bitvec 0.16.2

A crate for manipulating memory, bit by bit
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
/*! `BitVec` structure

This module holds the main working type of the library. Clients can use
`BitSlice` directly, but `BitVec` is much more useful for most work.

The `BitSlice` module discusses the design decisions for the separation between
slice and vector types.
!*/

#![cfg(any(feature = "alloc", feature = "std"))]

use crate::{
	boxed::BitBox,
	cursor::{
		Cursor,
		Local,
	},
	indices::Indexable,
	pointer::BitPtr,
	slice::BitSlice,
	store::{
		BitStore,
		Word,
	},
};

use alloc::{
	borrow::ToOwned,
	vec::Vec,
};

use core::{
	marker::PhantomData,
	mem,
	slice,
};

/** A compact [`Vec`] of bits, whose cursor and storage type can be customized.

`BitVec` is a newtype wrapper over `Vec`, and as such is exactly three words in
size on the stack.

# Examples

```rust
use bitvec::prelude::*;

let mut bv: BitVec = BitVec::new();
bv.push(false);
bv.push(true);

assert_eq!(bv.len(), 2);
assert_eq!(bv[0], false);

assert_eq!(bv.pop(), Some(true));
assert_eq!(bv.len(), 1);

bv.set(0, true);
assert_eq!(bv[0], true);

bv.extend([0u8, 1, 0].iter().map(|n| *n != 0u8));
for bit in &*bv {
  println!("{}", bit);
}
assert_eq!(bv, bitvec![1, 0, 1, 0]);
```

The [`bitvec!`] macro is provided to make initialization more convenient.

```rust
use bitvec::prelude::*;

let mut bv = bitvec![0, 1, 2, 3];
bv.push(false);
assert_eq!(bv, bitvec![0, 1, 1, 1, 0]);
```

It can also initialize each element of a `BitVec<_, T>` with a given value. This
may be more efficient than performing allocation and initialization in separate
steps, especially when initializing a vector of zeros:

```rust
use bitvec::prelude::*;

let bv = bitvec![0; 15];
assert_eq!(bv, bitvec![0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);

// The following is equivalent, but potentially slower:
let mut bv1: BitVec = BitVec::with_capacity(15);
bv1.resize(15, false);
```

Use a `BitVec<T>` as an efficient stack:

```rust
use bitvec::prelude::*;
let mut stack: BitVec = BitVec::new();

stack.push(false);
stack.push(true);
stack.push(true);

while let Some(top) = stack.pop() {
  //  Prints true, true, false
  println!("{}", top);
}
```

# Indexing

The `BitVec` type allows you to access values by index, because it implements
the [`Index`] trait. An example will be more explicit:

```rust
use bitvec::prelude::*;

let bv = bitvec![0, 0, 1, 1];
println!("{}", bv[1]); // it will display 'false'
```

However, be careful: if you try to access an index which isn’t in the `BitVec`,
your software will panic! You cannot do this:

```rust,should_panic
use bitvec::prelude::*;

let bv = bitvec![0, 1, 0, 1];
println!("{}", bv[6]); // it will panic!
```

In conclusion: always check if the index you want to get really exists before
doing it.

# Slicing

A `BitVec` is growable. A [`BitSlice`], on the other hand, is fixed size. To get
a bit slice, use `&`. Example:

```rust
use bitvec::prelude::*;
fn read_bitslice(slice: &BitSlice) {
	// use slice
}

let bv = bitvec![0, 1];
read_bitslice(&bv);

// … and that’s all!
// you can also do it like this:
let bs : &BitSlice = &bv;
```

In Rust, it’s more common to pass slices as arguments rather than vectors when
you do not want to grow or shrink it. The same goes for [`Vec`] and [`&[]`], and
[`String`] and [`&str`].

# Capacity and reallocation

The capacity of a bit vector is the amount of space allocated for any future
bits that will be added onto the vector. This is not to be confused with the
*length* of a vector, which specifies the number of live, useful bits within the
vector. If a vector’s length exceeds its capacity, its capacity will
automatically be increased, but its storage elements will have to be
reallocated.

For example, a bit vector with capacity 10 and length 0 would be an allocated,
but uninhabited, vector, with space for ten more bits. Pushing ten or fewer bits
onto the vector will not change its capacity or cause reallocation to occur.
However, if the vector’s length is increased to eleven, it will have to
reallocate, which can be slow. For this reason, it is recommended to use
[`BitVec::with_capacity`] whenever possible to specify how big the bit vector is
expected to get.

# Guarantees

Due to its incredibly fundamental nature, `BitVec` makes a lot of guarantees
about its design. This ensures that it is as low-overhead as possible in the
general case, and can be correctly manipulated in fundamental ways by `unsafe`
code.

Most fundamentally, `BitVec` is and always will be a `([`BitPtr`], capacity)`
doublet. No more, no less. The order of these fields is unspecified, and you
should **only** interact with the members through the provided APIs. Note that
`BitPtr` is ***not directly manipulable***, and must ***never*** be written or
interpreted as anything but opaque binary data by user code.

When a `BitVec` has allocated memory, then the memory to which it points is on
the heap (as defined by the allocator Rust is configured to use by default), and
its pointer points to [`len`] initialized bits in order of the [`Cursor`] type
parameter, followed by `capacity - len` logically uninitialized bits.

`BitVec` will never perform a “small optimization” where elements are stored in
its handle representation, for two reasons:

- It would make it more difficult for user code to correctly manipulate a
  `BitVec`. The contents of the `BitVec` would not have a stable address if the
  handle were moved, and it would be more difficult to determine if a `BitVec`
  had allocated memory.

- It would penalize the general, heap-allocated, case by incurring a branch on
  every access.

`BitVec` will never automatically shrink itself, even if it is emptied. This
ensures that no unnecessary allocations or deallocations occur. Emptying a
`BitVec` and then refilling it to the same length will incur no calls to the
allocator. If you wish to free up unused memory, use [`shrink_to_fit`].

## Erasure

`BitVec` will not specifically overwrite any data that is removed from it, nor
will it specifically preserve it. Its uninitialized memory is scratch space that
may be used however the implementation desires, and must not be relied upon as
stable. Do not rely on removed data to be erased for security purposes. Even if
you drop a `BitVec`, its buffer may simply be reused for other data structures
in your program. Even if you zero a `BitVec`’s memory first, that may not
actually occur if the optimizer does not consider this an observable side
effect. There is one case that will never break, however: using `unsafe` to
construct a `[T]` slice over the `BitVec`’s capacity, and writing to the excess
space, then increasing the length to match, is always valid.

# Type Parameters

- `C: Cursor`: An implementor of the [`Cursor`] trait. This type is used to
  convert semantic indices into concrete bit positions in elements, and store or
  retrieve bit values from the storage type.
- `T: BitStore`: An implementor of the [`BitStore`] trait: `u8`, `u16`, `u32`,
  or `u64` (64-bit systems only). This is the actual type in memory that the
  vector will use to store data.

# Safety

The `BitVec` handle has the same *size* as standard Rust `Vec` handles, but it
is ***extremely binary incompatible*** with them. Attempting to treat
`BitVec<_, T>` as `Vec<T>` in any manner except through the provided APIs is
***catastrophically*** unsafe and unsound.

[`BitSlice`]: ../struct.BitSlice.html
[`BitVec::with_capacity`]: #method.with_capacity
[`BitStore`]: ../trait.BitStore.html
[`Cursor`]: ../trait.Cursor.html
[`Index`]: https://doc.rust-lang.org/stable/std/ops/trait.Index.html
[`String`]: https://doc.rust-lang.org/stable/std/string/struct.String.html
[`Vec`]: https://doc.rust-lang.org/stable/std/vec/struct.Vec.html
[`bitvec!`]: ../macro.bitvec.html
[`clear_on_drop`]: https://docs.rs/clear_on_drop
[`len`]: #method.len
[`shrink_to_fit`]: #method.shrink_to_fit
[`&str`]: https://doc.rust-lang.org/stable/std/primitive.str.html
[`&[]`]: https://doc.rust-lang.org/stable/std/primitive.slice.html
**/
#[repr(C)]
pub struct BitVec<C = Local, T = Word>
where C: Cursor, T: BitStore {
	/// Phantom `Cursor` member to satisfy the constraint checker.
	_cursor: PhantomData<C>,
	/// Slice pointer over the owned memory.
	pointer: BitPtr<T>,
	/// The number of *elements* this vector has allocated.
	capacity: usize,
}

impl<C, T> BitVec<C, T>
where C: Cursor, T: BitStore {
	/// Constructs a `BitVec` from a single element.
	///
	/// The produced `BitVec` will span the element, and include all bits in it.
	///
	/// # Parameters
	///
	/// - `elt`: The source element.
	///
	/// # Returns
	///
	/// A `BitVec` over the provided element.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let bv = BitVec::<BigEndian, u8>::from_element(5);
	/// assert_eq!(bv.count_ones(), 2);
	/// ```
	pub fn from_element(elt: T) -> Self {
		Self::from_vec({
			let mut v = Vec::with_capacity(1);
			v.push(elt);
			v
		})
	}

	/// Constructs a `BitVec` from a slice of elements.
	///
	/// The produced `BitVec` will span the provided slice.
	///
	/// # Parameters
	///
	/// - `slice`: The source elements to copy into the new `BitVec`.
	///
	/// # Returns
	///
	/// A `BitVec` set to the provided slice values.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let src = [5, 10];
	/// let bv = BitVec::<BigEndian, u8>::from_slice(&src[..]);
	/// assert!(bv[5]);
	/// assert!(bv[7]);
	/// assert!(bv[12]);
	/// assert!(bv[14]);
	/// ```
	pub fn from_slice(slice: &[T]) -> Self {
		BitSlice::<C, T>::from_slice(slice).to_owned()
	}

	/// Consumes a `Vec<T>` and creates a `BitVec<C, T>` from it.
	///
	/// # Parameters
	///
	/// - `vec`: The source vector whose memory will be used.
	///
	/// # Returns
	///
	/// A new `BitVec` using the `vec` `Vec`’s memory.
	///
	/// # Panics
	///
	/// Panics if the source vector would cause the `BitVec` to overflow
	/// capacity.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let bv = BitVec::<BigEndian, u8>::from_vec(vec![1, 2, 4, 8]);
	/// assert_eq!(
	///   "[00000001, 00000010, 00000100, 00001000]",
	///   &format!("{}", bv),
	/// );
	/// ```
	pub fn from_vec(vec: Vec<T>) -> Self {
		let len = vec.len();
		assert!(
			len <= BitPtr::<T>::MAX_ELTS,
			"Vector length {} overflows {}",
			len,
			BitPtr::<T>::MAX_ELTS,
		);
		let bs = BitSlice::<C, T>::from_slice(&vec[..]);
		let pointer = bs.bitptr();
		let capacity = vec.capacity();
		mem::forget(vec);
		Self {
			_cursor: PhantomData,
			pointer,
			capacity,
		}
	}

	/// Clones a `&BitSlice` into a `BitVec`.
	///
	/// # Parameters
	///
	/// - `slice`
	///
	/// # Returns
	///
	/// A `BitVec` containing the same bits as the source slice.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let bs = [0u8, !0].bits::<BigEndian>();
	/// let bv = BitVec::from_bitslice(bs);
	/// assert_eq!(bv.len(), 16);
	/// assert!(bv.some());
	/// ```
	pub fn from_bitslice(slice: &BitSlice<C, T>) -> Self {
		let mut out = Self::with_capacity(slice.len());
		out.extend(slice.iter().copied());
		out
	}

	/// Converts a frozen `BitBox` allocation into a growable `BitVec`.
	///
	/// This does not copy or reallocate.
	///
	/// # Parameters
	///
	/// - `slice`: A `BitBox` to be thawed.
	///
	/// # Returns
	///
	/// A growable collection over the original memory of the slice.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let bv = BitVec::from_boxed_bitslice(bitbox![0, 1]);
	/// assert_eq!(bv.len(), 2);
	/// assert!(bv.some());
	/// ```
	pub fn from_boxed_bitslice(slice: BitBox<C, T>) -> Self {
		let bitptr = slice.bitptr();
		mem::forget(slice);
		unsafe { Self::from_raw_parts(bitptr, bitptr.elements()) }
	}

	/// Creates a new `BitVec<C, T>` directly from the raw parts of another.
	///
	/// # Parameters
	///
	/// - `pointer`: The `BitPtr<T>` to use.
	/// - `capacity`: The number of `T` elements *allocated* in that slab.
	///
	/// # Returns
	///
	/// A `BitVec` over the given slab of memory.
	///
	/// # Safety
	///
	/// This is ***highly*** unsafe, due to the number of invariants that aren’t
	/// checked:
	///
	/// - `pointer` needs to have been previously allocated by some allocating
	///   type.
	/// - `pointer`’s `T` needs to have the same size ***and alignment*** as it
	///   was initially allocated.
	/// - `pointer`’s element count needs to be less than or equal to the
	///   original allocation capacity.
	/// - `capacity` needs to be the original allocation capacity for the
	///   vector. This is *not* the value produced by `.capacity()`.
	///
	/// Violating these ***will*** cause problems, like corrupting the handle’s
	/// concept of memory, the allocator’s internal data structures, and the
	/// sanity of your program. It is ***absolutely*** not safe to construct a
	/// `BitVec` whose `T` differs from the type used for the initial
	/// allocation.
	///
	/// The ownership of `pointer` is effectively transferred to the
	/// `BitVec<C, T>` which may then deallocate, reallocate, or modify the
	/// contents of the referent slice at will. Ensure that nothing else uses
	/// the pointer after calling this function.
	pub unsafe fn from_raw_parts(pointer: BitPtr<T>, capacity: usize) -> Self {
		Self {
			_cursor: PhantomData,
			pointer,
			capacity,
		}
	}

	/// Produces a `BitSlice` containing the entire vector.
	///
	/// Equivalent to `&s[..]`.
	///
	/// # Parameters
	///
	/// - `&self`
	///
	/// # Returns
	///
	/// A `BitSlice` over the vector.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let bv = bitvec![0, 1, 1, 0];
	/// let bs = bv.as_bitslice();
	/// ```
	pub fn as_bitslice(&self) -> &BitSlice<C, T> {
		self.pointer.into_bitslice()
	}

	/// Produces a mutable `BitSlice` containing the entire vector.
	///
	/// Equivalent to `&mut s[..]`.
	///
	/// # Parameters
	///
	/// - `&mut self`
	///
	/// # Returns
	///
	/// A mutable `BitSlice` over the vector.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let mut bv = bitvec![0, 1, 1, 0];
	/// let bs = bv.as_mut_bitslice();
	/// ```
	pub fn as_mut_bitslice(&mut self) -> &mut BitSlice<C, T> {
		self.pointer.into_bitslice_mut()
	}

	/// Sets the backing storage to the provided element.
	///
	/// This unconditionally sets each allocated element in the backing storage
	/// to the provided value, without altering the `BitVec` length or capacity.
	/// It operates on the underlying `Vec`’s memory region directly, and will
	/// ignore the `BitVec`’s cursors.
	///
	/// This has the unobservable effect of setting the allocated, but dead,
	/// bits beyond the end of the vector’s *length*, up to its *capacity*.
	///
	/// # Parameters
	///
	/// - `&mut self`
	/// - `element`: The value to which each allocated element in the backing
	///   store will be set.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let mut bv = bitvec![Local, u8; 0; 10];
	/// assert_eq!(bv.as_slice(), &[0, 0]);
	/// bv.set_elements(0xA5);
	/// assert_eq!(bv.as_slice(), &[0xA5, 0xA5]);
	/// ```
	pub fn set_elements(&mut self, element: T) {
		self.do_unto_vec(|v| {
			let (ptr, cap) = (v.as_mut_ptr(), v.capacity());
			for elt in unsafe { slice::from_raw_parts_mut(ptr, cap) } {
				*elt = element;
			}
		})
	}

	/// Performs “reverse” addition (left to right instead of right to left).
	///
	/// This addition traverses the addends from left to right, performing
	/// the addition at each index and writing the sum into `self`.
	///
	/// If `addend` expires before `self` does, `addend` is zero-extended and
	/// the carry propagates through the rest of `self`. If `self` expires
	/// before `addend`, then `self` is zero-extended and the carry propagates
	/// through the rest of `addend`, growing `self` until `addend` expires.
	///
	/// An infinite `addend` will cause unbounded memory growth until the vector
	/// overflows and panics.
	///
	/// # Parameters
	///
	/// - `self`
	/// - `addend: impl IntoIterator<Item=bool>`: A stream of bits to add into
	///   `self`, from left to right.
	///
	/// # Returns
	///
	/// The sum vector of `self` and `addend`.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let a = bitvec![0, 1, 0, 1];
	/// let b = bitvec![0, 0, 1, 1];
	/// let c = a.add_reverse(b);
	/// assert_eq!(c, bitvec![0, 1, 1, 0, 1]);
	/// ```
	pub fn add_reverse<I>(mut self, addend: I) -> Self
	where I: IntoIterator<Item=bool> {
		self.add_assign_reverse(addend);
		self
	}

	/// Performs “reverse” addition (left to right instead of right to left).
	///
	/// This addition traverses the addends from left to right, performing
	/// the addition at each index and writing the sum into `self`.
	///
	/// If `addend` expires before `self` does, `addend` is zero-extended and
	/// the carry propagates through the rest of `self`. If `self` expires
	/// before `addend`, then `self` is zero-extended and the carry propagates
	/// through the rest of `addend`, growing `self` until `addend` expires.
	///
	/// An infinite `addend` will cause unbounded memory growth until the vector
	/// overflows and panics.
	///
	/// # Parameters
	///
	/// - `&mut self`
	/// - `addend: impl IntoIterator<Item=bool>`: A stream of bits to add into
	///   `self`, from left to right.
	///
	/// # Effects
	///
	/// `self` may grow as a result of the final carry-out bit being `1` and
	/// pushed onto the right end.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let mut a = bitvec![0, 1, 0, 1];
	/// let     b = bitvec![0, 0, 1, 1];
	/// a.add_assign_reverse(b.iter().copied());
	/// assert_eq!(a, bitvec![0, 1, 1, 0, 1]);
	/// ```
	pub fn add_assign_reverse<I>(&mut self, addend: I)
	where I: IntoIterator<Item=bool> {
		//  Set up iteration over the addend
		let mut addend = addend.into_iter().fuse();
		//  Delegate to the `BitSlice` implementation for the initial addition.
		//  If `addend` expires first, it zero-extends; if `self` expires first,
		//  `addend` will still have its remnant for the next stage.
		let mut c = self.as_mut_bitslice().add_assign_reverse(addend.by_ref());
		//  If `addend` still has bits to provide, zero-extend `self` and add
		//  them in.
		for b in addend {
			let (y, z) = crate::rca1(false, b, c);
			self.push(y);
			c = z;
		}
		if c {
			self.push(true);
		}
	}

	/// Changes the cursor type on the vector handle, without changing its
	/// contents.
	///
	/// # Parameters
	///
	/// - `self`
	///
	/// # Returns
	///
	/// An equivalent vector handle with a new cursor type. The contents of the
	/// backing storage are unchanged.
	///
	/// To reorder the bits in memory, drain this vector into a new handle with
	/// the desired cursor type.
	pub fn change_cursor<D>(self) -> BitVec<D, T>
	where D: Cursor {
		let (bp, cap) = (self.pointer, self.capacity);
		mem::forget(self);
		unsafe { BitVec::from_raw_parts(bp, cap) }
	}

	/// Degrades a `BitVec` to a `BitBox`, freezing its size.
	///
	/// # Parameters
	///
	/// - `self`
	///
	/// # Returns
	///
	/// Itself, with its size frozen and ungrowable.
	pub fn into_boxed_bitslice(self) -> BitBox<C, T> {
		let pointer = self.pointer;
		//  Convert the Vec allocation into a Box<[T]> allocation
		mem::forget(self.into_boxed_slice());
		unsafe { BitBox::from_raw(pointer) }
	}

	/// Degrades a `BitVec` to a standard `Vec`.
	///
	/// # Parameters
	///
	/// - `self`
	///
	/// # Returns
	///
	/// The plain vector underlying the `BitVec`.
	pub fn into_vec(self) -> Vec<T> {
		let slice = self.pointer.as_mut_slice();
		let out = unsafe {
			Vec::from_raw_parts(slice.as_mut_ptr(), slice.len(), self.capacity)
		};
		mem::forget(self);
		out
	}

	/// Permits a function to modify the `Vec<T>` underneath a `BitVec<_, T>`.
	///
	/// This produces a `Vec<T>` structure referring to the same data region as
	/// the `BitVec<_, T>`, allows a function to mutably view it, and then
	/// forgets the `Vec<T>` after the function concludes.
	///
	/// # Parameters
	///
	/// - `&mut self`
	/// - `func`: A function which receives a mutable borrow to the `Vec<T>`
	///   underlying the `BitVec<_, T>`.
	///
	/// # Type Parameters
	///
	/// - `F: FnOnce(&mut Vec<T>) -> R`: Any callable object (function or
	///   closure) which receives a mutable borrow of a `Vec<T>`.
	///
	/// - `R`: The return value from the called function or closure.
	fn do_unto_vec<F, R>(&mut self, func: F) -> R
	where F: FnOnce(&mut Vec<T>) -> R {
		let slice = self.pointer.as_mut_slice();
		let mut v = unsafe {
			Vec::from_raw_parts(slice.as_mut_ptr(), slice.len(), self.capacity)
		};
		let out = func(&mut v);
		//  The only change is that the pointer might relocate. The region data
		//  will remain untouched. Vec guarantees it will never produce an
		//  invalid pointer.
		unsafe { self.pointer.set_pointer(v.as_ptr()); }
		// self.pointer = unsafe { BitPtr::new_unchecked(v.as_ptr(), e, h, t) };
		self.capacity = v.capacity();
		mem::forget(v);
		out
	}
}

mod api;
mod iter;
mod ops;
mod traits;

pub use api::*;
pub use iter::*;