bitvec 0.16.2

A crate for manipulating memory, bit by bit
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
/*! `BitSlice` Wide Reference

This module defines semantic operations on `[u1]`, in contrast to the mechanical
operations defined in `BitPtr`.

The `&BitSlice` handle has the same size and general layout as the standard Rust
slice handle `&[T]`. Its binary layout is wholly incompatible with the layout of
Rust slices, and must never be interchanged except through the provided APIs.
!*/

use crate::{
	access::BitAccess,
	cursor::{
		Cursor,
		Local,
	},
	domain::*,
	indices::Indexable,
	pointer::BitPtr,
	store::{
		BitStore,
		Word,
	},
};

use core::marker::PhantomData;

use either::Either;

/** A compact slice of bits, whose cursor and storage types can be customized.

`BitSlice` is a specialized slice type, which can only ever be held by
reference or specialized owning pointers provided by this crate. The value
patterns of its handles are opaque binary structures, which cannot be
meaningfully inspected by user code.

`BitSlice` can only be dynamically allocated by this library. Creation of any
other `BitSlice` collections will result in severely incorrect behavior.

A `BitSlice` reference can be created through the [`bitvec!`] macro, from a
[`BitVec`] collection, or from most common Rust types (fundamentals, slices of
them, and small arrays) using the [`Bits`] and [`BitsMut`] traits.

`BitSlice`s are a view into a block of memory at bit-level resolution. They are
represented by a crate-internal pointer structure that ***cannot*** be used with
other Rust code except through the provided conversion APIs.

```rust
use bitvec::prelude::*;

# #[cfg(feature = "alloc")] {
let bv = bitvec![0, 1, 0, 1];
//  slicing a bitvec
let bslice: &BitSlice = &bv[..];
# }

//  coercing an array to a bitslice
let bslice: &BitSlice<_, _> = [1u8, 254u8].bits::<BigEndian>();
```

Bit slices are either mutable or shared. The shared slice type is
`&BitSlice<C, T>`, while the mutable slice type is `&mut BitSlice<C, T>`. For
example, you can mutate bits in the memory to which a mutable `BitSlice` points:

```rust
use bitvec::prelude::*;

let mut base = [0u8, 0, 0, 0];
{
 let bs: &mut BitSlice<_, _> = base.bits_mut::<BigEndian>();
 bs.set(13, true);
 eprintln!("{:?}", bs.as_ref());
 assert!(bs[13]);
}
assert_eq!(base[1], 4);
```

# Type Parameters

- `C`: An implementor of the `Cursor` trait. This type is used to convert
  semantic indices into concrete bit positions in elements, and store or
  retrieve bit values from the storage type.
- `T`: An implementor of the `BitStore` trait: `u8`, `u16`, `u32`, or `u64`
  (64-bit systems only). This is the actual type in memory that the slice will
  use to store data.

# Safety

The `&BitSlice` reference handle has the same *size* as standard Rust slice
handles, but it is ***extremely value-incompatible*** with them. Attempting to
treat `&BitSlice<_, T>` as `&[T]` in any manner except through the provided APIs
is ***catastrophically*** unsafe and unsound.

[`BitVec`]: ../vec/struct.BitVec.html
[`Bits`]: ../bits/trait.Bits.html
[`BitsMut`]: ../bits/trait.BitsMut.html
[`From`]: https://doc.rust-lang.org/stable/std/convert/trait.From.html
[`bitvec!`]: ../macro.bitvec.html
**/
#[repr(transparent)]
pub struct BitSlice<C = Local, T = Word>
where C: Cursor, T: BitStore {
	/// Cursor type for selecting bits inside an element.
	_kind: PhantomData<C>,
	/// Element type of the slice.
	///
	/// eddyb recommends using `PhantomData<T>` and `[()]` instead of `[T]`
	/// alone.
	_type: PhantomData<T>,
	/// Slice of elements `T` over which the `BitSlice` has usage.
	_elts: [()],
}

impl<C, T> BitSlice<C, T>
where C: Cursor, T: BitStore {
	/// Produces the empty slice. This is equivalent to `&[]` for Rust slices.
	///
	/// # Returns
	///
	/// An empty `&BitSlice` handle.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let bits: &BitSlice = BitSlice::empty();
	/// ```
	pub fn empty<'a>() -> &'a Self {
		BitPtr::empty().into_bitslice()
	}

	/// Produces the empty mutable slice. This is equivalent to `&mut []` for
	/// Rust slices.
	///
	/// # Returns
	///
	/// An empty `&mut BitSlice` handle.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let bits: &mut BitSlice = BitSlice::empty_mut();
	/// ```
	pub fn empty_mut<'a>() -> &'a mut Self {
		BitPtr::empty().into_bitslice_mut()
	}

	/// Produces an immutable `BitSlice` over a single element.
	///
	/// # Parameters
	///
	/// - `elt`: A reference to an element over which the `BitSlice` will be
	///   created.
	///
	/// # Returns
	///
	/// A `BitSlice` over the provided element.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let elt: u8 = !0;
	/// let bs: &BitSlice<Local, _> = BitSlice::from_element(&elt);
	/// assert!(bs.all());
	/// ```
	pub fn from_element(elt: &T) -> &Self {
		unsafe {
			BitPtr::new_unchecked(elt, 0u8.idx(), T::BITS as usize)
		}.into_bitslice()
	}

	/// Produces a mutable `BitSlice` over a single element.
	///
	/// # Parameters
	///
	/// - `elt`: A reference to an element over which the `BitSlice` will be
	///   created.
	///
	/// # Returns
	///
	/// A `BitSlice` over the provided element.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let mut elt: u8 = !0;
	/// let bs: &mut BitSlice<Local, _> = BitSlice::from_element_mut(&mut elt);
	/// bs.set(0, false);
	/// assert!(!bs.all());
	/// ```
	pub fn from_element_mut(elt: &mut T) -> &mut Self {
		unsafe {
			BitPtr::new_unchecked(elt, 0u8.idx(), T::BITS as usize)
		}.into_bitslice_mut()
	}

	/// Wraps a `&[T: BitStore]` in a `&BitSlice<C: Cursor, T>`. The cursor must
	/// be specified at the call site. The element type cannot be changed.
	///
	/// # Parameters
	///
	/// - `src`: The elements over which the new `BitSlice` will operate.
	///
	/// # Returns
	///
	/// A `BitSlice` representing the original element slice.
	///
	/// # Panics
	///
	/// The source slice must not exceed the maximum number of elements that a
	/// `BitSlice` can contain. This value is documented in [`BitPtr`].
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let src = [1, 2, 3];
	/// let bits = BitSlice::<BigEndian, u8>::from_slice(&src[..]);
	/// assert_eq!(bits.len(), 24);
	/// assert_eq!(bits.as_ref().len(), 3);
	/// assert!(bits[7]);  // src[0] == 0b0000_0001
	/// assert!(bits[14]); // src[1] == 0b0000_0010
	/// assert!(bits[22]); // src[2] == 0b0000_0011
	/// assert!(bits[23]);
	/// ```
	///
	/// [`BitPtr`]: ../pointer/struct.BitPtr.html
	pub fn from_slice(slice: &[T]) -> &Self {
		let len = slice.len();
		assert!(
			len <= BitPtr::<T>::MAX_ELTS,
			"BitSlice cannot address {} elements",
			len,
		);
		let bits = len.checked_mul(T::BITS as usize)
			.expect("Bit length out of range");
		BitPtr::new(slice.as_ptr(), 0u8.idx(), bits).into_bitslice()
	}

	/// Wraps a `&mut [T: BitStore]` in a `&mut BitSlice<C: Cursor, T>`. The
	/// cursor must be specified by the call site. The element type cannot
	/// be changed.
	///
	/// # Parameters
	///
	/// - `src`: The elements over which the new `BitSlice` will operate.
	///
	/// # Returns
	///
	/// A `BitSlice` representing the original element slice.
	///
	/// # Panics
	///
	/// The source slice must not exceed the maximum number of elements that a
	/// `BitSlice` can contain. This value is documented in [`BitPtr`].
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let mut src = [1, 2, 3];
	/// let bits = BitSlice::<LittleEndian, u8>::from_slice_mut(&mut src[..]);
	/// //  The first bit is the LSb of the first element.
	/// assert!(bits[0]);
	/// bits.set(0, false);
	/// assert!(!bits[0]);
	/// assert_eq!(bits.as_ref(), &[0, 2, 3]);
	/// ```
	///
	/// [`BitPtr`]: ../pointer/struct.BitPtr.html
	pub fn from_slice_mut(slice: &mut [T]) -> &mut Self {
		Self::from_slice(slice).bitptr().into_bitslice_mut()
	}

	/// Sets the bit value at the given position.
	///
	/// # Parameters
	///
	/// - `&mut self`
	/// - `index`: The bit index to set. It must be in the domain
	///   `0 .. self.len()`.
	/// - `value`: The value to be set, `true` for `1` and `false` for `0`.
	///
	/// # Panics
	///
	/// This method panics if `index` is outside the slice domain.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let mut store = 8u8;
	/// let bits = store.bits_mut::<BigEndian>();
	/// assert!(!bits[3]);
	/// bits.set(3, true);
	/// assert!(bits[3]);
	/// ```
	pub fn set(&mut self, index: usize, value: bool) {
		let len = self.len();
		assert!(index < len, "Index out of range: {} >= {}", index, len);
		unsafe { self.set_unchecked(index, value) };
	}

	/// Sets a bit at an index, without doing bounds checking.
	///
	/// This is generally not recommended; use with caution! For a safe
	/// alternative, see [`set`].
	///
	/// # Parameters
	///
	/// - `&mut self`
	/// - `index`: The bit index to retrieve. This index is *not* checked
	///   against the length of `self`.
	///
	/// # Effects
	///
	/// The bit at `index` is set to `value`.
	///
	/// # Safety
	///
	/// This method is **not** safe. It performs raw pointer arithmetic to seek
	/// from the start of the slice to the requested index, and set the bit
	/// there. It does not inspect the length of `self`, and it is free to
	/// perform out-of-bounds memory *write* access.
	///
	/// Use this method **only** when you have already performed the bounds
	/// check, and can guarantee that the call occurs with a safely in-bounds
	/// index.
	///
	/// # Examples
	///
	/// This example uses a bit slice of length 2, and demonstrates
	/// out-of-bounds access to the last bit in the element.
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let mut src = 0u8;
	/// {
	///  let bits = &mut src.bits_mut::<BigEndian>()[2 .. 4];
	///  assert_eq!(bits.len(), 2);
	///  unsafe { bits.set_unchecked(5, true); }
	/// }
	/// assert_eq!(src, 1);
	/// ```
	///
	/// [`set`]: #method.set
	pub unsafe fn set_unchecked(&mut self, index: usize, value: bool) {
		let bitptr = self.bitptr();
		let (elt, bit) = bitptr.head().offset(index as isize);
		let data_ptr = bitptr.pointer().a();
		(&*data_ptr.offset(elt)).set::<C>(bit, value);
	}

	/// Produces a write reference to a single bit in the slice.
	///
	/// The structure returned by this method extends the borrow until it drops,
	/// which precludes parallel use.
	///
	/// The [`split_at_mut`] method allows splitting the borrows of a slice, and
	/// will enable safe parallel use of these write references. The `atomic`
	/// feature guarantees that parallel use does not cause data races when
	/// modifying the underlying slice.
	///
	/// # Lifetimes
	///
	/// - `'a` Propagates the lifetime of the referent slice to the single-bit
	///   reference produced.
	///
	/// # Parameters
	///
	/// - `&mut self`
	/// - `index`: The index of the bit in `self` selected.
	///
	/// # Returns
	///
	/// A write reference to the requested bit. Due to Rust limitations, this is
	/// not a native reference type, but is a custom structure that holds the
	/// address of the requested bit and its value. The produced structure
	/// implements `Deref` and `DerefMut` to its cached bit, and commits the
	/// cached bit to the parent slice on drop.
	///
	/// # Usage
	///
	/// You must use the dereference operator on the `.at()` expression in order
	/// to assign to it. In general, you should prefer immediately using and
	/// discarding the returned value, rather than binding it to a name and
	/// letting it live for more than one statement.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let mut src = 0u8;
	/// let bits = src.bits_mut::<BigEndian>();
	///
	/// assert!(!bits[0]);
	/// *bits.at(0) = true;
	/// //  note the leading dereference.
	/// assert!(bits[0]);
	/// ```
	///
	/// This example shows multiple usage by using `split_at_mut`.
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let mut src = 0u8;
	/// let bits = src.bits_mut::<BigEndian>();
	///
	/// {
	///  let (mut a, rest) = bits.split_at_mut(2);
	///  let (mut b, rest) = rest.split_at_mut(3);
	///  *a.at(0) = true;
	///  *b.at(0) = true;
	///  *rest.at(0) = true;
	/// }
	///
	/// assert_eq!(bits.as_slice()[0], 0b1010_0100);
	/// //                               a b   rest
	/// ```
	///
	/// The above example splits the slice into three (the first, the second,
	/// and the rest) in order to hold multiple write references into the slice.
	///
	/// [`split_at_mut`]: #method.split_at_mut
	pub fn at(&mut self, index: usize) -> BitMut<C, T> {
		let len = self.len();
		assert!(index < len, "Index {} out of bounds: {}", index, len);
		unsafe { self.at_unchecked(index) }
	}

	/// Version of [`at`](#method.at) that does not perform boundary checking.
	///
	/// # Safety
	///
	/// If `index` is outside the boundaries of `self`, then this function will
	/// induce safety violations. The caller must ensure that `index` is within
	/// the boundaries of `self` before calling.
	pub unsafe fn at_unchecked(&mut self, index: usize) -> BitMut<C, T> {
		BitMut {
			data: *self.get_unchecked(index),
			slot: self.get_unchecked_mut(index ..= index),
		}
	}

	/// Version of [`split_at`](#method.split_at) that does not perform boundary
	/// checking.
	///
	/// # Safety
	///
	/// If `mid` is outside the boundaries of `self`, then this function will
	/// induce safety violations. The caller must ensure that `mid` is within
	/// the boundaries of `self` before calling.
	pub unsafe fn split_at_unchecked(&self, mid: usize) -> (&Self, &Self) {
		match mid {
			0 => (BitSlice::empty(), self),
			n if n == self.len() => (self, BitSlice::empty()),
			_ => (self.get_unchecked(.. mid), self.get_unchecked(mid ..)),
		}
	}

	/// Version of [`split_at_mut`](#method.split_at_mut) that does not perform
	/// boundary checking.
	///
	/// # Safety
	///
	/// If `mid` is outside the boundaries of `self`, then this function will
	/// induce safety violations. The caller must ensure that `mid` is within
	/// the boundaries of `self` before calling.
	pub unsafe fn split_at_mut_unchecked(
		&mut self,
		mid: usize,
	) -> (&mut Self, &mut Self) {
		let (head, tail) = self.split_at_unchecked(mid);
		(head.bitptr().into_bitslice_mut(), tail.bitptr().into_bitslice_mut())
	}

	/// Tests if *all* bits in the slice domain are set (logical `∧`).
	///
	/// # Truth Table
	///
	/// ```text
	/// 0 0 => 0
	/// 0 1 => 0
	/// 1 0 => 0
	/// 1 1 => 1
	/// ```
	///
	/// # Parameters
	///
	/// - `&self`
	///
	/// # Returns
	///
	/// Whether all bits in the slice domain are set. The empty slice returns
	/// `true`.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let bits = 0xFDu8.bits::<BigEndian>();
	/// assert!(bits[.. 4].all());
	/// assert!(!bits[4 ..].all());
	/// ```
	pub fn all(&self) -> bool {
		match self.bitptr().domain().splat() {
			Either::Right((h, e, t)) => {
				let elt = e.load();
				(*h .. *t).all(|n| elt.get::<C>(n.idx()))
			},
			Either::Left((h, b, t)) => {
				let mut out = true;
				if let Some((h, head)) = h {
					let elt = head.load();
					out &= (*h .. T::BITS).all(|n| elt.get::<C>(n.idx()));
				}
				if let Some(body) = b {
					out &= body.iter().all(|e| e.load() == T::TRUE);
				}
				if let Some((tail, t)) = t {
					let elt = tail.load();
					out &= (0 .. *t).all(|n| elt.get::<C>(n.idx()));
				}
				out
			},
		}
	}

	/// Tests if *any* bit in the slice is set (logical `∨`).
	///
	/// # Truth Table
	///
	/// ```text
	/// 0 0 => 0
	/// 0 1 => 1
	/// 1 0 => 1
	/// 1 1 => 1
	/// ```
	///
	/// # Parameters
	///
	/// - `&self`
	///
	/// # Returns
	///
	/// Whether any bit in the slice domain is set. The empty slice returns
	/// `false`.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let bits = 0x40u8.bits::<BigEndian>();
	/// assert!(bits[.. 4].any());
	/// assert!(!bits[4 ..].any());
	/// ```
	pub fn any(&self) -> bool {
		match self.bitptr().domain().splat() {
			Either::Right((h, e, t)) => {
				let elt = e.load();
				(*h .. *t).any(|n| elt.get::<C>(n.idx()))
			},
			Either::Left((h, b, t)) => {
				let mut out = false;
				if let Some((h, head)) = h {
					let elt = head.load();
					out |= (*h .. T::BITS).any(|n| elt.get::<C>(n.idx()));
				}
				if let Some(body) = b {
					out |= body.iter().any(|elt| elt.load() != T::FALSE);
				}
				if let Some((tail, t)) = t {
					let elt = tail.load();
					out |= (0 .. *t).any(|n| elt.get::<C>(n.idx()));
				}
				out
			},
		}
	}

	/// Tests if *any* bit in the slice is unset (logical `¬∧`).
	///
	/// # Truth Table
	///
	/// ```text
	/// 0 0 => 1
	/// 0 1 => 1
	/// 1 0 => 1
	/// 1 1 => 0
	/// ```
	///
	/// # Parameters
	///
	/// - `&self
	///
	/// # Returns
	///
	/// Whether any bit in the slice domain is unset.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let bits = 0xFDu8.bits::<BigEndian>();
	/// assert!(!bits[.. 4].not_all());
	/// assert!(bits[4 ..].not_all());
	/// ```
	pub fn not_all(&self) -> bool {
		!self.all()
	}

	/// Tests if *all* bits in the slice are unset (logical `¬∨`).
	///
	/// # Truth Table
	///
	/// ```text
	/// 0 0 => 1
	/// 0 1 => 0
	/// 1 0 => 0
	/// 1 1 => 0
	/// ```
	///
	/// # Parameters
	///
	/// - `&self`
	///
	/// # Returns
	///
	/// Whether all bits in the slice domain are unset.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let bits = 0x40u8.bits::<BigEndian>();
	/// assert!(!bits[.. 4].not_any());
	/// assert!(bits[4 ..].not_any());
	/// ```
	pub fn not_any(&self) -> bool {
		!self.any()
	}

	/// Tests whether the slice has some, but not all, bits set and some, but
	/// not all, bits unset.
	///
	/// This is `false` if either `all()` or `not_any()` are `true`.
	///
	/// # Truth Table
	///
	/// ```text
	/// 0 0 => 0
	/// 0 1 => 1
	/// 1 0 => 1
	/// 1 1 => 0
	/// ```
	///
	/// # Parameters
	///
	/// - `&self`
	///
	/// # Returns
	///
	/// Whether the slice domain has mixed content. The empty slice returns
	/// `false`.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let bits = 0b111_000_10u8.bits::<BigEndian>();
	/// assert!(!bits[0 .. 3].some());
	/// assert!(!bits[3 .. 6].some());
	/// assert!(bits[6 ..].some());
	/// ```
	pub fn some(&self) -> bool {
		self.any() && self.not_all()
	}

	/// Counts how many bits are set high.
	///
	/// # Parameters
	///
	/// - `&self`
	///
	/// # Returns
	///
	/// The number of high bits in the slice domain.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let bits = [0xFDu8, 0x25].bits::<BigEndian>();
	/// assert_eq!(bits.count_ones(), 10);
	/// ```
	pub fn count_ones(&self) -> usize {
		match self.bitptr().domain().splat() {
			Either::Right((h, e, t)) => {
				let elt = e.load();
				(*h .. *t).filter(|n| elt.get::<C>(n.idx())).count()
			},
			Either::Left((h, b, t)) => {
				let mut out = 0usize;
				if let Some((h, head)) = h {
					let elt = head.load();
					out += (*h .. T::BITS)
						.filter(|n| elt.get::<C>(n.idx()))
						.count();
				}
				if let Some(body) = b {
					out += body.iter()
						.map(BitAccess::load)
						.map(T::count_ones)
						.sum::<usize>();
				}
				if let Some((tail, t)) = t {
					let elt = tail.load();
					out += (0 .. *t)
						.filter(|n| elt.get::<C>(n.idx()))
						.count();
				}
				out
			},
		}
	}

	/// Counts how many bits are set low.
	///
	/// # Parameters
	///
	/// - `&self`
	///
	/// # Returns
	///
	/// The number of low bits in the slice domain.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let bits = [0xFDu8, 0x25].bits::<BigEndian>();
	/// assert_eq!(bits.count_zeros(), 6);
	/// ```
	pub fn count_zeros(&self) -> usize {
		self.len() - self.count_ones()
	}

	/// Set all bits in the slice to a value.
	///
	/// # Parameters
	///
	/// - `&mut self`
	/// - `value`: The bit value to which all bits in the slice will be set.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let mut src = 0u8;
	/// let bits = src.bits_mut::<BigEndian>();
	/// bits[2 .. 6].set_all(true);
	/// assert_eq!(bits.as_ref(), &[0b0011_1100]);
	/// bits[3 .. 5].set_all(false);
	/// assert_eq!(bits.as_ref(), &[0b0010_0100]);
	/// bits[.. 1].set_all(true);
	/// assert_eq!(bits.as_ref(), &[0b1010_0100]);
	/// ```
	pub fn set_all(&mut self, value: bool) {
		match self.bitptr().domain().splat() {
			Either::Right((h, e, t)) => {
				for n in *h .. *t {
					e.set::<C>(n.idx(), value);
				}
			},
			Either::Left((h, b, t)) => {
				if let Some((h, head)) = h {
					for n in *h .. T::BITS {
						head.set::<C>(n.idx(), value);
					}
				}
				if let Some(body) = b {
					for elt in body {
						elt.store(if value { T::TRUE } else { T::FALSE });
					}
				}
				if let Some((tail, t)) = t {
					for n in 0 .. *t {
						tail.set::<C>(n.idx(), value);
					}
				}
			},
		}
	}

	/// Provides mutable traversal of the collection.
	///
	/// It is impossible to implement `IndexMut` on `BitSlice`, because bits do
	/// not have addresses, so there can be no `&mut u1`. This method allows the
	/// client to receive an enumerated bit, and provide a new bit to set at
	/// each index.
	///
	/// # Parameters
	///
	/// - `&mut self`
	/// - `func`: A function which receives a `(usize, bool)` pair of index and
	///   value, and returns a bool. It receives the bit at each position, and
	///   the return value is written back at that position.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let mut src = 0u8;
	/// {
	///  let bits = src.bits_mut::<BigEndian>();
	///  bits.for_each(|idx, _bit| idx % 3 == 0);
	/// }
	/// assert_eq!(src, 0b1001_0010);
	/// ```
	pub fn for_each<F>(&mut self, func: F)
	where F: Fn(usize, bool) -> bool {
		for idx in 0 .. self.len() {
			let tmp = unsafe { *self.get_unchecked(idx) };
			let new = func(idx, tmp);
			unsafe { self.set_unchecked(idx, new); }
		}
	}

	/// Performs “reverse” addition (left to right instead of right to left).
	///
	/// This addition interprets the slice, and the other addend, as having its
	/// least significant bits first in the order and its most significant bits
	/// last. This is most likely to be numerically useful under a
	/// `LittleEndian` `Cursor` type.
	///
	/// # Parameters
	///
	/// - `&mut self`: The addition uses `self` as one addend, and writes the
	///   sum back into `self`.
	/// - `addend: impl IntoIterator<Item=bool>`: A stream of bits. When this is
	///   another `BitSlice`, iteration proceeds from left to right.
	///
	/// # Return
	///
	/// The final carry bit is returned
	///
	/// # Effects
	///
	/// Starting from index `0` and proceeding upwards until either `self` or
	/// `addend` expires, the carry-propagated addition of `self[i]` and
	/// `addend[i]` is written to `self[i]`.
	///
	/// ```text
	///   101111
	/// + 0010__ (the two missing bits are logically zero)
	/// --------
	///   100000 1 (the carry-out is returned)
	/// ```
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let mut a = 0b0000_1010u8;
	/// let     b = 0b0000_1100u8;
	/// //      s =      1 0110
	/// let ab = &mut a.bits_mut::<LittleEndian>()[.. 4];
	/// let bb = &    b.bits::<LittleEndian>()[.. 4];
	/// let c = ab.add_assign_reverse(bb.iter().copied());
	/// assert!(c);
	/// assert_eq!(a, 0b0000_0110u8);
	/// ```
	///
	/// # Performance Notes
	///
	/// When using `LittleEndian` `Cursor` types, this can be accelerated by
	/// delegating the addition to the underlying types. This is a software
	/// implementation of the [ripple-carry adder], which has `O(n)` runtime in
	/// the number of bits. The CPU is much faster, as it has access to
	/// element-wise or vectorized addition operations.
	///
	/// If your use case sincerely needs binary-integer arithmetic operations on
	/// bit sets
	///
	/// [ripple-carry adder]: https://en.wikipedia.org/wiki/Ripple-carry_adder
	pub fn add_assign_reverse<I>(&mut self, addend: I) -> bool
	where I: IntoIterator<Item=bool> {
		//  See AddAssign::add_assign for algorithm details
		let mut c = false;
		let len = self.len();
		let zero = core::iter::repeat(false);
		for (i, b) in addend.into_iter().chain(zero).enumerate().take(len) {
			//  The iterator is clamped to the upper bound of `self`.
			let a = unsafe { *self.get_unchecked(i) };
			let (y, z) = crate::rca1(a, b, c);
			//  Write the sum into `self`
			unsafe { self.set_unchecked(i, y); }
			//  Propagate the carry
			c = z;
		}
		c
	}

	/// Accesses the backing storage of the `BitSlice` as a slice of its
	/// elements.
	///
	/// This will not include partially-owned edge elements, as they may be
	/// contended by other slice handles.
	///
	/// # Parameters
	///
	/// - `&self`
	///
	/// # Returns
	///
	/// A slice of all the elements that the `BitSlice` uses for storage.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let src = [1u8, 66];
	/// let bits = src.bits::<BigEndian>();
	///
	/// let accum = bits.as_slice()
	///   .iter()
	///   .map(|elt| elt.count_ones())
	///   .sum::<u32>();
	/// assert_eq!(accum, 3);
	/// ```
	pub fn as_slice(&self) -> &[T] {
		&* unsafe { BitAccess::as_slice_mut(match self.bitptr().domain() {
			| BitDomain::Empty
			| BitDomain::Minor(_, _, _) => &[],
			| BitDomain::PartialHead(_, _, body)
			| BitDomain::PartialTail(body, _, _)
			| BitDomain::Major(_, _, body, _, _)
			| BitDomain::Spanning(body) => body,
		}) }
	}

	/// Accesses the underlying store.
	///
	/// This will not include partially-owned edge elements, as they may be
	/// contended by other slice handles.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let mut src = [1u8, 64];
	/// let bits = src.bits_mut::<BigEndian>();
	/// for elt in bits.as_mut_slice() {
	///   *elt |= 2;
	/// }
	/// assert_eq!(&[3, 66], bits.as_slice());
	/// ```
	pub fn as_mut_slice(&mut self) -> &mut [T] {
		unsafe { BitAccess::as_slice_mut(match self.bitptr().domain() {
			| BitDomain::Empty
			| BitDomain::Minor(_, _, _) => &[],
			| BitDomain::PartialHead(_, _, body)
			| BitDomain::PartialTail(body, _, _)
			| BitDomain::Major(_, _, body, _, _)
			| BitDomain::Spanning(body) => body,
		}) }
	}

	/// Accesses the underlying store, including contended partial elements.
	///
	/// This produces a slice of element wrappers that permit shared mutation,
	/// rather than a slice of the bare `T` fundamentals.
	///
	/// # Parameters
	///
	/// - `&self`
	///
	/// # Returns
	///
	/// A slice of all elements under the bit span, including any
	/// partially-owned edge elements, wrapped in safe shared-mutation types.
	pub fn as_total_slice(&self) -> &[T::Access] {
		self.bitptr().as_access_slice()
	}

	/// Accesses the underlying pointer structure.
	///
	/// # Parameters
	///
	/// - `&self`
	///
	/// # Returns
	///
	/// The [`BitPtr`] structure of the slice handle.
	///
	/// [`BitPtr`]: ../pointer/struct.BitPtr.html
	pub(crate) fn bitptr(&self) -> BitPtr<T> {
		BitPtr::from_bitslice(self)
	}

	/// Copy a bit from one location in a slice to another.
	///
	/// # Parameters
	///
	/// - `&mut self`
	/// - `from`: The index of the bit to be copied.
	/// - `to`: The index at which the copied bit will be written.
	///
	/// # Safety
	///
	/// `from` and `to` must be within the bounds of `self`. This is not
	/// checked.
	unsafe fn copy_unchecked(&mut self, from: usize, to: usize) {
		self.set_unchecked(to, *self.get_unchecked(from));
	}
}

mod api;
mod guard;
pub(crate) mod iter;
mod ops;
mod traits;

//  Match the `core::slice` API module topology.

pub use self::api::*;
pub use self::guard::*;
pub use self::iter::*;

#[cfg(test)]
mod tests;