual code
                    //enable_table=false; continue;

                    break;
                } else {
                    break;
                }
            }
        }

        ab=new_ab;
        uv=new_uv;
        progress=true;
        ++iter;

        //print( "            gcd_base quotient", q );

        //print( "foo" );
        {
            //this would overflow a double; it works with modular arithmetic
            int64 a_expected=int64(uv[0][0])*int64(ab_start[0]) + int64(uv[0][1])*int64(ab_start[1]);
            int64 b_expected=int64(uv[1][0])*int64(ab_start[0]) + int64(uv[1][1])*int64(ab_start[1]);
            assert(int64(ab[0])==a_expected);
            assert(int64(ab[1])==b_expected);
        }

        if (iter>=gcd_base_max_iter) {
            break;
        }

        //todo break;
    }

    //print( "        gcd_base", iter_table+iter_slow, iter_table, iter_slow );

    #ifdef TEST_ASM
    #ifndef GENERATE_ASM_TRACKING_DATA
    if (test_asm_run) {
        if (test_asm_print) {
            print( "test asm gcd_base", test_asm_counter );
        }

        double asm_ab[]={ab_start[0], ab_start[1]};
        double asm_u[2];
        double asm_v[2];
        uint64 asm_is_lehmer[2]={(is_lehmer)? ~0ull : 0ull, (is_lehmer)? ~0ull : 0ull};
        double asm_ab_threshold[2]={ab_threshold, ab_threshold};
        uint64 asm_no_progress;
        int error_code=hasAVX2()?
		asm_code::asm_avx2_func_gcd_base(asm_ab, asm_u, asm_v, asm_is_lehmer, asm_ab_threshold, &asm_no_progress):
                asm_code::asm_cel_func_gcd_base(asm_ab, asm_u, asm_v, asm_is_lehmer, asm_ab_threshold, &asm_no_progress);

        assert(error_code==0);
        assert(asm_ab[0]==ab[0]);
        assert(asm_ab[1]==ab[1]);
        assert(asm_u[0]==uv[0][0]);
        assert(asm_u[1]==uv[1][0]);
        assert(asm_v[0]==uv[0][1]);
        assert(asm_v[1]==uv[1][1]);
        assert(asm_no_progress==int(!progress));
    }
    #endif
    #endif

    return progress;
}

bool gcd_base_continued_fraction_2(vector2& ab_double, matrix2& uv_double, bool is_lehmer, double ab_threshold_double=0) {
    int64 a_int=int64(ab_double[0]);
    int64 b_int=int64(ab_double[1]);
    int64 threshold_int=int64(ab_threshold_double);

    assert(a_int>b_int && b_int>0);

    array<int64, 2> ab={a_int, b_int};
    array<int64, 2> u={1, 0};
    array<int64, 2> v={0, 1};

    auto apply=[&](int64 q, array<int64, 2> x) -> array<int64, 2> {
        return {
            x[1],
            x[0]-q*x[1]
        };
    };

    vector<uint64> res;

    int num_iter=0;
    int num_quotients=0;

    while (ab[1]>threshold_int) {
        //print( "        gcd_base_2", ab[0] );

        int64 q=ab[0]/ab[1];
        assert(q>=0);

        array<int64, 2> new_ab=apply(q, ab);
        array<int64, 2> new_u=apply(q, u);
        array<int64, 2> new_v=apply(q, v);

        ++num_iter;

        if (is_lehmer && !check_lehmer(new_ab, new_u, new_v)) {
            break;
        }

        //print(num_iter, u[0], u[1], v[0], v[1]);

        auto ab_double_new=ab_double;
        auto uv_double_new=uv_double;

        ab_double_new[0]=double(new_ab[0]);
        ab_double_new[1]=double(new_ab[1]);
        uv_double_new[0][0]=double(new_u[0]);
        uv_double_new[0][1]=double(new_v[0]);
        uv_double_new[1][0]=double(new_u[1]);
        uv_double_new[1][1]=double(new_v[1]);

        if (
            int64(ab_double_new[0])!=new_ab[0] ||
            int64(ab_double_new[1])!=new_ab[1] ||
            int64(uv_double_new[0][0])!=new_u[0] ||
            int64(uv_double_new[0][1])!=new_v[0] ||
            int64(uv_double_new[1][0])!=new_u[1] ||
            int64(uv_double_new[1][1])!=new_v[1]
        ) {
            break;
        }

        ab=new_ab;
        u=new_u;
        v=new_v;

        ab_double=ab_double_new;
        uv_double=uv_double_new;

        //print( "            gcd_base_2 quotient", q );

        res.push_back(q);
        ++num_quotients;

        //todo break;
    }

    return num_quotients!=0;
}

// end Headerguard GCD_BASE_CONTINUED_FRACTIONS_H
#endif