use crate::b2_body::*;
use crate::b2_joint::*;
use crate::b2_math::*;
use crate::b2_common::*;
use crate::b2rs_common::UserDataType;
use crate::b2_time_step::*;
use crate::private::dynamics::joints::b2_revolute_joint as private;
use crate::b2_draw::*;
impl<D: UserDataType> Default for B2revoluteJointDef<D> {
fn default() -> Self {
return Self {
base: B2jointDef {
jtype: B2jointType::ERevoluteJoint,
..Default::default()
},
local_anchor_a: B2vec2::zero(),
local_anchor_b: B2vec2::zero(),
reference_angle: 0.0,
lower_angle: 0.0,
upper_angle: 0.0,
max_motor_torque: 0.0,
motor_speed: 0.0,
enable_limit: false,
enable_motor: false,
};
}
}
#[derive(Clone)]
pub struct B2revoluteJointDef<D: UserDataType> {
pub base: B2jointDef<D>,
pub local_anchor_a: B2vec2,
pub local_anchor_b: B2vec2,
pub reference_angle: f32,
pub enable_limit: bool,
pub lower_angle: f32,
pub upper_angle: f32,
pub enable_motor: bool,
pub motor_speed: f32,
pub max_motor_torque: f32,
}
impl<D: UserDataType> B2revoluteJointDef<D> {
pub fn initialize(&mut self, body_a: BodyPtr<D>, body_b: BodyPtr<D>, anchor: B2vec2) {
self.base.body_a = Some(body_a.clone());
self.base.body_b = Some(body_b.clone());
self.local_anchor_a = body_a.borrow().get_local_point(anchor);
self.local_anchor_b = body_b.borrow().get_local_point(anchor);
self.reference_angle = body_b.borrow().get_angle() - body_a.borrow().get_angle();
}
}
impl<D: UserDataType> ToDerivedJoint<D> for B2revoluteJoint<D> {
fn as_derived(&self) -> JointAsDerived<D> {
return JointAsDerived::ERevoluteJoint(self);
}
fn as_derived_mut(&mut self) -> JointAsDerivedMut<D> {
return JointAsDerivedMut::ERevoluteJoint(self);
}
}
pub struct B2revoluteJoint<D: UserDataType> {
pub(crate) base: B2joint<D>,
pub(crate) m_local_anchor_a: B2vec2,
pub(crate) m_local_anchor_b: B2vec2,
pub(crate) m_impulse: B2vec2,
pub(crate) m_motor_impulse: f32,
pub(crate) m_lower_impulse: f32,
pub(crate) m_upper_impulse: f32,
pub(crate) m_enable_motor: bool,
pub(crate) m_max_motor_torque: f32,
pub(crate) m_motor_speed: f32,
pub(crate) m_enable_limit: bool,
pub(crate) m_reference_angle: f32,
pub(crate) m_lower_angle: f32,
pub(crate) m_upper_angle: f32,
pub(crate) m_index_a: i32,
pub(crate) m_index_b: i32,
pub(crate) m_r_a: B2vec2,
pub(crate) m_r_b: B2vec2,
pub(crate) m_local_center_a: B2vec2,
pub(crate) m_local_center_b: B2vec2,
pub(crate) m_inv_mass_a: f32,
pub(crate) m_inv_mass_b: f32,
pub(crate) m_inv_ia: f32,
pub(crate) m_inv_ib: f32,
pub(crate) m_k: B2Mat22,
pub(crate) m_angle: f32,
pub(crate) m_axial_mass: f32,
}
impl<D: UserDataType> B2revoluteJoint<D> {
pub fn get_local_anchor_a(&self) -> B2vec2 {
return self.m_local_anchor_a;
}
pub fn get_local_anchor_b(&self) -> B2vec2 {
return self.m_local_anchor_b;
}
pub fn get_reference_angle(&self) -> f32 {
return self.m_reference_angle;
}
pub fn get_joint_angle(&self) -> f32 {
let b_a = self.base.m_body_a.borrow();
let b_b = self.base.m_body_b.borrow();
return b_b.m_sweep.a - b_a.m_sweep.a - self.m_reference_angle;
}
pub fn get_joint_speed(&self) -> f32 {
let b_a = self.base.m_body_a.borrow();
let b_b = self.base.m_body_b.borrow();
return b_b.m_angular_velocity - b_a.m_angular_velocity;
}
pub fn is_limit_enabled(&self) -> bool {
return self.m_enable_limit;
}
pub fn enable_limit(&mut self, flag: bool) {
if flag != self.m_enable_limit {
self.base.m_body_a.borrow_mut().set_awake(true);
self.base.m_body_b.borrow_mut().set_awake(true);
self.m_enable_limit = flag;
self.m_lower_impulse = 0.0;
self.m_upper_impulse = 0.0;
}
}
pub fn get_lower_limit(&self) -> f32 {
return self.m_lower_angle;
}
pub fn get_upper_limit(&self) -> f32 {
return self.m_upper_angle;
}
pub fn set_limits(&mut self, lower: f32, upper: f32) {
b2_assert(lower <= upper);
if lower != self.m_lower_angle || upper != self.m_upper_angle {
self.base.m_body_a.borrow_mut().set_awake(true);
self.base.m_body_b.borrow_mut().set_awake(true);
self.m_lower_impulse = 0.0;
self.m_upper_impulse = 0.0;
self.m_lower_angle = lower;
self.m_upper_angle = upper;
}
}
pub fn is_motor_enabled(&self) -> bool {
return self.m_enable_motor;
}
pub fn enable_motor(&mut self, flag: bool) {
if flag != self.m_enable_motor {
self.base.m_body_a.borrow_mut().set_awake(true);
self.base.m_body_b.borrow_mut().set_awake(true);
self.m_enable_motor = flag;
}
}
pub fn set_motor_speed(&mut self, speed: f32) {
if speed != self.m_motor_speed {
self.base.m_body_a.borrow_mut().set_awake(true);
self.base.m_body_b.borrow_mut().set_awake(true);
self.m_motor_speed = speed;
}
}
pub fn get_motor_speed(&self) -> f32 {
return self.m_motor_speed;
}
pub fn set_max_motor_torque(&mut self, torque: f32) {
if torque != self.m_max_motor_torque {
self.base.m_body_a.borrow_mut().set_awake(true);
self.base.m_body_b.borrow_mut().set_awake(true);
self.m_max_motor_torque = torque;
}
}
pub fn get_max_motor_torque(&self) -> f32 {
return self.m_max_motor_torque;
}
pub fn get_motor_torque(&self, inv_dt: f32) -> f32 {
return inv_dt * self.m_motor_impulse;
}
pub(crate) fn new(def: &B2revoluteJointDef<D>) -> Self {
return Self {
base: B2joint::new(&def.base),
m_local_anchor_a: def.local_anchor_a,
m_local_anchor_b: def.local_anchor_b,
m_impulse: B2vec2::zero(),
m_axial_mass : 0.0,
m_motor_impulse : 0.0,
m_lower_impulse : 0.0,
m_upper_impulse : 0.0,
m_enable_motor: def.enable_motor,
m_max_motor_torque: def.max_motor_torque,
m_motor_speed: def.motor_speed,
m_enable_limit: def.enable_limit,
m_reference_angle: def.reference_angle,
m_lower_angle: def.lower_angle,
m_upper_angle: def.upper_angle,
m_index_a: 0,
m_index_b: 0,
m_r_a: B2vec2::zero(),
m_r_b: B2vec2::zero(),
m_local_center_a: B2vec2::zero(),
m_local_center_b: B2vec2::zero(),
m_inv_mass_a: 0.0,
m_inv_mass_b: 0.0,
m_inv_ia: 0.0,
m_inv_ib: 0.0,
m_k: B2Mat22::zero(),
m_angle: 0.0,
}
}
}
impl<D: UserDataType> B2jointTraitDyn<D> for B2revoluteJoint<D> {
fn get_base(&self) -> &B2joint<D> {
return &self.base;
}
fn get_base_mut(&mut self) -> &mut B2joint<D> {
return &mut self.base;
}
fn get_anchor_a(&self) -> B2vec2 {
return self
.base
.m_body_a
.borrow()
.get_world_point(self.m_local_anchor_a);
}
fn get_anchor_b(&self) -> B2vec2 {
return self
.base
.m_body_b
.borrow()
.get_world_point(self.m_local_anchor_b);
}
fn get_reaction_force(&self, inv_dt: f32) -> B2vec2 {
let p = B2vec2::new(self.m_impulse.x, self.m_impulse.y);
return inv_dt * p;
}
fn get_reaction_torque(&self, inv_dt: f32) -> f32 {
return inv_dt * (self.m_motor_impulse + self.m_lower_impulse - self.m_upper_impulse);
}
fn init_velocity_constraints(
&mut self,
data: &B2solverData,
positions: &[B2position],
velocities: &mut [B2velocity],
) {
private::init_velocity_constraints(self, data, positions, velocities);
}
fn solve_velocity_constraints(
&mut self,
data: &B2solverData,
velocities: &mut [B2velocity],
) {
private::solve_velocity_constraints(self, data, velocities);
}
fn solve_position_constraints(
&mut self,
data: &B2solverData,
positions: &mut [B2position],
) -> bool {
return private::solve_position_constraints(self, data, positions);
}
fn draw(&self, draw: &mut dyn B2drawTrait) {
private::draw(self, draw);
}
}