bitmagic-sys 0.2.4+bitmagic.7.7.7

Low-level bindings for the bitmagic.
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
#ifndef BMSSE4__H__INCLUDED__
#define BMSSE4__H__INCLUDED__
/*
Copyright(c) 2002-2017 Anatoliy Kuznetsov(anatoliy_kuznetsov at yahoo.com)

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

For more information please visit:  http://bitmagic.io
*/

/*! \file bmsse4.h
    \brief Compute functions for SSE4.2 SIMD instruction set (internal)

    Aside from SSE4.2 it also compiles in WASM SIMD mode
    for 128-bit SIMD portable target.
*/

#ifndef BMWASMSIMDOPT
#include<mmintrin.h>
#endif
#include<emmintrin.h>
#include<smmintrin.h>
#include<nmmintrin.h>
#include<immintrin.h>

#include "bmdef.h"
#include "bmsse_util.h"
#include "bmutil.h"

namespace bm
{

/** @defgroup SSE4 SSE4.2 funcions (internal)
    Processor specific optimizations for SSE4.2 instructions (internals)
    @internal
    @ingroup bvector
 */

#ifdef __GNUG__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wconversion"
#endif

#ifdef _MSC_VER
#pragma warning( push )
#pragma warning( disable : 4146)
#endif


// WASM build: define missing POPCNT intrinsics via GCC build-ins
#ifdef BMWASMSIMDOPT
# define _mm_popcnt_u32 __builtin_popcount
# define _mm_popcnt_u64 __builtin_popcountll
# define BM_BSF32 __builtin_ctz
#else
# define BM_BSF32 bm::bsf_asm32
#endif


/*
inline
void sse2_print128(const char* prefix, const __m128i & value)
{
    const size_t n = sizeof(__m128i) / sizeof(unsigned);
    unsigned buffer[n];
    _mm_storeu_si128((__m128i*)buffer, value);
    std::cout << prefix << " [ ";
    for (int i = n-1; 1; --i)
    {
        std::cout << buffer[i] << " ";
        if (i == 0)
            break;
    }
    std::cout << "]" << std::endl;
}
*/

/*!
    SSE4.2 optimized bitcounting .
    @ingroup SSE4
*/
inline 
bm::id_t sse4_bit_count(const __m128i* block, const __m128i* block_end) BMNOEXCEPT
{
    bm::id_t count = 0;
#ifdef BM64_SSE4
    const bm::id64_t* b = (bm::id64_t*) block;
    const bm::id64_t* b_end = (bm::id64_t*) block_end;
    do
    {
        count += unsigned( _mm_popcnt_u64(b[0]) +
                           _mm_popcnt_u64(b[1]));
        b += 2;
    } while (b < b_end);
#else
    do
    {
        const unsigned* b = (unsigned*) block;
        count += _mm_popcnt_u32(b[0]) +
                 _mm_popcnt_u32(b[1]) +
                 _mm_popcnt_u32(b[2]) +
                 _mm_popcnt_u32(b[3]);
    } while (++block < block_end);
#endif    
    return count;
}

/*!
\internal
*/
BMFORCEINLINE 
unsigned op_xor(unsigned a, unsigned b) BMNOEXCEPT
{
    unsigned ret = (a ^ b);
    return ret;
}

/*!
\internal
*/
BMFORCEINLINE 
unsigned op_or(unsigned a, unsigned b) BMNOEXCEPT
{
    return (a | b);
}

/*!
\internal
*/
BMFORCEINLINE 
unsigned op_and(unsigned a, unsigned b) BMNOEXCEPT
{
    return (a & b);
}


template<class Func>
bm::id_t sse4_bit_count_op(const __m128i* BMRESTRICT block, 
                           const __m128i* BMRESTRICT block_end,
                           const __m128i* BMRESTRICT mask_block,
                           Func sse2_func) BMNOEXCEPT
{
    bm::id_t count = 0;
#ifdef BM64_SSE4
    do
    {
        __m128i tmp0 = _mm_load_si128(block);
        __m128i tmp1 = _mm_load_si128(mask_block);        
        __m128i b = sse2_func(tmp0, tmp1);

        count += (unsigned)_mm_popcnt_u64(_mm_extract_epi64(b, 0));
        count += (unsigned)_mm_popcnt_u64(_mm_extract_epi64(b, 1));

        ++block; ++mask_block;
    } while (block < block_end);
#else    
    do
    {
        __m128i tmp0 = _mm_load_si128(block);
        __m128i tmp1 = _mm_load_si128(mask_block);        
        __m128i b = sse2_func(tmp0, tmp1);

        count += _mm_popcnt_u32(_mm_extract_epi32(b, 0));
        count += _mm_popcnt_u32(_mm_extract_epi32(b, 1));
        count += _mm_popcnt_u32(_mm_extract_epi32(b, 2));
        count += _mm_popcnt_u32(_mm_extract_epi32(b, 3));

        ++block; ++mask_block;
    } while (block < block_end);
#endif
    
    return count;
}

/*!
    @brief check if block is all zero bits
    @ingroup SSE4
*/
inline
bool sse4_is_all_zero(const __m128i* BMRESTRICT block) BMNOEXCEPT
{
    __m128i w;
    __m128i maskz = _mm_setzero_si128();
    const __m128i* BMRESTRICT block_end =
        (const __m128i*)((bm::word_t*)(block) + bm::set_block_size);

    do
    {
        w = _mm_or_si128(_mm_load_si128(block+0), _mm_load_si128(block+1));
        if (!_mm_test_all_ones(_mm_cmpeq_epi8(w, maskz))) // (w0 | w1) != maskz
            return false;
        w = _mm_or_si128(_mm_load_si128(block+2), _mm_load_si128(block+3));
        if (!_mm_test_all_ones(_mm_cmpeq_epi8(w, maskz))) // (w0 | w1) != maskz
            return false;
        block += 4;
    } while (block < block_end);
    return true;
}

/*!
    @brief check if digest stride is all zero bits
    @ingroup SSE4
*/
inline
bool sse4_is_digest_zero(const __m128i* BMRESTRICT block) BMNOEXCEPT
{
    __m128i wA = _mm_or_si128(_mm_load_si128(block+0), _mm_load_si128(block+1));
    __m128i wB = _mm_or_si128(_mm_load_si128(block+2), _mm_load_si128(block+3));
    wA = _mm_or_si128(wA, wB);
    bool z1 = _mm_test_all_zeros(wA, wA);

    wA = _mm_or_si128(_mm_load_si128(block+4), _mm_load_si128(block+5));
    wB = _mm_or_si128(_mm_load_si128(block+6), _mm_load_si128(block+7));
    wA = _mm_or_si128(wA, wB);
    bool z2 = _mm_test_all_zeros(wA, wA);
    return z1 & z2;
}

/*!
    @brief set digest stride to 0xFF.. or 0x0 value
    @ingroup SSE4
*/
inline
void sse4_block_set_digest(__m128i* dst, unsigned value) BMNOEXCEPT
{
    __m128i mV = _mm_set1_epi32(int(value));
    _mm_store_si128(dst, mV);     _mm_store_si128(dst + 1, mV); 
    _mm_store_si128(dst + 2, mV); _mm_store_si128(dst + 3, mV); 
    _mm_store_si128(dst + 4, mV); _mm_store_si128(dst + 5, mV); 
    _mm_store_si128(dst + 6, mV); _mm_store_si128(dst + 7, mV);
}


/*!
    @brief AND blocks2
    *dst &= *src
 
    @return 0 if no bits were set
    @ingroup SSE4
*/
inline
unsigned sse4_and_block(__m128i* BMRESTRICT dst,
                       const __m128i* BMRESTRICT src) BMNOEXCEPT
{
    __m128i m1A, m1B, m1C, m1D;
    __m128i accA, accB, accC, accD;
    
    const __m128i* BMRESTRICT src_end =
        (const __m128i*)((bm::word_t*)(src) + bm::set_block_size);

    accA = accB = accC = accD = _mm_setzero_si128();

    do
    {
        m1A = _mm_and_si128(_mm_load_si128(src+0), _mm_load_si128(dst+0));
        m1B = _mm_and_si128(_mm_load_si128(src+1), _mm_load_si128(dst+1));
        m1C = _mm_and_si128(_mm_load_si128(src+2), _mm_load_si128(dst+2));
        m1D = _mm_and_si128(_mm_load_si128(src+3), _mm_load_si128(dst+3));

        _mm_store_si128(dst+0, m1A);
        _mm_store_si128(dst+1, m1B);
        _mm_store_si128(dst+2, m1C);
        _mm_store_si128(dst+3, m1D);

        accA = _mm_or_si128(accA, m1A);
        accB = _mm_or_si128(accB, m1B);
        accC = _mm_or_si128(accC, m1C);
        accD = _mm_or_si128(accD, m1D);
        
        src += 4; dst += 4;
    } while (src < src_end);
    
    accA = _mm_or_si128(accA, accB); // A = A | B
    accC = _mm_or_si128(accC, accD); // C = C | D
    accA = _mm_or_si128(accA, accC); // A = A | C
    
    return !_mm_testz_si128(accA, accA);
}


/*!
    @brief AND block digest stride
    *dst &= *src
 
    @return true if stide is all zero
    @ingroup SSE4
*/
inline
bool sse4_and_digest(__m128i* BMRESTRICT dst,
                     const __m128i* BMRESTRICT src) BMNOEXCEPT
{
    __m128i m1A, m1B, m1C, m1D;

    m1A = _mm_and_si128(_mm_load_si128(src+0), _mm_load_si128(dst+0));
    m1B = _mm_and_si128(_mm_load_si128(src+1), _mm_load_si128(dst+1));
    m1C = _mm_and_si128(_mm_load_si128(src+2), _mm_load_si128(dst+2));
    m1D = _mm_and_si128(_mm_load_si128(src+3), _mm_load_si128(dst+3));

    _mm_store_si128(dst+0, m1A);
    _mm_store_si128(dst+1, m1B);
    _mm_store_si128(dst+2, m1C);
    _mm_store_si128(dst+3, m1D);
    
     m1A = _mm_or_si128(m1A, m1B);
     m1C = _mm_or_si128(m1C, m1D);
     m1A = _mm_or_si128(m1A, m1C);
    
     bool z1 = _mm_testz_si128(m1A, m1A);
    
    m1A = _mm_and_si128(_mm_load_si128(src+4), _mm_load_si128(dst+4));
    m1B = _mm_and_si128(_mm_load_si128(src+5), _mm_load_si128(dst+5));
    m1C = _mm_and_si128(_mm_load_si128(src+6), _mm_load_si128(dst+6));
    m1D = _mm_and_si128(_mm_load_si128(src+7), _mm_load_si128(dst+7));

    _mm_store_si128(dst+4, m1A);
    _mm_store_si128(dst+5, m1B);
    _mm_store_si128(dst+6, m1C);
    _mm_store_si128(dst+7, m1D);
    
     m1A = _mm_or_si128(m1A, m1B);
     m1C = _mm_or_si128(m1C, m1D);
     m1A = _mm_or_si128(m1A, m1C);
    
     bool z2 = _mm_testz_si128(m1A, m1A);
    
     return z1 & z2;
}

/*!
    @brief AND block digest stride
    *dst = *src1 & src2
 
    @return true if stide is all zero
    @ingroup SSE4
*/
inline
bool sse4_and_digest_2way(__m128i* BMRESTRICT dst,
                          const __m128i* BMRESTRICT src1,
                          const __m128i* BMRESTRICT src2) BMNOEXCEPT
{
    __m128i m1A, m1B, m1C, m1D;

    m1A = _mm_and_si128(_mm_load_si128(src1+0), _mm_load_si128(src2+0));
    m1B = _mm_and_si128(_mm_load_si128(src1+1), _mm_load_si128(src2+1));
    m1C = _mm_and_si128(_mm_load_si128(src1+2), _mm_load_si128(src2+2));
    m1D = _mm_and_si128(_mm_load_si128(src1+3), _mm_load_si128(src2+3));
    
    _mm_store_si128(dst+0, m1A);
    _mm_store_si128(dst+1, m1B);
    _mm_store_si128(dst+2, m1C);
    _mm_store_si128(dst+3, m1D);
    
     m1A = _mm_or_si128(m1A, m1B);
     m1C = _mm_or_si128(m1C, m1D);
     m1A = _mm_or_si128(m1A, m1C);
    
     bool z1 = _mm_testz_si128(m1A, m1A);
    
    m1A = _mm_and_si128(_mm_load_si128(src1+4), _mm_load_si128(src2+4));
    m1B = _mm_and_si128(_mm_load_si128(src1+5), _mm_load_si128(src2+5));
    m1C = _mm_and_si128(_mm_load_si128(src1+6), _mm_load_si128(src2+6));
    m1D = _mm_and_si128(_mm_load_si128(src1+7), _mm_load_si128(src2+7));

    _mm_store_si128(dst+4, m1A);
    _mm_store_si128(dst+5, m1B);
    _mm_store_si128(dst+6, m1C);
    _mm_store_si128(dst+7, m1D);
    
     m1A = _mm_or_si128(m1A, m1B);
     m1C = _mm_or_si128(m1C, m1D);
     m1A = _mm_or_si128(m1A, m1C);
    
     bool z2 = _mm_testz_si128(m1A, m1A);
    
     return z1 & z2;
}

/*!
    @brief AND-OR block digest stride
    *dst |= *src1 & src2

    @return true if stide is all zero
    @ingroup SSE4
*/
inline
bool sse4_and_or_digest_2way(__m128i* BMRESTRICT dst,
                             const __m128i* BMRESTRICT src1,
                             const __m128i* BMRESTRICT src2) BMNOEXCEPT
{
    __m128i m1A, m1B, m1C, m1D;
    __m128i mACC1;

    m1A = _mm_and_si128(_mm_load_si128(src1+0), _mm_load_si128(src2+0));
    m1B = _mm_and_si128(_mm_load_si128(src1+1), _mm_load_si128(src2+1));
    m1C = _mm_and_si128(_mm_load_si128(src1+2), _mm_load_si128(src2+2));
    m1D = _mm_and_si128(_mm_load_si128(src1+3), _mm_load_si128(src2+3));

    mACC1 = _mm_or_si128(_mm_or_si128(m1A, m1B), _mm_or_si128(m1C, m1D));
    bool z1 = _mm_testz_si128(mACC1, mACC1);

    m1A = _mm_or_si128(_mm_load_si128(dst+0), m1A);
    m1B = _mm_or_si128(_mm_load_si128(dst+1), m1B);
    m1C = _mm_or_si128(_mm_load_si128(dst+2), m1C);
    m1D = _mm_or_si128(_mm_load_si128(dst+3), m1D);

    _mm_store_si128(dst+0, m1A);
    _mm_store_si128(dst+1, m1B);
    _mm_store_si128(dst+2, m1C);
    _mm_store_si128(dst+3, m1D);


    m1A = _mm_and_si128(_mm_load_si128(src1+4), _mm_load_si128(src2+4));
    m1B = _mm_and_si128(_mm_load_si128(src1+5), _mm_load_si128(src2+5));
    m1C = _mm_and_si128(_mm_load_si128(src1+6), _mm_load_si128(src2+6));
    m1D = _mm_and_si128(_mm_load_si128(src1+7), _mm_load_si128(src2+7));

    mACC1 = _mm_or_si128(_mm_or_si128(m1A, m1B), _mm_or_si128(m1C, m1D));
    bool z2 = _mm_testz_si128(mACC1, mACC1);

    m1A = _mm_or_si128(_mm_load_si128(dst+4), m1A);
    m1B = _mm_or_si128(_mm_load_si128(dst+5), m1B);
    m1C = _mm_or_si128(_mm_load_si128(dst+6), m1C);
    m1D = _mm_or_si128(_mm_load_si128(dst+7), m1D);

    _mm_store_si128(dst+4, m1A);
    _mm_store_si128(dst+5, m1B);
    _mm_store_si128(dst+6, m1C);
    _mm_store_si128(dst+7, m1D);

     return z1 & z2;
}


/*!
    @brief AND block digest stride
    @return true if stide is all zero
    @ingroup SSE4
*/
inline
bool sse4_and_digest_5way(__m128i* BMRESTRICT dst,
                          const __m128i* BMRESTRICT src1,
                          const __m128i* BMRESTRICT src2,
                          const __m128i* BMRESTRICT src3,
                          const __m128i* BMRESTRICT src4) BMNOEXCEPT
{
    __m128i m1A, m1B, m1C, m1D;
    __m128i m1E, m1F, m1G, m1H;

    m1A = _mm_and_si128(_mm_load_si128(src1+0), _mm_load_si128(src2+0));
    m1B = _mm_and_si128(_mm_load_si128(src1+1), _mm_load_si128(src2+1));
    m1C = _mm_and_si128(_mm_load_si128(src1+2), _mm_load_si128(src2+2));
    m1D = _mm_and_si128(_mm_load_si128(src1+3), _mm_load_si128(src2+3));

    m1E = _mm_and_si128(_mm_load_si128(src3+0), _mm_load_si128(src4+0));
    m1F = _mm_and_si128(_mm_load_si128(src3+1), _mm_load_si128(src4+1));
    m1G = _mm_and_si128(_mm_load_si128(src3+2), _mm_load_si128(src4+2));
    m1H = _mm_and_si128(_mm_load_si128(src3+3), _mm_load_si128(src4+3));

    m1A = _mm_and_si128(m1A, m1E);
    m1B = _mm_and_si128(m1B, m1F);
    m1C = _mm_and_si128(m1C, m1G);
    m1D = _mm_and_si128(m1D, m1H);

    m1A = _mm_and_si128(m1A, _mm_load_si128(dst+0));
    m1B = _mm_and_si128(m1B, _mm_load_si128(dst+1));
    m1C = _mm_and_si128(m1C, _mm_load_si128(dst+2));
    m1D = _mm_and_si128(m1D, _mm_load_si128(dst+3));

    _mm_store_si128(dst+0, m1A);
    _mm_store_si128(dst+1, m1B);
    _mm_store_si128(dst+2, m1C);
    _mm_store_si128(dst+3, m1D);
    
     m1A = _mm_or_si128(m1A, m1B);
     m1C = _mm_or_si128(m1C, m1D);
     m1A = _mm_or_si128(m1A, m1C);
    
     bool z1 = _mm_testz_si128(m1A, m1A);
    
    m1A = _mm_and_si128(_mm_load_si128(src1+4), _mm_load_si128(src2+4));
    m1B = _mm_and_si128(_mm_load_si128(src1+5), _mm_load_si128(src2+5));
    m1C = _mm_and_si128(_mm_load_si128(src1+6), _mm_load_si128(src2+6));
    m1D = _mm_and_si128(_mm_load_si128(src1+7), _mm_load_si128(src2+7));

    m1E = _mm_and_si128(_mm_load_si128(src3+4), _mm_load_si128(src4+4));
    m1F = _mm_and_si128(_mm_load_si128(src3+5), _mm_load_si128(src4+5));
    m1G = _mm_and_si128(_mm_load_si128(src3+6), _mm_load_si128(src4+6));
    m1H = _mm_and_si128(_mm_load_si128(src3+7), _mm_load_si128(src4+7));

    m1A = _mm_and_si128(m1A, m1E);
    m1B = _mm_and_si128(m1B, m1F);
    m1C = _mm_and_si128(m1C, m1G);
    m1D = _mm_and_si128(m1D, m1H);

    m1A = _mm_and_si128(m1A, _mm_load_si128(dst+4));
    m1B = _mm_and_si128(m1B, _mm_load_si128(dst+5));
    m1C = _mm_and_si128(m1C, _mm_load_si128(dst+6));
    m1D = _mm_and_si128(m1D, _mm_load_si128(dst+7));

    _mm_store_si128(dst+4, m1A);
    _mm_store_si128(dst+5, m1B);
    _mm_store_si128(dst+6, m1C);
    _mm_store_si128(dst+7, m1D);
    
     m1A = _mm_or_si128(m1A, m1B);
     m1C = _mm_or_si128(m1C, m1D);
     m1A = _mm_or_si128(m1A, m1C);
    
     bool z2 = _mm_testz_si128(m1A, m1A);
    
     return z1 & z2;
}


/*!
    @brief SUB (AND NOT) block digest stride
    *dst &= ~*src
 
    @return true if stide is all zero
    @ingroup SSE4
*/
inline
bool sse4_sub_digest(__m128i* BMRESTRICT dst,
                     const __m128i* BMRESTRICT src) BMNOEXCEPT
{
    __m128i m1A, m1B, m1C, m1D;

    m1A = _mm_andnot_si128(_mm_load_si128(src+0), _mm_load_si128(dst+0));
    m1B = _mm_andnot_si128(_mm_load_si128(src+1), _mm_load_si128(dst+1));
    m1C = _mm_andnot_si128(_mm_load_si128(src+2), _mm_load_si128(dst+2));
    m1D = _mm_andnot_si128(_mm_load_si128(src+3), _mm_load_si128(dst+3));

    _mm_store_si128(dst+0, m1A);
    _mm_store_si128(dst+1, m1B);
    _mm_store_si128(dst+2, m1C);
    _mm_store_si128(dst+3, m1D);
    
     m1A = _mm_or_si128(m1A, m1B);
     m1C = _mm_or_si128(m1C, m1D);
     m1A = _mm_or_si128(m1A, m1C);
    
     bool z1 = _mm_testz_si128(m1A, m1A);
    
    m1A = _mm_andnot_si128(_mm_load_si128(src+4), _mm_load_si128(dst+4));
    m1B = _mm_andnot_si128(_mm_load_si128(src+5), _mm_load_si128(dst+5));
    m1C = _mm_andnot_si128(_mm_load_si128(src+6), _mm_load_si128(dst+6));
    m1D = _mm_andnot_si128(_mm_load_si128(src+7), _mm_load_si128(dst+7));

    _mm_store_si128(dst+4, m1A);
    _mm_store_si128(dst+5, m1B);
    _mm_store_si128(dst+6, m1C);
    _mm_store_si128(dst+7, m1D);
    
     m1A = _mm_or_si128(m1A, m1B);
     m1C = _mm_or_si128(m1C, m1D);
     m1A = _mm_or_si128(m1A, m1C);
    
     bool z2 = _mm_testz_si128(m1A, m1A);
    
     return z1 & z2;
}


/*!
    @brief 2-operand SUB (AND NOT) block digest stride
    *dst = src1 & ~*src2
 
    @return true if stide is all zero
    @ingroup SSE4
*/
inline
bool sse4_sub_digest_2way(__m128i* BMRESTRICT dst,
                          const __m128i* BMRESTRICT src1,
                          const __m128i* BMRESTRICT src2) BMNOEXCEPT
{
    __m128i m1A, m1B, m1C, m1D;

    m1A = _mm_andnot_si128(_mm_load_si128(src2+0), _mm_load_si128(src1+0));
    m1B = _mm_andnot_si128(_mm_load_si128(src2+1), _mm_load_si128(src1+1));
    m1C = _mm_andnot_si128(_mm_load_si128(src2+2), _mm_load_si128(src1+2));
    m1D = _mm_andnot_si128(_mm_load_si128(src2+3), _mm_load_si128(src1+3));

    _mm_store_si128(dst+0, m1A);
    _mm_store_si128(dst+1, m1B);
    _mm_store_si128(dst+2, m1C);
    _mm_store_si128(dst+3, m1D);
    
     m1A = _mm_or_si128(m1A, m1B);
     m1C = _mm_or_si128(m1C, m1D);
     m1A = _mm_or_si128(m1A, m1C);
    
     bool z1 = _mm_testz_si128(m1A, m1A);
    
    m1A = _mm_andnot_si128(_mm_load_si128(src2+4), _mm_load_si128(src1+4));
    m1B = _mm_andnot_si128(_mm_load_si128(src2+5), _mm_load_si128(src1+5));
    m1C = _mm_andnot_si128(_mm_load_si128(src2+6), _mm_load_si128(src1+6));
    m1D = _mm_andnot_si128(_mm_load_si128(src2+7), _mm_load_si128(src1+7));

    _mm_store_si128(dst+4, m1A);
    _mm_store_si128(dst+5, m1B);
    _mm_store_si128(dst+6, m1C);
    _mm_store_si128(dst+7, m1D);
    
     m1A = _mm_or_si128(m1A, m1B);
     m1C = _mm_or_si128(m1C, m1D);
     m1A = _mm_or_si128(m1A, m1C);
    
     bool z2 = _mm_testz_si128(m1A, m1A);
    
     return z1 & z2;
}



/*!
    @brief check if block is all zero bits
    @ingroup SSE4
*/
inline
bool sse4_is_all_one(const __m128i* BMRESTRICT block) BMNOEXCEPT
{
    __m128i w;
    const __m128i* BMRESTRICT block_end =
        (const __m128i*)((bm::word_t*)(block) + bm::set_block_size);

    do
    {
        w = _mm_and_si128(_mm_load_si128(block+0), _mm_load_si128(block+1));
        if (!_mm_test_all_ones(w))
            return false;
        w = _mm_and_si128(_mm_load_si128(block+2), _mm_load_si128(block+3));
        if (!_mm_test_all_ones(w))
            return false;

        block+=4;
    } while (block < block_end);
    return true;
}

/*!
    @brief check if SSE wave is all oxFFFF...FFF
    @ingroup SSE4
*/
BMFORCEINLINE
bool sse42_test_all_one_wave(const void* ptr) BMNOEXCEPT
{
    return _mm_test_all_ones(_mm_loadu_si128((__m128i*)ptr));
}


/*!
    @brief check if wave of pointers is all NULL
    @ingroup SSE4
*/
BMFORCEINLINE
bool sse42_test_all_zero_wave(const void* ptr) BMNOEXCEPT
{
    __m128i w0 = _mm_loadu_si128((__m128i*)ptr);
    return _mm_testz_si128(w0, w0);
}

/*!
    @brief check if 2 waves of pointers are all NULL
    @ingroup SSE4
*/
BMFORCEINLINE
bool sse42_test_all_zero_wave2(const void* ptr0, const void* ptr1) BMNOEXCEPT
{
    __m128i w0 = _mm_loadu_si128((__m128i*)ptr0);
    __m128i w1 = _mm_loadu_si128((__m128i*)ptr1);
    w0 = _mm_or_si128(w0, w1);
    return _mm_testz_si128(w0, w0);
}

/*!
    @brief check if wave of 2 pointers are the same (null or FULL)
    @ingroup SSE4
*/
BMFORCEINLINE
bool sse42_test_all_eq_wave2(const void* ptr0, const void* ptr1) BMNOEXCEPT
{
    __m128i w0 = _mm_loadu_si128((__m128i*)ptr0);
    __m128i w1 = _mm_loadu_si128((__m128i*)ptr1);
    w0 = _mm_xor_si128(w0, w1);
    return _mm_testz_si128(w0, w0);
}


/*!
    SSE4.2 calculate number of bit changes from 0 to 1
    @ingroup SSE4
*/
inline
unsigned sse42_bit_block_calc_change(const __m128i* BMRESTRICT block,
                                     unsigned size) BMNOEXCEPT
{
    bm::id64_t BM_ALIGN32 tcnt[2] BM_ALIGN32ATTR;

    const __m128i* block_end =
        ( __m128i*)((bm::word_t*)(block) + size); // bm::set_block_size
    __m128i m1COshft, m2COshft;
    
    unsigned w0 = *((bm::word_t*)(block));
    unsigned count = 1;

    unsigned co2, co1 = 0;
    for (;block < block_end; block += 2)
    {
        __m128i m1A = _mm_load_si128(block);
        __m128i m2A = _mm_load_si128(block+1);

        __m128i m1CO = _mm_srli_epi32(m1A, 31);
        __m128i m2CO = _mm_srli_epi32(m2A, 31);
        
        co2 = _mm_extract_epi32(m1CO, 3);
        
        __m128i m1As = _mm_slli_epi32(m1A, 1); // (block[i] << 1u)
        __m128i m2As = _mm_slli_epi32(m2A, 1);
        
        m1COshft = _mm_slli_si128 (m1CO, 4); // byte shift left by 1 int32
        m1COshft = _mm_insert_epi32 (m1COshft, co1, 0);
        
        co1 = co2;
        
        co2 = _mm_extract_epi32(m2CO, 3);
        
        m2COshft = _mm_slli_si128 (m2CO, 4);
        m2COshft = _mm_insert_epi32 (m2COshft, co1, 0);
        
        m1As = _mm_or_si128(m1As, m1COshft); // block[i] |= co_flag
        m2As = _mm_or_si128(m2As, m2COshft);
        
        co1 = co2;
        
        // we now have two shifted SSE4 regs with carry-over
        m1A = _mm_xor_si128(m1A, m1As); // w ^= (w >> 1);
        m2A = _mm_xor_si128(m2A, m2As);
        
#ifdef BM64_SSE4
       _mm_store_si128((__m128i*)tcnt, m1A);
        count += unsigned(_mm_popcnt_u64(tcnt[0]) + _mm_popcnt_u64(tcnt[1]));
       _mm_store_si128((__m128i*)tcnt, m2A);
        count += unsigned(_mm_popcnt_u64(tcnt[0]) + _mm_popcnt_u64(tcnt[1]));
/*
        bm::id64_t m0 = _mm_extract_epi64(m1A, 0);
        bm::id64_t m1 = _mm_extract_epi64(m1A, 1);
        count += unsigned(_mm_popcnt_u64(m0) + _mm_popcnt_u64(m1));

        m0 = _mm_extract_epi64(m2A, 0);
        m1 = _mm_extract_epi64(m2A, 1);
        count += unsigned(_mm_popcnt_u64(m0) + _mm_popcnt_u64(m1));
*/
#else
        bm::id_t m0 = _mm_extract_epi32(m1A, 0);
        bm::id_t m1 = _mm_extract_epi32(m1A, 1);
        bm::id_t m2 = _mm_extract_epi32(m1A, 2);
        bm::id_t m3 = _mm_extract_epi32(m1A, 3);
        count += unsigned(_mm_popcnt_u32(m0) + _mm_popcnt_u32(m1) +
                          _mm_popcnt_u32(m2) + _mm_popcnt_u32(m3));

        m0 = _mm_extract_epi32(m2A, 0);
        m1 = _mm_extract_epi32(m2A, 1);
        m2 = _mm_extract_epi32(m2A, 2);
        m3 = _mm_extract_epi32(m2A, 3);
        count += unsigned(_mm_popcnt_u32(m0) + _mm_popcnt_u32(m1) +
                          _mm_popcnt_u32(m2) + _mm_popcnt_u32(m3));
#endif

    }
    count -= (w0 & 1u); // correct initial carry-in error
    return count;
}


/*!
    SSE4.2 calculate number of bit changes from 0 to 1 of a XOR product
    @ingroup SSE4
*/
inline
void sse42_bit_block_calc_xor_change(const __m128i* BMRESTRICT block,
                                     const __m128i* BMRESTRICT xor_block,
                                     unsigned size,
                                     unsigned* BMRESTRICT gc,
                                     unsigned* BMRESTRICT bc) BMNOEXCEPT
{
#ifdef BM64_SSE4
    bm::id64_t BM_ALIGN32 simd_buf[2] BM_ALIGN32ATTR;
#else
    ///bm::id64_t BM_ALIGN32 simd_buf[4] BM_ALIGN32ATTR;
#endif

    const __m128i* block_end =
        ( __m128i*)((bm::word_t*)(block) + size);
    __m128i m1COshft, m2COshft;

    unsigned w0 = *((bm::word_t*)(block));
    unsigned gap_count = 1;
    unsigned bit_count = 0;

    unsigned co2, co1 = 0;
    for (;block < block_end; block += 2, xor_block += 2)
    {
        __m128i m1A = _mm_load_si128(block);
        __m128i m2A = _mm_load_si128(block+1);
        __m128i m1B = _mm_load_si128(xor_block);
        __m128i m2B = _mm_load_si128(xor_block+1);

        m1A = _mm_xor_si128(m1A, m1B);
        m2A = _mm_xor_si128(m2A, m2B);

        {
#ifdef BM64_SSE4
        _mm_store_si128 ((__m128i*)simd_buf, m1A);
        bit_count += unsigned(_mm_popcnt_u64(simd_buf[0]) + _mm_popcnt_u64(simd_buf[1]));

        _mm_store_si128 ((__m128i*)simd_buf, m2A);
        bit_count += unsigned(_mm_popcnt_u64(simd_buf[0]) + _mm_popcnt_u64(simd_buf[1]));
#else
        bm::id_t m0 = _mm_extract_epi32(m1A, 0);
        bm::id_t m1 = _mm_extract_epi32(m1A, 1);
        bm::id_t m2 = _mm_extract_epi32(m1A, 2);
        bm::id_t m3 = _mm_extract_epi32(m1A, 3);
        bit_count += unsigned(_mm_popcnt_u32(m0) + _mm_popcnt_u32(m1) +
                          _mm_popcnt_u32(m2) + _mm_popcnt_u32(m3));

        m0 = _mm_extract_epi32(m2A, 0);
        m1 = _mm_extract_epi32(m2A, 1);
        m2 = _mm_extract_epi32(m2A, 2);
        m3 = _mm_extract_epi32(m2A, 3);
        bit_count += unsigned(_mm_popcnt_u32(m0) + _mm_popcnt_u32(m1) +
                             _mm_popcnt_u32(m2) + _mm_popcnt_u32(m3));
#endif
        }

        __m128i m1CO = _mm_srli_epi32(m1A, 31);
        __m128i m2CO = _mm_srli_epi32(m2A, 31);

        co2 = _mm_extract_epi32(m1CO, 3);

        __m128i m1As = _mm_slli_epi32(m1A, 1); // (block[i] << 1u)
        __m128i m2As = _mm_slli_epi32(m2A, 1);

        m1COshft = _mm_slli_si128 (m1CO, 4); // byte shift left by 1 int32
        m1COshft = _mm_insert_epi32 (m1COshft, co1, 0);

        co1 = co2;

        co2 = _mm_extract_epi32(m2CO, 3);

        m2COshft = _mm_slli_si128 (m2CO, 4);
        m2COshft = _mm_insert_epi32 (m2COshft, co1, 0);

        m1As = _mm_or_si128(m1As, m1COshft); // block[i] |= co_flag
        m2As = _mm_or_si128(m2As, m2COshft);

        co1 = co2;

        // we now have two shifted SSE4 regs with carry-over
        m1A = _mm_xor_si128(m1A, m1As); // w ^= (w >> 1);
        m2A = _mm_xor_si128(m2A, m2As);

#ifdef BM64_SSE4
        _mm_store_si128 ((__m128i*)simd_buf, m1A);
        gap_count += unsigned(_mm_popcnt_u64(simd_buf[0]) + _mm_popcnt_u64(simd_buf[1]));

        _mm_store_si128 ((__m128i*)simd_buf, m2A);
        gap_count += unsigned(_mm_popcnt_u64(simd_buf[0]) + _mm_popcnt_u64(simd_buf[1]));
#else
        bm::id_t m0 = _mm_extract_epi32(m1A, 0);
        bm::id_t m1 = _mm_extract_epi32(m1A, 1);
        bm::id_t m2 = _mm_extract_epi32(m1A, 2);
        bm::id_t m3 = _mm_extract_epi32(m1A, 3);
        gap_count += unsigned(_mm_popcnt_u32(m0) + _mm_popcnt_u32(m1) +
                          _mm_popcnt_u32(m2) + _mm_popcnt_u32(m3));

        m0 = _mm_extract_epi32(m2A, 0);
        m1 = _mm_extract_epi32(m2A, 1);
        m2 = _mm_extract_epi32(m2A, 2);
        m3 = _mm_extract_epi32(m2A, 3);
        gap_count += unsigned(_mm_popcnt_u32(m0) + _mm_popcnt_u32(m1) +
                          _mm_popcnt_u32(m2) + _mm_popcnt_u32(m3));
#endif

    }
    gap_count -= (w0 & 1u); // correct initial carry-in error
    if (!gap_count)
        ++gap_count; // must be >0
    *gc = gap_count;
    *bc = bit_count;
}



#ifdef BM64_SSE4

/*!
    SSE4.2 calculate number of bit changes from 0 to 1
    @ingroup SSE4
*/
inline
void sse42_bit_block_calc_change_bc(const __m128i* BMRESTRICT block,
                                    unsigned* gc, unsigned* bc) BMNOEXCEPT
{
    const __m128i* block_end =
        ( __m128i*)((bm::word_t*)(block) + bm::set_block_size);
    __m128i m1COshft, m2COshft;
    
    unsigned w0 = *((bm::word_t*)(block));
    unsigned bit_count = 0;
    unsigned gap_count = 1;

    unsigned co2, co1 = 0;
    for (;block < block_end; block += 2)
    {
        __m128i m1A = _mm_load_si128(block);
        __m128i m2A = _mm_load_si128(block+1);
        {
            bm::id64_t m0 = _mm_extract_epi64(m1A, 0);
            bm::id64_t m1 = _mm_extract_epi64(m1A, 1);
            bit_count += unsigned(_mm_popcnt_u64(m0) + _mm_popcnt_u64(m1));
            m0 = _mm_extract_epi64(m2A, 0);
            m1 = _mm_extract_epi64(m2A, 1);
            bit_count += unsigned(_mm_popcnt_u64(m0) + _mm_popcnt_u64(m1));
        }

        __m128i m1CO = _mm_srli_epi32(m1A, 31);
        __m128i m2CO = _mm_srli_epi32(m2A, 31);
        
        co2 = _mm_extract_epi32(m1CO, 3);
        
        __m128i m1As = _mm_slli_epi32(m1A, 1); // (block[i] << 1u)
        __m128i m2As = _mm_slli_epi32(m2A, 1);
        
        m1COshft = _mm_slli_si128 (m1CO, 4); // byte shift left by 1 int32
        m1COshft = _mm_insert_epi32 (m1COshft, co1, 0);
        
        co1 = co2;
        
        co2 = _mm_extract_epi32(m2CO, 3);
        
        m2COshft = _mm_slli_si128 (m2CO, 4);
        m2COshft = _mm_insert_epi32 (m2COshft, co1, 0);
        
        m1As = _mm_or_si128(m1As, m1COshft); // block[i] |= co_flag
        m2As = _mm_or_si128(m2As, m2COshft);
        
        co1 = co2;
        
        // we now have two shifted SSE4 regs with carry-over
        m1A = _mm_xor_si128(m1A, m1As); // w ^= (w >> 1);
        m2A = _mm_xor_si128(m2A, m2As);
        {
            bm::id64_t m0 = _mm_extract_epi64(m1A, 0);
            bm::id64_t m1 = _mm_extract_epi64(m1A, 1);
            gap_count += unsigned(_mm_popcnt_u64(m0) + _mm_popcnt_u64(m1));
        }

        bm::id64_t m0 = _mm_extract_epi64(m2A, 0);
        bm::id64_t m1 = _mm_extract_epi64(m2A, 1);
        gap_count += unsigned(_mm_popcnt_u64(m0) + _mm_popcnt_u64(m1));

    }
    gap_count -= (w0 & 1u); // correct initial carry-in error
    *gc = gap_count;
    *bc = bit_count;
}

#endif


/*!
   \brief Find first bit which is different between two bit-blocks
  @ingroup AVX2
*/
inline
bool sse42_bit_find_first_diff(const __m128i* BMRESTRICT block1,
                               const __m128i* BMRESTRICT block2,
                               unsigned* pos) BMNOEXCEPT
{
    unsigned BM_ALIGN32 simd_buf[4] BM_ALIGN32ATTR;

    const __m128i* block1_end =
        (const __m128i*)((bm::word_t*)(block1) + bm::set_block_size);
    __m128i maskZ = _mm_setzero_si128();
    __m128i mA, mB;
    unsigned simd_lane = 0;
    do
    {
        mA = _mm_xor_si128(_mm_load_si128(block1), _mm_load_si128(block2));
        mB = _mm_xor_si128(_mm_load_si128(block1+1), _mm_load_si128(block2+1));
        __m128i mOR = _mm_or_si128(mA, mB);
        if (!_mm_test_all_zeros(mOR, mOR)) // test 2x128 lanes
        {
            if (!_mm_test_all_zeros(mA, mA))
            {
                unsigned mask = _mm_movemask_epi8(_mm_cmpeq_epi32(mA, maskZ));
                mask = ~mask; // invert to find (w != 0)
                BM_ASSERT(mask);
                int bsf = BM_BSF32(mask); // find first !=0 (could use lzcnt())
                _mm_store_si128 ((__m128i*)simd_buf, mA);
                unsigned widx = bsf >> 2; // (bsf / 4);
                unsigned w = simd_buf[widx]; // _mm_extract_epi32 (mA, widx);
                bsf = BM_BSF32(w); // find first bit != 0
                *pos = (simd_lane * 128) + (widx * 32) + bsf;
                return true;
            }
            unsigned mask = _mm_movemask_epi8(_mm_cmpeq_epi32(mB, maskZ));
            mask = ~mask; // invert to find (w != 0)
            BM_ASSERT(mask);
            int bsf = BM_BSF32(mask); // find first !=0 (could use lzcnt())
            _mm_store_si128 ((__m128i*)simd_buf, mB);
            unsigned widx = bsf >> 2; // (bsf / 4);
            unsigned w = simd_buf[widx]; // _mm_extract_epi32 (mB, widx);
            bsf = BM_BSF32(w); // find first bit != 0
            *pos = ((++simd_lane) * 128) + (widx * 32) + bsf;
            return true;
        }

        simd_lane+=2;
        block1+=2; block2+=2;

    } while (block1 < block1_end);
    return false;
}


/*!
   \brief Find first non-zero bit
  @ingroup AVX2
*/
inline
bool sse42_bit_find_first(const __m128i* BMRESTRICT block,
                          unsigned* pos) BMNOEXCEPT
{
    unsigned BM_ALIGN32 simd_buf[4] BM_ALIGN32ATTR;

    const __m128i* block_end =
        (const __m128i*)((bm::word_t*)(block) + bm::set_block_size);
    __m128i maskZ = _mm_setzero_si128();
    __m128i mA, mB;
    unsigned simd_lane = 0;
    do
    {
        mA = _mm_load_si128(block); mB = _mm_load_si128(block+1);
        __m128i mOR = _mm_or_si128(mA, mB);
        if (!_mm_test_all_zeros(mOR, mOR)) // test 2x128 lanes
        {
            if (!_mm_test_all_zeros(mA, mA))
            {
                unsigned mask = _mm_movemask_epi8(_mm_cmpeq_epi32(mA, maskZ));
                mask = ~mask; // invert to find (w != 0)
                BM_ASSERT(mask);
                int bsf = BM_BSF32(mask); // find first !=0 (could use lzcnt())
                _mm_store_si128 ((__m128i*)simd_buf, mA);
                unsigned widx = bsf >> 2; // (bsf / 4);
                unsigned w = simd_buf[widx];
                bsf = BM_BSF32(w); // find first bit != 0
                *pos = (simd_lane * 128) + (widx * 32) + bsf;
                return true;
            }
            unsigned mask = _mm_movemask_epi8(_mm_cmpeq_epi32(mB, maskZ));
            mask = ~mask; // invert to find (w != 0)
            BM_ASSERT(mask);
            int bsf = BM_BSF32(mask); // find first !=0 (could use lzcnt())
            _mm_store_si128 ((__m128i*)simd_buf, mB);
            unsigned widx = bsf >> 2; // (bsf / 4);
            unsigned w = simd_buf[widx];
            bsf = BM_BSF32(w); // find first bit != 0
            *pos = ((++simd_lane) * 128) + (widx * 32) + bsf;
            return true;
        }

        simd_lane+=2;
        block+=2;

    } while (block < block_end);
    return false;
}




#ifdef __GNUG__
// necessary measure to silence false warning from GCC about negative pointer arithmetics
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Warray-bounds"
#endif

/*!
     SSE4.2 check for one to two (variable len) 128 bit SSE lines
     for gap search results (8 elements)
     @ingroup SSE4
     \internal
*/
inline
unsigned sse4_gap_find(const bm::gap_word_t* BMRESTRICT pbuf,
                       const bm::gap_word_t pos, const unsigned size) BMNOEXCEPT
{
    BM_ASSERT(size <= 16);
    BM_ASSERT(size);

    const unsigned unroll_factor = 8;
    if (size < 4) // for very short vector use conventional scan
    {
        unsigned j;
        for (j = 0; j < size; ++j)
        {
            if (pbuf[j] >= pos)
                break;
        }
        return j;
    }

    __m128i m1, mz, maskF, maskFL;

    mz = _mm_setzero_si128();
    m1 = _mm_loadu_si128((__m128i*)(pbuf)); // load first 8 elements

    maskF = _mm_cmpeq_epi64(mz, mz); // set all FF
    maskFL = _mm_slli_si128(maskF, 4 * 2); // byte shift to make [0000 FFFF]
    int shiftL= (64 - (unroll_factor - size) * 16);
    maskFL = _mm_slli_epi64(maskFL, shiftL); // additional bit shift to  [0000 00FF]

    m1 = _mm_andnot_si128(maskFL, m1); // m1 = (~mask) & m1
    m1 = _mm_or_si128(m1, maskFL);

    __m128i mp = _mm_set1_epi16(pos);  // broadcast pos into all elements of a SIMD vector
    __m128i  mge_mask = _mm_cmpeq_epi16(_mm_subs_epu16(mp, m1), mz); // unsigned m1 >= mp
    __m128i  c_mask = _mm_slli_epi16(mge_mask, 15); // clear not needed flag bits by shift
    int mi = _mm_movemask_epi8(c_mask);  // collect flag bits
    if (mi)
    {
        // alternative: int bsr_i= bm::bit_scan_fwd(mi) >> 1;
        unsigned bc = _mm_popcnt_u32(mi); // gives us number of elements >= pos
        return unroll_factor - bc;   // address of first one element (target)
    }
    // inspect the next lane with possible step back (to avoid over-read the block boundaries)
    //   GCC gives a false warning for "- unroll_factor" here
    const bm::gap_word_t* BMRESTRICT pbuf2 = pbuf + size - unroll_factor;
    BM_ASSERT(pbuf2 > pbuf || size == 8); // assert in place to make sure GCC warning is indeed false

    m1 = _mm_loadu_si128((__m128i*)(pbuf2)); // load next elements (with possible overlap)
    mge_mask = _mm_cmpeq_epi16(_mm_subs_epu16(mp, m1), mz); // m1 >= mp        
    mi = _mm_movemask_epi8(_mm_slli_epi16(mge_mask, 15));
    unsigned bc = _mm_popcnt_u32(mi); 

    return size - bc;
}

/**
    Hybrid binary search, starts as binary, then switches to linear scan

   \param buf - GAP buffer pointer.
   \param pos - index of the element.
   \param is_set - output. GAP value (0 or 1).
   \return GAP index.

    @ingroup SSE4
*/
inline
unsigned sse42_gap_bfind(const unsigned short* BMRESTRICT buf,
                         unsigned pos, unsigned* BMRESTRICT is_set) BMNOEXCEPT
{
    unsigned start = 1;
    unsigned end = 1 + ((*buf) >> 3);
    unsigned dsize = end - start;

    if (dsize < 17)
    {
        start = bm::sse4_gap_find(buf+1, (bm::gap_word_t)pos, dsize);
        *is_set = ((*buf) & 1) ^ (start & 1);
        BM_ASSERT(buf[start+1] >= pos);
        BM_ASSERT(buf[start] < pos || (start==0));

        return start+1;
    }
    unsigned arr_end = end;
    while (start != end)
    {
        unsigned curr = (start + end) >> 1;
        if (buf[curr] < pos)
            start = curr + 1;
        else
            end = curr;

        unsigned size = end - start;
        if (size < 16)
        {
            size += (end != arr_end);
            unsigned idx =
                bm::sse4_gap_find(buf + start, (bm::gap_word_t)pos, size);
            start += idx;

            BM_ASSERT(buf[start] >= pos);
            BM_ASSERT(buf[start - 1] < pos || (start == 1));
            break;
        }
    }

    *is_set = ((*buf) & 1) ^ ((start-1) & 1);
    return start;
}

/**
    Hybrid binary search, starts as binary, then switches to scan
    @ingroup SSE4
*/
inline
unsigned sse42_gap_test(const unsigned short* BMRESTRICT buf, unsigned pos) BMNOEXCEPT
{
    unsigned is_set;
    bm::sse42_gap_bfind(buf, pos, &is_set);
    return is_set;
}



/**
    Experimental (test) function to do SIMD vector search (lower bound)
    in sorted, growing array
    @ingroup SSE4

    \internal
*/
inline
int sse42_cmpge_u32(__m128i vect4, unsigned value) BMNOEXCEPT
{
    // a > b (unsigned, 32-bit) is the same as (a - 0x80000000) > (b - 0x80000000) (signed, 32-bit)
    // https://fgiesen.wordpress.com/2016/04/03/sse-mind-the-gap/
    //
    __m128i mask0x8 = _mm_set1_epi32(0x80000000);
    __m128i mm_val = _mm_set1_epi32(value);
    
    __m128i norm_vect4 = _mm_sub_epi32(vect4, mask0x8); // (signed) vect4 - 0x80000000
    __m128i norm_val = _mm_sub_epi32(mm_val, mask0x8);  // (signed) mm_val - 0x80000000
    
    __m128i cmp_mask_gt = _mm_cmpgt_epi32 (norm_vect4, norm_val);
    __m128i cmp_mask_eq = _mm_cmpeq_epi32 (mm_val, vect4);
    
    __m128i cmp_mask_ge = _mm_or_si128 (cmp_mask_gt, cmp_mask_eq);
    int mask = _mm_movemask_epi8(cmp_mask_ge);
    if (mask)
    {
        int bsf = BM_BSF32(mask);//_bit_scan_forward(mask);
        return bsf / 4;
    }
    return -1;
}


/**
    lower bound (great or equal) linear scan in ascending order sorted array
    @ingroup SSE4
    \internal
*/
inline
unsigned sse4_lower_bound_scan_u32(const unsigned* BMRESTRICT arr,
                                   unsigned target,
                                   unsigned from,
                                   unsigned to) BMNOEXCEPT
{
    // a > b (unsigned, 32-bit) is the same as (a - 0x80000000) > (b - 0x80000000) (signed, 32-bit)
    // see more at:
    // https://fgiesen.wordpress.com/2016/04/03/sse-mind-the-gap/

    const unsigned* BMRESTRICT arr_base = &arr[from]; // unrolled search base
    
    unsigned unroll_factor = 8;
    unsigned len = to - from + 1;
    unsigned len_unr = len - (len % unroll_factor);
    
    __m128i mask0x8 = _mm_set1_epi32(0x80000000);
    __m128i vect_target = _mm_set1_epi32(target);
    __m128i norm_target = _mm_sub_epi32(vect_target, mask0x8);  // (signed) target - 0x80000000

    int mask;
    __m128i vect40, vect41, norm_vect40, norm_vect41, cmp_mask_ge;

    unsigned k = 0;
    for (; k < len_unr; k+=unroll_factor)
    {
        vect40 = _mm_loadu_si128((__m128i*)(&arr_base[k])); // 4 u32s
        norm_vect40 = _mm_sub_epi32(vect40, mask0x8); // (signed) vect4 - 0x80000000
        
        cmp_mask_ge = _mm_or_si128(                              // GT | EQ
                        _mm_cmpgt_epi32 (norm_vect40, norm_target),
                        _mm_cmpeq_epi32 (vect40, vect_target)
                        );
        mask = _mm_movemask_epi8(cmp_mask_ge);
        if (mask)
        {
            int bsf = BM_BSF32(mask); //_bit_scan_forward(mask);
            return from + k + (bsf / 4);
        }
        vect41 = _mm_loadu_si128((__m128i*)(&arr_base[k+4]));
        norm_vect41 = _mm_sub_epi32(vect41, mask0x8);

        cmp_mask_ge = _mm_or_si128(
                        _mm_cmpgt_epi32 (norm_vect41, norm_target),
                        _mm_cmpeq_epi32 (vect41, vect_target)
                        );
        mask = _mm_movemask_epi8(cmp_mask_ge);
        if (mask)
        {
            int bsf = BM_BSF32(mask); //_bit_scan_forward(mask);
            return 4 + from + k + (bsf / 4);
        }
    } // for
    
    for (; k < len; ++k)
    {
        if (arr_base[k] >= target)
            return from + k;
    }
    return to + 1;
}



/*!
     SSE4.2 index lookup to check what belongs to the same block (8 elements)
     \internal
*/
inline
unsigned sse42_idx_arr_block_lookup(const unsigned* idx, unsigned size,
                                   unsigned nb, unsigned start) BMNOEXCEPT
{
    const unsigned unroll_factor = 8;
    const unsigned len = (size - start);
    const unsigned len_unr = len - (len % unroll_factor);
    unsigned k;

    idx += start;

    __m128i nbM = _mm_set1_epi32(nb);

    for (k = 0; k < len_unr; k+=unroll_factor)
    {
        __m128i idxA = _mm_loadu_si128((__m128i*)(idx+k));
        __m128i idxB = _mm_loadu_si128((__m128i*)(idx+k+4));
        __m128i nbA =  _mm_srli_epi32(idxA, bm::set_block_shift); // idx[k] >> bm::set_block_shift
        __m128i nbB =  _mm_srli_epi32(idxB, bm::set_block_shift);
        
        if (!_mm_test_all_ones(_mm_cmpeq_epi32(nbM, nbA)) |
            !_mm_test_all_ones(_mm_cmpeq_epi32 (nbM, nbB)))
            break;

    } // for k
    for (; k < len; ++k)
    {
        if (nb != unsigned(idx[k] >> bm::set_block_shift))
            break;
    }
    return start + k;
}

/*!
     SSE4.2 bulk bit set
     \internal
*/
inline
void sse42_set_block_bits(bm::word_t* BMRESTRICT block,
                          const unsigned* BMRESTRICT idx,
                          unsigned start, unsigned stop ) BMNOEXCEPT
{
    const unsigned unroll_factor = 4;
    const unsigned len = (stop - start);
    const unsigned len_unr = len - (len % unroll_factor);

    idx += start;

    unsigned BM_ALIGN16 mshift_v[4] BM_ALIGN16ATTR;
    unsigned BM_ALIGN16 mword_v[4] BM_ALIGN16ATTR;

    __m128i sb_mask = _mm_set1_epi32(bm::set_block_mask);
    __m128i sw_mask = _mm_set1_epi32(bm::set_word_mask);
    
    unsigned k = 0;
    for (; k < len_unr; k+=unroll_factor)
    {
        __m128i idxA = _mm_loadu_si128((__m128i*)(idx+k));
        __m128i nbitA = _mm_and_si128 (idxA, sb_mask); // nbit = idx[k] & bm::set_block_mask
        __m128i nwordA = _mm_srli_epi32 (nbitA, bm::set_word_shift); // nword  = nbit >> bm::set_word_shift
 
 
        nbitA = _mm_and_si128 (nbitA, sw_mask);
        _mm_store_si128 ((__m128i*)mshift_v, nbitA);

        // check-compare if all 4 bits are in the very same word
        //
        __m128i nwordA_0 = _mm_shuffle_epi32(nwordA, 0x0); // copy element 0
        __m128i cmpA = _mm_cmpeq_epi32(nwordA_0, nwordA);  // compare EQ
        if (_mm_test_all_ones(cmpA)) // check if all are in one word
        {
            unsigned nword = _mm_extract_epi32(nwordA, 0);
            block[nword] |= (1u << mshift_v[0]) | (1u << mshift_v[1])
                            |(1u << mshift_v[2]) | (1u << mshift_v[3]);
        }
        else // bits are in different words, use scalar scatter
        {
            _mm_store_si128 ((__m128i*)mword_v, nwordA);
            
            block[mword_v[0]] |= (1u << mshift_v[0]);
            block[mword_v[1]] |= (1u << mshift_v[1]);
            block[mword_v[2]] |= (1u << mshift_v[2]);
            block[mword_v[3]] |= (1u << mshift_v[3]);
        }

    } // for k

    for (; k < len; ++k)
    {
        unsigned n = idx[k];
        unsigned nbit = unsigned(n & bm::set_block_mask);
        unsigned nword  = nbit >> bm::set_word_shift;
        nbit &= bm::set_word_mask;
        block[nword] |= (1u << nbit);
    } // for k
}


/*!
     SSE4.2 bit block gather-scatter
 
     @param arr - destination array to set bits
     @param blk - source bit-block
     @param idx - gather index array
     @param size - gather array size
     @param start - gaher start index
     @param bit_idx - bit to set in the target array
 
     \internal

    C algorithm:
 
    for (unsigned k = start; k < size; ++k)
    {
        nbit = unsigned(idx[k] & bm::set_block_mask);
        nword  = unsigned(nbit >> bm::set_word_shift);
        mask0 = 1u << (nbit & bm::set_word_mask);
        arr[k] |= TRGW(bool(blk[nword] & mask0) << bit_idx);
    }

*/
inline
void sse4_bit_block_gather_scatter(unsigned* BMRESTRICT arr,
                                   const unsigned* BMRESTRICT blk,
                                   const unsigned* BMRESTRICT idx,
                                   unsigned                   size,
                                   unsigned                   start,
                                   unsigned                   bit_idx) BMNOEXCEPT
{
    const unsigned unroll_factor = 4;
    const unsigned len = (size - start);
    const unsigned len_unr = len - (len % unroll_factor);
    
    __m128i sb_mask = _mm_set1_epi32(bm::set_block_mask);
    __m128i sw_mask = _mm_set1_epi32(bm::set_word_mask);
    __m128i maskFF  = _mm_set1_epi32(~0u);
    __m128i maskZ   = _mm_xor_si128(maskFF, maskFF);

    __m128i mask_tmp, mask_0;
    
    unsigned BM_ALIGN16 mshift_v[4] BM_ALIGN16ATTR;
    unsigned BM_ALIGN16 mword_v[4] BM_ALIGN16ATTR;

    unsigned k = 0;
    unsigned base = start + k;
    __m128i* idx_ptr = (__m128i*)(idx + base);   // idx[base]
    __m128i* target_ptr = (__m128i*)(arr + base); // arr[base]
    for (; k < len_unr; k+=unroll_factor)
    {
        __m128i nbitA = _mm_and_si128 (_mm_loadu_si128(idx_ptr), sb_mask); // nbit = idx[base] & bm::set_block_mask
        __m128i nwordA = _mm_srli_epi32 (nbitA, bm::set_word_shift); // nword  = nbit >> bm::set_word_shift
        // (nbit & bm::set_word_mask)
        _mm_store_si128 ((__m128i*)mshift_v, _mm_and_si128 (nbitA, sw_mask));
        _mm_store_si128 ((__m128i*)mword_v, nwordA);
        
        // mask0 = 1u << (nbit & bm::set_word_mask);
        //
#if 0
        // ifdefed an alternative SHIFT implementation using SSE and masks
        // (it is not faster than just doing scalar operations)
        {
        __m128i am_0    = _mm_set_epi32(0, 0, 0, ~0u);
        __m128i mask1   = _mm_srli_epi32 (maskFF, 31);
        mask_0 = _mm_and_si128 (_mm_slli_epi32 (mask1, mshift_v[0]), am_0);
        mask_tmp = _mm_and_si128 (_mm_slli_epi32(mask1, mshift_v[1]), _mm_slli_si128 (am_0, 4));
        mask_0 = _mm_or_si128 (mask_0, mask_tmp);
    
        __m128i mask_2 = _mm_and_si128 (_mm_slli_epi32 (mask1, mshift_v[2]),
                                        _mm_slli_si128 (am_0, 8));
        mask_tmp = _mm_and_si128 (
                      _mm_slli_epi32(mask1, mshift_v[3]),
                      _mm_slli_si128 (am_0, 12)
                      );
    
        mask_0 = _mm_or_si128 (mask_0,
                               _mm_or_si128 (mask_2, mask_tmp)); // assemble bit-test mask
        }
#endif
        mask_0 = _mm_set_epi32(1 << mshift_v[3], 1 << mshift_v[2], 1 << mshift_v[1], 1 << mshift_v[0]);


        //  gather for: blk[nword]  (.. & mask0 )
        //
        mask_tmp = _mm_and_si128(_mm_set_epi32(blk[mword_v[3]], blk[mword_v[2]],
                                               blk[mword_v[1]], blk[mword_v[0]]),
                                 mask_0);
        
        // bool(blk[nword]  ...)
        //maskFF  = _mm_set1_epi32(~0u);
        mask_tmp = _mm_cmpeq_epi32 (mask_tmp, maskZ); // set 0xFF where == 0
        mask_tmp = _mm_xor_si128 (mask_tmp, maskFF); // invert
        mask_tmp = _mm_srli_epi32 (mask_tmp, 31); // (bool) 1 only to the 0 pos
        
        mask_tmp = _mm_slli_epi32(mask_tmp, bit_idx); // << bit_idx
        
        _mm_storeu_si128 (target_ptr,                  // arr[base] |= MASK_EXPR
                          _mm_or_si128 (mask_tmp, _mm_loadu_si128(target_ptr)));
        
        ++idx_ptr; ++target_ptr;
        _mm_prefetch((const char*)target_ptr, _MM_HINT_T0);
    }

    for (; k < len; ++k)
    {
        base = start + k;
        unsigned nbit = unsigned(idx[base] & bm::set_block_mask);
        arr[base] |= unsigned(bool(blk[nbit >> bm::set_word_shift] & (1u << (nbit & bm::set_word_mask))) << bit_idx);
    }

}

/*!
    @brief block shift left by 1
    @ingroup SSE4
*/
inline
bool sse42_shift_l1(__m128i* block, unsigned* empty_acc, unsigned co1) BMNOEXCEPT
{
    __m128i* block_end =
        ( __m128i*)((bm::word_t*)(block) + bm::set_block_size);
    __m128i mAcc = _mm_set1_epi32(0);
    __m128i mMask1 = _mm_set1_epi32(1);

    unsigned co2;
    for (--block_end; block_end >= block; block_end -= 2)
    {
        __m128i m1A = _mm_load_si128(block_end);
        __m128i m2A = _mm_load_si128(block_end-1);

        __m128i m1CO = _mm_and_si128(m1A, mMask1);
        __m128i m2CO = _mm_and_si128(m2A, mMask1);
        
        co2 = _mm_extract_epi32(m1CO, 0);
        
        m1A = _mm_srli_epi32(m1A, 1); // (block[i] >> 1u)
        m2A = _mm_srli_epi32(m2A, 1);
        
        __m128i m1COshft = _mm_srli_si128 (m1CO, 4); // byte shift-r by 1 int32
        __m128i m2COshft = _mm_srli_si128 (m2CO, 4);
        m1COshft = _mm_insert_epi32 (m1COshft, co1, 3);
        m2COshft = _mm_insert_epi32 (m2COshft, co2, 3);
        m1COshft = _mm_slli_epi32(m1COshft, 31);
        m2COshft = _mm_slli_epi32(m2COshft, 31);

        m1A = _mm_or_si128(m1A, m1COshft); // block[i] |= co_flag
        m2A = _mm_or_si128(m2A, m2COshft);
        
        co1 = _mm_extract_epi32(m2CO, 0);

        _mm_store_si128(block_end, m1A);
        _mm_store_si128(block_end-1, m2A);
        
        mAcc = _mm_or_si128(mAcc, m1A);
        mAcc = _mm_or_si128(mAcc, m2A);
    } // for
    
    *empty_acc = !_mm_testz_si128(mAcc, mAcc);
    return co1;
}


/*!
    @brief block shift right by 1
    @ingroup SSE4
*/
inline
bool sse42_shift_r1(__m128i* block, unsigned* empty_acc, unsigned co1) BMNOEXCEPT
{
    __m128i* block_end =
        ( __m128i*)((bm::word_t*)(block) + bm::set_block_size);
    __m128i m1COshft, m2COshft;
    __m128i mAcc = _mm_set1_epi32(0);

    unsigned co2;
    for (;block < block_end; block += 2)
    {
        __m128i m1A = _mm_load_si128(block);
        __m128i m2A = _mm_load_si128(block+1);

        __m128i m1CO = _mm_srli_epi32(m1A, 31);
        __m128i m2CO = _mm_srli_epi32(m2A, 31);
        
        co2 = _mm_extract_epi32(m1CO, 3);
        
        m1A = _mm_slli_epi32(m1A, 1); // (block[i] << 1u)
        m2A = _mm_slli_epi32(m2A, 1);
        
        m1COshft = _mm_slli_si128 (m1CO, 4); // byte shift-l by 1 int32
        m2COshft = _mm_slli_si128 (m2CO, 4);
        m1COshft = _mm_insert_epi32 (m1COshft, co1, 0);
        m2COshft = _mm_insert_epi32 (m2COshft, co2, 0);
        
        m1A = _mm_or_si128(m1A, m1COshft); // block[i] |= co_flag
        m2A = _mm_or_si128(m2A, m2COshft);

        co1 = _mm_extract_epi32(m2CO, 3);

        _mm_store_si128(block, m1A);
        _mm_store_si128(block+1, m2A);
        
        mAcc = _mm_or_si128(mAcc, m1A);
        mAcc = _mm_or_si128(mAcc, m2A);
    }
    *empty_acc = !_mm_testz_si128(mAcc, mAcc);
    return co1;
}



/*!
    @brief block shift right by 1 plus AND

    @return carry over flag
    @ingroup SSE4
*/
inline
bool sse42_shift_r1_and(__m128i* block,
                        bm::word_t co1,
                        const __m128i* BMRESTRICT mask_block,
                        bm::id64_t* digest) BMNOEXCEPT
{
    bm::word_t* wblock = (bm::word_t*) block;
    const bm::word_t* mblock = (const bm::word_t*) mask_block;
    
    __m128i m1COshft, m2COshft;
    __m128i mAcc = _mm_set1_epi32(0);
    unsigned co2;

    bm::id64_t d, wd;
    wd = d = *digest;

    unsigned di = 0;
    if (!co1)
    {
        bm::id64_t t = d & -d;
#ifdef BM64_SSE4
        di = unsigned(_mm_popcnt_u64(t - 1)); // find start bit-index
#else
        bm::id_t t32 = t & bm::id_max;
        if (t32 == 0) {
            di = 32;
            t32 = t >> 32;
        }
        di += unsigned(_mm_popcnt_u32(t32 - 1));
#endif
    }

    for (; di < 64 ; ++di)
    {
        const unsigned d_base = di * bm::set_block_digest_wave_size;
        bm::id64_t dmask = (1ull << di);
        if (d & dmask) // digest stride NOT empty
        {
            block = (__m128i*) &wblock[d_base];
            mask_block = (__m128i*) &mblock[d_base];
            mAcc = _mm_xor_si128(mAcc, mAcc); // mAcc = 0
            for (unsigned i = 0; i < 4; ++i, block += 2, mask_block += 2)
            {
                __m128i m1A = _mm_load_si128(block);
                __m128i m2A = _mm_load_si128(block+1);

                __m128i m1CO = _mm_srli_epi32(m1A, 31);
                __m128i m2CO = _mm_srli_epi32(m2A, 31);

                co2 = _mm_extract_epi32(m1CO, 3);
                
                m1A = _mm_slli_epi32(m1A, 1); // (block[i] << 1u)
                m2A = _mm_slli_epi32(m2A, 1);
                
                m1COshft = _mm_slli_si128 (m1CO, 4); // byte shift left by 1 int32
                m1COshft = _mm_insert_epi32 (m1COshft, co1, 0);
                
                co1 = co2;
                
                co2 = _mm_extract_epi32(m2CO, 3);
                
                m2COshft = _mm_slli_si128 (m2CO, 4);
                m2COshft = _mm_insert_epi32 (m2COshft, co1, 0);
                
                m1A = _mm_or_si128(m1A, m1COshft); // block[i] |= co_flag
                m2A = _mm_or_si128(m2A, m2COshft);
                
                m1A = _mm_and_si128(m1A, _mm_load_si128(mask_block)); // block[i] &= mask_block[i]
                m2A = _mm_and_si128(m2A, _mm_load_si128(mask_block+1)); // block[i] &= mask_block[i]

                mAcc = _mm_or_si128(mAcc, m1A);
                mAcc = _mm_or_si128(mAcc, m2A);

                _mm_store_si128(block, m1A);
                _mm_store_si128(block+1, m2A);

                co1 = co2;

            } // for i
            
            if (_mm_testz_si128(mAcc, mAcc))
                d &= ~dmask; // clear digest bit 
            wd &= wd - 1;
        }
        else
        {
            if (co1)
            {
                BM_ASSERT(co1 == 1);
                BM_ASSERT(wblock[d_base] == 0);
                
                bm::id64_t w0 = wblock[d_base] = co1 & mblock[d_base];
                d |= (dmask & (w0 << di)); // update digest (branchless if (w0))
                co1 = 0;
            }
            if (!wd)  // digest is empty, no CO -> exit
                break;
        }
    } // for di
    
    *digest = d;
    return co1;
}

/**
    Build partial XOR product of 2 bit-blocks using digest mask

    @param target_block - target := block ^ xor_block
    @param block - arg1
    @param xor_block - arg2
    @param digest - mask for each block wave to XOR (1) or just copy (0)

    @ingroup SSE4
    @internal
*/
inline
void sse42_bit_block_xor(bm::word_t*  target_block,
                   const bm::word_t*  block, const bm::word_t*  xor_block,
                   bm::id64_t digest) BMNOEXCEPT
{
    for (unsigned i = 0; i < bm::block_waves; ++i)
    {
        const bm::id64_t mask = (1ull << i);
        unsigned off = (i * bm::set_block_digest_wave_size);
        const __m128i* sub_block = (__m128i*) (block + off);
        __m128i* t_sub_block = (__m128i*)(target_block + off);

        if (digest & mask) // XOR filtered sub-block
        {
            const __m128i* xor_sub_block = (__m128i*) (xor_block + off);
            __m128i mA, mB, mC, mD;
            mA = _mm_xor_si128(_mm_load_si128(sub_block),
                                  _mm_load_si128(xor_sub_block));
            mB = _mm_xor_si128(_mm_load_si128(sub_block+1),
                                  _mm_load_si128(xor_sub_block+1));
            mC = _mm_xor_si128(_mm_load_si128(sub_block+2),
                                  _mm_load_si128(xor_sub_block+2));
            mD = _mm_xor_si128(_mm_load_si128(sub_block+3),
                                  _mm_load_si128(xor_sub_block+3));

            _mm_store_si128(t_sub_block, mA);
            _mm_store_si128(t_sub_block+1, mB);
            _mm_store_si128(t_sub_block+2, mC);
            _mm_store_si128(t_sub_block+3, mD);

            mA = _mm_xor_si128(_mm_load_si128(sub_block+4),
                                  _mm_load_si128(xor_sub_block+4));
            mB = _mm_xor_si128(_mm_load_si128(sub_block+5),
                                  _mm_load_si128(xor_sub_block+5));
            mC = _mm_xor_si128(_mm_load_si128(sub_block+6),
                                  _mm_load_si128(xor_sub_block+6));
            mD = _mm_xor_si128(_mm_load_si128(sub_block+7),
                                  _mm_load_si128(xor_sub_block+7));

            _mm_store_si128(t_sub_block+4, mA);
            _mm_store_si128(t_sub_block+5, mB);
            _mm_store_si128(t_sub_block+6, mC);
            _mm_store_si128(t_sub_block+7, mD);

        }
        else // just copy source
        {
            _mm_store_si128(t_sub_block , _mm_load_si128(sub_block));
            _mm_store_si128(t_sub_block+1, _mm_load_si128(sub_block+1));
            _mm_store_si128(t_sub_block+2, _mm_load_si128(sub_block+2));
            _mm_store_si128(t_sub_block+3, _mm_load_si128(sub_block+3));

            _mm_store_si128(t_sub_block+4, _mm_load_si128(sub_block+4));
            _mm_store_si128(t_sub_block+5, _mm_load_si128(sub_block+5));
            _mm_store_si128(t_sub_block+6, _mm_load_si128(sub_block+6));
            _mm_store_si128(t_sub_block+7, _mm_load_si128(sub_block+7));
        }
    } // for i
}

/**
    Build partial XOR product of 2 bit-blocks using digest mask

    @param target_block - target ^= xor_block
    @param xor_block - arg1
    @param digest - mask for each block wave to XOR (if 1)

    @ingroup SSE4
    @internal
*/
inline
void sse42_bit_block_xor_2way(bm::word_t* target_block,
                              const bm::word_t*  xor_block,
                              bm::id64_t digest) BMNOEXCEPT
{
    while (digest)
    {
        bm::id64_t t = bm::bmi_blsi_u64(digest); // d & -d;
        unsigned wave = _mm_popcnt_u64(t - 1);
        unsigned off = wave * bm::set_block_digest_wave_size;

        const __m128i* sub_block = (const __m128i*) (xor_block + off);
        __m128i* t_sub_block = (__m128i*)(target_block + off);

        __m128i mA, mB, mC, mD;
        mA = _mm_xor_si128(_mm_load_si128(sub_block),
                              _mm_load_si128(t_sub_block));
        mB = _mm_xor_si128(_mm_load_si128(sub_block+1),
                              _mm_load_si128(t_sub_block+1));
        mC = _mm_xor_si128(_mm_load_si128(sub_block+2),
                              _mm_load_si128(t_sub_block+2));
        mD = _mm_xor_si128(_mm_load_si128(sub_block+3),
                              _mm_load_si128(t_sub_block+3));

        _mm_store_si128(t_sub_block, mA);
        _mm_store_si128(t_sub_block+1, mB);
        _mm_store_si128(t_sub_block+2, mC);
        _mm_store_si128(t_sub_block+3, mD);

        mA = _mm_xor_si128(_mm_load_si128(sub_block+4),
                              _mm_load_si128(t_sub_block+4));
        mB = _mm_xor_si128(_mm_load_si128(sub_block+5),
                              _mm_load_si128(t_sub_block+5));
        mC = _mm_xor_si128(_mm_load_si128(sub_block+6),
                              _mm_load_si128(t_sub_block+6));
        mD = _mm_xor_si128(_mm_load_si128(sub_block+7),
                              _mm_load_si128(t_sub_block+7));

        _mm_store_si128(t_sub_block+4, mA);
        _mm_store_si128(t_sub_block+5, mB);
        _mm_store_si128(t_sub_block+6, mC);
        _mm_store_si128(t_sub_block+7, mD);

        digest = bm::bmi_bslr_u64(digest); // d &= d - 1;
    } // while
}



#define VECT_XOR_ARR_2_MASK(dst, src, src_end, mask)\
    sse2_xor_arr_2_mask((__m128i*)(dst), (__m128i*)(src), (__m128i*)(src_end), (bm::word_t)mask)

#define VECT_ANDNOT_ARR_2_MASK(dst, src, src_end, mask)\
    sse2_andnot_arr_2_mask((__m128i*)(dst), (__m128i*)(src), (__m128i*)(src_end), (bm::word_t)mask)

#define VECT_BITCOUNT(first, last) \
    sse4_bit_count((__m128i*) (first), (__m128i*) (last))

#define VECT_BITCOUNT_AND(first, last, mask) \
    sse4_bit_count_op((__m128i*) (first), (__m128i*) (last), (__m128i*) (mask), sse2_and)

#define VECT_BITCOUNT_OR(first, last, mask) \
    sse4_bit_count_op((__m128i*) (first), (__m128i*) (last), (__m128i*) (mask), sse2_or)

#define VECT_BITCOUNT_XOR(first, last, mask) \
    sse4_bit_count_op((__m128i*) (first), (__m128i*) (last), (__m128i*) (mask), sse2_xor)

#define VECT_BITCOUNT_SUB(first, last, mask) \
    sse4_bit_count_op((__m128i*) (first), (__m128i*) (last), (__m128i*) (mask), sse2_sub)

#define VECT_INVERT_BLOCK(first) \
    sse2_invert_block((__m128i*)first);

#define VECT_AND_BLOCK(dst, src) \
    sse4_and_block((__m128i*) dst, (__m128i*) (src))

#define VECT_AND_DIGEST(dst, src) \
    sse4_and_digest((__m128i*) dst, (const __m128i*) (src))

#define VECT_AND_OR_DIGEST_2WAY(dst, src1, src2) \
    sse4_and_or_digest_2way((__m128i*) dst, (const __m128i*) (src1), (const __m128i*) (src2))

#define VECT_AND_DIGEST_5WAY(dst, src1, src2, src3, src4) \
    sse4_and_digest_5way((__m128i*) dst, (const __m128i*) (src1), (const __m128i*) (src2), (const __m128i*) (src3), (const __m128i*) (src4))

#define VECT_AND_DIGEST_2WAY(dst, src1, src2) \
    sse4_and_digest_2way((__m128i*) dst, (const __m128i*) (src1), (const __m128i*) (src2))

#define VECT_OR_BLOCK(dst, src) \
    sse2_or_block((__m128i*) dst, (__m128i*) (src))

#define VECT_OR_BLOCK_2WAY(dst, src1, src2) \
    sse2_or_block_2way((__m128i*) (dst), (const __m128i*) (src1), (const __m128i*) (src2))

#define VECT_OR_BLOCK_3WAY(dst, src1, src2) \
    sse2_or_block_3way((__m128i*) (dst), (const __m128i*) (src1), (const __m128i*) (src2))

#define VECT_OR_BLOCK_5WAY(dst, src1, src2, src3, src4) \
    sse2_or_block_5way((__m128i*) (dst), (__m128i*) (src1), (__m128i*) (src2), (__m128i*) (src3), (__m128i*) (src4))

#define VECT_SUB_BLOCK(dst, src) \
    sse2_sub_block((__m128i*) dst, (const __m128i*) (src))

#define VECT_SUB_DIGEST(dst, src) \
    sse4_sub_digest((__m128i*) dst, (const __m128i*) (src))

#define VECT_SUB_DIGEST_2WAY(dst, src1, src2) \
    sse4_sub_digest_2way((__m128i*) dst, (const __m128i*) (src1), (const __m128i*) (src2))

#define VECT_XOR_BLOCK(dst, src) \
    sse2_xor_block((__m128i*) dst, (__m128i*) (src))

#define VECT_XOR_BLOCK_2WAY(dst, src1, src2) \
    sse2_xor_block_2way((__m128i*) (dst), (const __m128i*) (src1), (const __m128i*) (src2))

#define VECT_COPY_BLOCK(dst, src) \
    sse2_copy_block((__m128i*) dst, (__m128i*) (src))

#define VECT_COPY_BLOCK_UNALIGN(dst, src) \
    sse2_copy_block_unalign((__m128i*) dst, (__m128i*) (src))

#define VECT_STREAM_BLOCK(dst, src) \
    sse2_stream_block((__m128i*) dst, (__m128i*) (src))

#define VECT_STREAM_BLOCK_UNALIGN(dst, src) \
    sse2_stream_block_unalign((__m128i*) dst, (__m128i*) (src))

#define VECT_SET_BLOCK(dst, value) \
    sse2_set_block((__m128i*) dst, value)

#define VECT_IS_ZERO_BLOCK(dst) \
    sse4_is_all_zero((__m128i*) dst)

#define VECT_IS_ONE_BLOCK(dst) \
    sse4_is_all_one((__m128i*) dst)

#define VECT_IS_DIGEST_ZERO(start) \
    sse4_is_digest_zero((__m128i*)start)

#define VECT_BLOCK_SET_DIGEST(dst, val) \
    sse4_block_set_digest((__m128i*)dst, val)

#define VECT_LOWER_BOUND_SCAN_U32(arr, target, from, to) \
    sse4_lower_bound_scan_u32(arr, target, from, to)

#define VECT_SHIFT_L1(b, acc, co) \
    sse42_shift_l1((__m128i*)b, acc, co)

#define VECT_SHIFT_R1(b, acc, co) \
    sse42_shift_r1((__m128i*)b, acc, co)

#define VECT_SHIFT_R1_AND(b, co, m, digest) \
    sse42_shift_r1_and((__m128i*)b, co, (__m128i*)m, digest)

#define VECT_ARR_BLOCK_LOOKUP(idx, size, nb, start) \
    sse42_idx_arr_block_lookup(idx, size, nb, start)
    
#define VECT_SET_BLOCK_BITS(block, idx, start, stop) \
    sse42_set_block_bits(block, idx, start, stop)

#define VECT_BLOCK_CHANGE(block, size) \
    sse42_bit_block_calc_change((__m128i*)block, size)

#define VECT_BLOCK_XOR_CHANGE(block, xor_block, size, gc, bc) \
    sse42_bit_block_calc_xor_change((__m128i*)block, (__m128i*)xor_block, size, gc, bc)

#ifdef BM64_SSE4
#define VECT_BLOCK_CHANGE_BC(block, gc, bc) \
    sse42_bit_block_calc_change_bc((__m128i*)block, gc, bc)
#endif

#define VECT_BIT_FIND_FIRST(src, pos) \
    sse42_bit_find_first((__m128i*) src, pos)

#define VECT_BIT_FIND_DIFF(src1, src2, pos) \
    sse42_bit_find_first_diff((__m128i*) src1, (__m128i*) (src2), pos)

#define VECT_BIT_BLOCK_XOR(t, src, src_xor, d) \
    sse42_bit_block_xor(t, src, src_xor, d)

#define VECT_BIT_BLOCK_XOR_2WAY(t, src_xor, d) \
    sse42_bit_block_xor_2way(t, src_xor, d)


#define VECT_GAP_BFIND(buf, pos, is_set) \
    sse42_gap_bfind(buf, pos, is_set)

#ifdef __GNUG__
#pragma GCC diagnostic pop
#endif


// undefine local defines to avoid pre-proc space pollution
//
#undef BM_BSF32

#ifdef _MSC_VER
#pragma warning( pop )
#endif

} // namespace




#endif