bitmagic-sys 0.2.4+bitmagic.7.7.7

Low-level bindings for the bitmagic.
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
#ifndef BMBUFFER__H__INCLUDED__
#define BMBUFFER__H__INCLUDED__
/*
Copyright(c) 2002-2017 Anatoliy Kuznetsov(anatoliy_kuznetsov at yahoo.com)

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

For more information please visit:  http://bitmagic.io
*/

#include <stddef.h>
#include <type_traits>

#include "bmdef.h"
#include "bmutil.h"

namespace bm
{

/**
    Byte buffer pointer
    @internal
*/
class byte_buffer_ptr
{
public:
    byte_buffer_ptr() BMNOEXCEPT
        : byte_buf_(0), size_(0)
    {}
    
    /// construct byte buffer pointer
    ///
    byte_buffer_ptr(unsigned char* in_buf, size_t in_size) BMNOEXCEPT
        : byte_buf_(in_buf), size_(in_size)
    {}
    
    /// Set buffer pointer
    void set_buf(unsigned char* in_buf, size_t in_size) BMNOEXCEPT
    {
        byte_buf_ = in_buf; size_= in_size;
    }

    /// Get buffer size
    size_t size() const BMNOEXCEPT { return size_; }
    
    /// Get read access to buffer memory
    const unsigned char* buf() const BMNOEXCEPT { return byte_buf_; }

    /// Get write access to buffer memory
    unsigned char* data() BMNOEXCEPT { return byte_buf_; }

    /// const access to buffer memory
    const unsigned char* data() const BMNOEXCEPT { return byte_buf_; }

    bool operator==(const byte_buffer_ptr& lhs) const BMNOEXCEPT
        { return equal(lhs); }
    
    /// return true if content and size is the same
    bool equal(const byte_buffer_ptr& lhs) const BMNOEXCEPT
    {
        if (this == &lhs)
            return true;
        if (size_ != lhs.size_)
            return false;
        int cmp = ::memcmp(byte_buf_, lhs.byte_buf_, size_);
        return (cmp  == 0);
    }

protected:
    unsigned char* byte_buf_;     ///< byte buffer pointer to hold data
    size_t         size_;         ///< current buffer size
};

/**
    Byte buffer template, extention of byte_buffer_ptr memory management
    \internal
*/
template<typename BVAlloc>
class byte_buffer : public byte_buffer_ptr
{
public:
    typedef BVAlloc                                          bv_allocator_type;
    typedef typename bv_allocator_type::block_allocator_type allocator_type;
    typedef size_t                                           size_type;
    
public:
    byte_buffer() BMNOEXCEPT : capacity_(0), alloc_factor_(0)
    {}
    
    byte_buffer(size_t in_capacity)
        : capacity_(0), alloc_factor_(0)
    {
        allocate(in_capacity);
    }
    
    byte_buffer(const byte_buffer& lhs) 
        : byte_buffer_ptr(lhs) 
    {
        byte_buf_ = 0;
        size_ = capacity_ = alloc_factor_ = 0;
        if (lhs.byte_buf_)
            copy_from(lhs.byte_buf_, lhs.size_);
    }
    
#ifndef BM_NO_CXX11
    /// Move constructor
    byte_buffer(byte_buffer&& in_buf) BMNOEXCEPT
    {
        byte_buf_ = in_buf.byte_buf_;
        in_buf.byte_buf_ = 0;
        this->size_ = in_buf.size_;
        capacity_ = in_buf.capacity_;
        in_buf.size_ = in_buf.capacity_ = 0;
        alloc_factor_ = in_buf.alloc_factor_;
    }
    
    /// Move assignment operator
    byte_buffer& operator=(byte_buffer&& lhs) BMNOEXCEPT
    {
        move_from(lhs);
        return *this;
    }
#endif

    byte_buffer& operator=(const byte_buffer& lhs) 
    {
        if (this == &lhs)
            return *this;

        copy_from(lhs.buf(), lhs.size());
        return *this;
    }
    
    ~byte_buffer()
    {
        free_buffer();
    }
    
    /// swap content with another buffer
    void swap(byte_buffer& other) BMNOEXCEPT
    {
        if (this == &other)
            return;
        unsigned char* btmp = byte_buf_;
        byte_buf_ = other.byte_buf_;
        other.byte_buf_ = btmp;
        
        bm::xor_swap(this->size_, other.size_);
        bm::xor_swap(capacity_, other.capacity_);
        bm::xor_swap(alloc_factor_, other.alloc_factor_);
    }
    
    /// take/move content from another buffer
    void move_from(byte_buffer& other) BMNOEXCEPT
    {
        if (this == &other)
            return;
        free_buffer();
        this->byte_buf_ = other.byte_buf_; other.byte_buf_ = 0;
        this->size_ = other.size_;
        this->capacity_ = other.capacity_;
        this->alloc_factor_ = other.alloc_factor_;
    }


    /// Free underlying memory
    void release()
    {
        free_buffer();
        this->size_ = capacity_ = 0;
    }

    /// copy data from an external buffer
    ///
    void copy_from(const unsigned char* in_buf, size_t in_size)
    {
        if (in_size)
        {
            allocate(in_size);
            ::memcpy(byte_buf_, in_buf, in_size);
        }
        this->size_ = in_size;
    }
    
    
    /// Get buffer capacity
    size_t capacity() const BMNOEXCEPT { return capacity_; }

    /// adjust current size (buffer content preserved)
    void resize(size_t new_size, bool copy_content = true)
    {
        if (new_size <= capacity_)
        {
            this->size_ = new_size;
            return;
        }
        byte_buffer tmp_buffer(new_size); // temp with new capacity
        if (copy_content)
            tmp_buffer = *this;
        this->swap(tmp_buffer);
        
        this->size_ = new_size;
    }

    /// adjust current size (no need to reallocate)
    void resize_no_check(size_t new_size) BMNOEXCEPT
    {
        this->size_ = new_size;
    }

    /// reserve new capacity (buffer content preserved)
    void reserve(size_t new_capacity)
    {
        if (new_capacity <= capacity_)
            return;
        if (!capacity_)
        {
            allocate(new_capacity);
            return;
        }
        
        byte_buffer tmp_buffer(new_capacity);
        tmp_buffer = *this;
        this->swap(tmp_buffer);
    }
    
    /// reserve new capacity (buffer content NOT preserved, size set to 0)
    void reinit(size_t new_capacity)
    {
        allocate(new_capacity);
        this->size_ = 0;
    }
    
    /// reserve new capacity (buffer content NOT preserved, size set to 0)
    /// @sa reinit
    void reallocate(size_t new_capacity)
    {
        reinit(new_capacity);
    }

    /// try to shrink the capacity to more optimal size
    void optimize()
    {
        if (!byte_buf_)
            return;
        size_t words = compute_words(size_);
        if (words < alloc_factor_) // possible to shrink
        {
            byte_buffer tmp_buffer(*this);
            this->swap(tmp_buffer);
        }
    }
    
    /// return memory consumtion
    size_t mem_usage() const BMNOEXCEPT
    {
        return sizeof(capacity_) + sizeof(alloc_factor_) +
               capacity();
    }
    
private:
    /// Override from the base class
    void set_buf(unsigned char* buf, size_t size);

    /// compute number of words for the desired capacity
    static size_t compute_words(size_t capacity) BMNOEXCEPT
    {
        size_t words = (capacity / sizeof(bm::word_t))+1;
        return words;
    }
    
    void allocate(size_t new_capacity)
    {
        if (byte_buf_ && new_capacity <= capacity_)
            return;
        
        free_buffer();
    
        size_t words = compute_words(new_capacity);
        
        bm::word_t* p = allocator_type::allocate(words, 0);
        this->byte_buf_ = (unsigned char*) p;
        this->size_ = 0;
        alloc_factor_ = (unsigned)words;
        capacity_ = alloc_factor_ * sizeof(bm::word_t);
    }

    void free_buffer()
    {
        if (byte_buf_)
        {
            allocator_type::deallocate((bm::word_t*)byte_buf_, alloc_factor_);
            this->byte_buf_ = 0;
        }
    }
    
private:
    size_t         capacity_;     ///< current capacity
    size_t         alloc_factor_; ///< number of blocks allocated for buffer
};

/**
    Simple heap allocated vector based on bvector allocator
    @internal
*/
template<typename Val, typename BVAlloc, bool trivial_type>
class heap_vector
{
public:
    typedef BVAlloc                                          bv_allocator_type;
    typedef bm::byte_buffer<bv_allocator_type>               buffer_type;
    typedef Val                                              value_type;
    typedef typename buffer_type::size_type                  size_type;

    heap_vector() BMNOEXCEPT : buffer_()
    {}

    heap_vector(const heap_vector<Val, BVAlloc, trivial_type>& hv)
        : buffer_()
    {
        size_type v_size = value_size();
        size_type new_size = hv.size();
        buffer_.resize(new_size * v_size);
        unsigned char* this_data = buffer_.data();
        for (size_type i = 0; i < new_size; ++i)
        {
            unsigned char *p = this_data + (i * v_size);
            new(p) value_type(hv[i]);
        }
    }

    heap_vector& operator=(const heap_vector<Val, BVAlloc, trivial_type>& hv)
    {
        if (this == &hv)
            return *this;
        resize(0);

        size_type v_size = value_size();
        size_type new_size = hv.size();
        buffer_.resize(new_size * v_size);
        unsigned char* this_data = buffer_.data();
        for (size_type i = 0; i < new_size; ++i)
        {
            unsigned char *p = this_data + (i * v_size);
            new(p) value_type(hv[i]);
        }
        return *this;
    }
   
    ~heap_vector()
    {
        if (!trivial_type)
        {
            size_type sz = size();
            size_type v_size = value_size();
            unsigned char* this_data = buffer_.data();
            for (size_type i = 0; i < sz; ++i)
            {
                unsigned char *p = this_data + (i * v_size);
                reinterpret_cast<value_type*>(p)->~Val();
            }
        }
    }
    
    value_type* data() const BMNOEXCEPT { return (value_type*) buffer_.data(); }

    void swap(heap_vector<Val, BVAlloc, trivial_type>& other) BMNOEXCEPT
    {
        buffer_.swap(other.buffer_);
    }

    const value_type& operator[](size_type pos) const BMNOEXCEPT
    {
        BM_ASSERT(pos < size());
        return reinterpret_cast<const value_type*>(buffer_.data())[pos];
    }

    value_type& operator[](size_type pos) BMNOEXCEPT
    {
        BM_ASSERT(pos < size());
        return reinterpret_cast<value_type*>(buffer_.data())[pos];
    }

    value_type& at(size_type pos)
    {
        size_type sz = size();
        if (pos >= sz)
            throw_range_error("out of range access");
        return reinterpret_cast<value_type*>(buffer_.data())[pos];
    }

    const value_type& at(size_type pos) const
    {
        size_type sz = size();
        if (pos >= sz)
            throw_range_error("out of range access");
        return reinterpret_cast<const value_type*>(buffer_.data())[pos];
    }

    const value_type* begin() const BMNOEXCEPT
    {
        return (const value_type*) buffer_.buf();
    }

    size_type size() const BMNOEXCEPT
    {
        return buffer_.size() / value_size();
    }

    size_type capacity() const BMNOEXCEPT
    {
        return buffer_.capacity() / value_size();
    }

    bool empty() const BMNOEXCEPT
    {
        return (buffer_.size() == 0);
    }

    void reserve(size_type new_size)
    {
        size_type sz = size();
        if (new_size <= sz)
            return;
        size_type v_size = value_size();
        buffer_.reserve(new_size * v_size);
    }

    /**
        Quick resize to zero
     */
    void reset() BMNOEXCEPT
    {
        if constexpr (trivial_type)
            buffer_.resize_no_check(0);
        else
            resize(0);
    }

    /**
        @brief vector resize
        @param new_size - new number of elements
        @param init_destroy_values - need to init or destroy values 
           false - skip construction/destruction
    */
    void resize(size_type new_size)
    {
        size_type sz = size();
        size_type v_size = value_size();
        if (new_size == sz)
            return;
        if (new_size < sz) // shrink
        {
            if constexpr (!trivial_type)
            {
                unsigned char* this_data = buffer_.data();
                for (size_type i = new_size; i < sz; ++i)
                {
                    unsigned char *p = this_data + (i * v_size);
                    reinterpret_cast<value_type*>(p)->~Val();
                }
            }
            buffer_.resize(new_size * v_size);
        }
        else
        {
            buffer_.resize(new_size * v_size);
            if constexpr (!trivial_type)
            {
                unsigned char* this_data = buffer_.data();
                for (size_type i = sz; i < new_size; ++i)
                {
                    unsigned char *p = this_data + (i * v_size);
                    new(p) value_type();
                }
            }
        }
    }

    /**
        @brief resize without content preservation
        @internal
     */
    void resize_no_copy(size_type new_size)
    {
        size_type v_size = value_size();
        buffer_.resize(new_size * v_size);
    }

    /**
        @brief Add element to the end of the vector, return reference
        @return reference the the last element
     */
    value_type& add()
    {
        size_type v_size = value_size();
        size_type sz = size();
        resize_internal(sz + 1);
        unsigned char *p = buffer_.data() + (sz * v_size);
        value_type* v = new(p) value_type();
        return *v;
    }

    /**
        @brief push new element to the back of the vector
     */
    void push_back(const value_type& v)
    {
        size_type v_size = value_size();
        size_type sz = size();
        resize_internal(sz + 1);
        unsigned char *p = buffer_.data() + (sz * v_size);
        new(p) value_type(v);
    }

    /**
        Push back value without capacity check
     */
    void push_back_no_check(const value_type& v) BMNOEXCEPT
    {
        BM_ASSERT(size() < capacity());
        size_type v_size = value_size();
        size_type sz = size();

        buffer_.resize_no_check((sz+1) * v_size);

        unsigned char *p = buffer_.data() + (sz * v_size);
        new(p) value_type(v);
    }


protected:

    void resize_internal(size_type new_size)
    {
        size_type cap = capacity();
        size_type v_size = value_size();
        if (cap <= new_size)    
            buffer_.reserve((new_size + 1024) * v_size);
        buffer_.resize(new_size * v_size);
    }

    static size_type value_size() BMNOEXCEPT
    {
        size_type size_of = sizeof(value_type);
        return size_of;
    }

    void throw_range_error(const char* err_msg) const
    {
    #ifndef BM_NO_STL
        throw std::range_error(err_msg);
    #else
        (void) err_msg;
        BM_ASSERT_THROW(false, BM_ERR_RANGE);
    #endif
    }

protected:
    buffer_type     buffer_;
};

/**
    Heap allocated scalar-type matrix

    This class can be seen as a matrix (row-column)
    access adaptor on top of the heap allocated buffer.

    @internal
*/
template<typename Val, size_t ROWS, size_t COLS, typename BVAlloc>
class heap_matrix
{
public:
    typedef BVAlloc                                          bv_allocator_type;
    typedef bm::byte_buffer<bv_allocator_type>               buffer_type;
    typedef Val                                              value_type;
    typedef size_t                                           size_type;

    enum params
    {
        n_rows = ROWS,
        n_columns = COLS,
        size_in_bytes = sizeof(value_type) * COLS * ROWS,
        row_size_in_bytes = sizeof(value_type) * COLS
    };

    static size_t rows() BMNOEXCEPT { return ROWS; }
    static size_t cols() BMNOEXCEPT { return COLS; }

    /**
        By default object is constructed NOT allocated.
    */
    heap_matrix() BMNOEXCEPT
        : buffer_()
    {}

    /**
        @param init_buf - when true - perform heap buffer allocation
    */
    heap_matrix(bool init_buf)
        : buffer_(init_buf ? size_in_bytes : 0)
    {
        if (init_buf)
            buffer_.resize(size_in_bytes);
    }

    void resize(size_type rows_in, size_type cols_in, bool copy_content = true)
    {
        BM_ASSERT(0); // heap matrix cannot resize
        (void) rows_in; (void) cols_in; (void) copy_content;
    }

    /**
        Post construction allocation, initialization
    */
    void init(bool set_z=false)
    {
        buffer_.resize(size_in_bytes);
        if (set_z)
            set_zero();
    }
    
    bool is_init() const BMNOEXCEPT
    {
        return buffer_.size();
    }

    value_type get(size_type row_idx, size_type col_idx) const BMNOEXCEPT
    {
        BM_ASSERT(row_idx < ROWS);
        BM_ASSERT(col_idx < COLS);
        BM_ASSERT(buffer_.size());
        const unsigned char* buf = buffer_.buf() + row_idx * row_size_in_bytes;
        return ((const value_type*)buf)[col_idx];
    }

    const value_type* row(size_type row_idx) const BMNOEXCEPT
    {
        BM_ASSERT(row_idx < ROWS);
        BM_ASSERT(buffer_.size());
        const unsigned char* buf = buffer_.buf() + row_idx * row_size_in_bytes;
        return (const value_type*) buf;
    }

    value_type* row(size_type row_idx) BMNOEXCEPT
    {
        BM_ASSERT(row_idx < ROWS);
        BM_ASSERT(buffer_.size());

        unsigned char* buf = buffer_.data() + row_idx * row_size_in_bytes;
        return (value_type*)buf;
    }

    /** memset all buffer to all zeroes */
    void set_zero() BMNOEXCEPT
    {
        ::memset(buffer_.data(), 0, size_in_bytes);
    }
    
    /*!  swap content
    */
    void swap(heap_matrix& other) BMNOEXCEPT
    {
        buffer_.swap(other.buffer_);
    }
    
    /*!  move content from another matrix
    */
    void move_from(heap_matrix& other) BMNOEXCEPT
    {
        buffer_.move_from(other.buffer_);
    }

    /** Get low-level buffer access */
    buffer_type& get_buffer() BMNOEXCEPT { return buffer_; }
    /** Get low-level buffer access */
    const buffer_type& get_buffer() const BMNOEXCEPT { return buffer_; }

protected:
    buffer_type     buffer_;
};



/**
    Heap allocated dynamic resizable scalar-type matrix

    @internal
*/
template<typename Val, typename BVAlloc>
class dynamic_heap_matrix
{
public:
    typedef BVAlloc                                          bv_allocator_type;
    typedef bm::byte_buffer<bv_allocator_type>               buffer_type;
    typedef Val                                              value_type;
    typedef size_t                                           size_type;

public:

    /**
        By default object is constructed but NOT allocated.
    */
    dynamic_heap_matrix(size_type rows_in=0, size_type cols_in=0) BMNOEXCEPT
        : rows_(rows_in), cols_(cols_in),
        buffer_()
    {}

    /**
        Post construction allocation, initialization
    */
    void init(bool set_z=false)
    {
        buffer_.resize(size_in_bytes());
        if (set_z && size_in_bytes())
            set_zero();
    }

    size_type rows() const BMNOEXCEPT { return rows_; }
    size_type cols() const BMNOEXCEPT { return cols_; }

    void resize(size_type rows_in, size_type cols_in, bool copy_content = true)
    {
        if (copy_content && this->is_init())
        {
            dynamic_heap_matrix<value_type, bv_allocator_type>
                                                tmp_matrix(rows_in, cols_in);
            tmp_matrix.init(true/*set-zero*/);
            tmp_matrix.copy_from(*this);
            this->swap(tmp_matrix);
            return;
        }
        init_resize(rows_in, cols_in);
    }

    void init_resize(size_type rows_in, size_type cols_in)
    {
        rows_ = rows_in; cols_ = cols_in;
        buffer_.resize(size_in_bytes(), false); // no-copy resize
    }

    void copy_from(const dynamic_heap_matrix<value_type, bv_allocator_type>&
                   other) BMNOEXCEPT
    {
        size_type rsize = other.rows();
        size_type csize = other.cols();

        BM_ASSERT(rows_ >= rsize);
        BM_ASSERT(cols_ >= csize);

        for (size_type i = 0; i < rsize; ++i)
        {
            const value_type* other_row = other.row(i);
            value_type* r = this->row(i);
            for (size_type j = 0; j < csize; ++j)
                r[j] = other_row[j];
        } // for i
    }
    
    bool is_init() const BMNOEXCEPT
    {
        return buffer_.size();
    }

    const value_type* row(size_type row_idx) const BMNOEXCEPT
    {
        BM_ASSERT(row_idx < rows_);
        BM_ASSERT(buffer_.size());
        const unsigned char* buf = buffer_.buf() + row_idx * row_size_in_bytes();
        return (const value_type*) buf;
    }

    value_type* row(size_type row_idx) BMNOEXCEPT
    {
        BM_ASSERT(row_idx < rows_);
        BM_ASSERT(buffer_.size());

        unsigned char* buf = buffer_.data() + row_idx * row_size_in_bytes();
        return (value_type*)buf;
    }

    value_type get(size_type row_idx, size_type col_idx) BMNOEXCEPT
    {
        BM_ASSERT(row_idx < rows_);
        BM_ASSERT(col_idx < cols_);
        const value_type* r = row(row_idx);
        return r[col_idx];
    }

    const value_type& get(size_type row_idx, size_type col_idx) const BMNOEXCEPT
    {
        BM_ASSERT(row_idx < rows_);
        BM_ASSERT(col_idx < cols_);
        const value_type* r = row(row_idx);
        return r[col_idx];
    }

    void set(size_type row_idx, size_type col_idx, value_type v) BMNOEXCEPT
    {
        BM_ASSERT(row_idx < rows_);
        BM_ASSERT(col_idx < cols_);
        value_type* r = row(row_idx);
        r[col_idx] = v;
    }

    /** memset all buffer to all zeroes */
    void set_zero() BMNOEXCEPT
    {
        BM_ASSERT(buffer_.data() && size_in_bytes());
        ::memset(buffer_.data(), 0, size_in_bytes());
    }
    
    /*!  swap content
    */
    void swap(dynamic_heap_matrix& other) BMNOEXCEPT
    {
        bm::xor_swap(rows_, other.rows_);
        bm::xor_swap(cols_, other.cols_);
        buffer_.swap(other.buffer_);
    }
    
    /*!  move content from another matrix
    */
    void move_from(dynamic_heap_matrix& other) BMNOEXCEPT
    {
        rows_ = other.rows_;
        cols_ = other.cols_;
        buffer_.move_from(other.buffer_);
    }

    /** Get low-level buffer access */
    buffer_type& get_buffer() BMNOEXCEPT { return buffer_; }
    /** Get low-level buffer access */
    const buffer_type& get_buffer() const BMNOEXCEPT { return buffer_; }

    /**
        copy values of the left triangle elements to the right triangle
        (operation specific to matrices with symmetric distances)
     */
    void replicate_triange() BMNOEXCEPT
    {
        BM_ASSERT(rows_ == cols_);
        for (size_type i = 0; i < rows_; ++i)
        {
            for (size_type j = i+1; j < cols_; ++j)
            {
                set(i, j, get(j, i));
            }
        }
    }

    /**
        Check if two matrix objects matches on the content
    */
    bool equal(const dynamic_heap_matrix<Val, BVAlloc>& dhm) const BMNOEXCEPT
    {
        if (cols() != dhm.cols())
            return false;
        if (rows() != dhm.rows())
            return false;
        return equal_sz(dhm, rows(), cols());
    }

    /**
        Approximate equals on the rows-columns overlap area
    */
    bool equal_overlap(const dynamic_heap_matrix<Val, BVAlloc>& dhm) const BMNOEXCEPT
    {
        size_type c1 = cols();
        size_type c2 = dhm.cols();
        size_type dim_cols = c1 < c2 ? c1 : c2;
        size_type r1 = rows();
        size_type r2 = dhm.rows();
        size_type dim_rows = r1 < r2 ? r1 : r2;

        return equal_sz(dhm, dim_rows, dim_cols);

    }

    /*! remapping: vect[idx] = matrix[idx, vect[idx] ]
    */
    template<typename VECT_TYPE>
    void remap(VECT_TYPE* vect, size_type size) const BMNOEXCEPT
    {
        BM_ASSERT(size <= rows());
        for (size_type i = 0; i < size; ++i)
        {
            const value_type* this_row = row(i);//buf + i * row_size_in_bytes;
            VECT_TYPE v0 = vect[i];
            BM_ASSERT(size_type(v0) < cols());
            value_type remap_v = this_row[unsigned(v0)];
            vect[i] = VECT_TYPE(remap_v);
        } // for i
    }

    template<typename VECT_TYPE>
    void remapz(VECT_TYPE* vect) const BMNOEXCEPT
    {
        size_type rsize = rows();
        for (size_type i = 0; i < rsize; ++i)
        {
            const value_type* this_row = row(i);//buf + i * row_size_in_bytes;
            VECT_TYPE v0 = vect[i];
            if (!v0)
                break;
            BM_ASSERT(size_type(v0) < cols());
            value_type remap_v = this_row[unsigned(v0)];
            vect[i] = VECT_TYPE(remap_v);
        } // for i
    }



    /**
        Sum of row elements
     */
    template<typename ACC>
    void sum(ACC& acc, size_type row_idx) const BMNOEXCEPT
    {
        BM_ASSERT(row_idx < rows_);
        ACC s = 0;
        const value_type* r = row(row_idx);
        for (size_type j = 0; j < cols_; ++j)
            s += r[j];
        acc = s;
    }

protected:
    static
    size_type size_in_bytes(size_type rows, size_type cols) BMNOEXCEPT
        { return sizeof(value_type) * cols * rows; }
    size_type size_in_bytes() const BMNOEXCEPT
        { return sizeof(value_type) * cols_ * rows_; }
    size_type row_size_in_bytes() const BMNOEXCEPT
        { return sizeof(value_type) * cols_; }

    bool equal_sz(const dynamic_heap_matrix<Val, BVAlloc>& dhm,
                  size_type dim_rows, size_type dim_cols) const BMNOEXCEPT
    {
        for (size_type i = 0; i < dim_rows; ++i)
        {
            for (size_type j = i+1; j < dim_cols; ++j)
            {
                const value_type& v1 = get(i,j);
                const value_type& v2 = dhm.get(i, j);
                if (!(v1 == v2))
                    return false;
            } // j
        } // i
        return true;
    }


protected:
    size_type       rows_;
    size_type       cols_;
    buffer_type     buffer_;
};


/**
    Simple queue based on memory controlled dynamic vector.
    Intent: better control memory allocations and exceptions than STL variant

    Important assumption: value_type is simple and not throwing exceptions
    @internal
 */
template<typename Value, typename BVAlloc, bool trivial_type>
class simple_queue
{
public:
    typedef Value         value_type;
    typedef BVAlloc       bv_allocator_type;
    typedef
    bm::heap_vector<Value, bv_allocator_type, trivial_type>   heap_vector_type;
    typedef typename heap_vector_type::size_type size_type;

public:
    simple_queue() {}

    /**
        Capacity reservation
    */
    void reserve(size_type capacity)
    {
        queue_vector_.reserve(capacity);
    }

    size_type size() const BMNOEXCEPT
    {
        return queue_vector_.size();
    }

    /**
        Return true if queue has no elements
    */
    bool empty() const BMNOEXCEPT
    {
        return !queue_vector_.size();
    }

    /**
        Try push into the queue if capacity allows
    */
    bool try_push(const value_type& v) BMNOEXCEPT
    {
        size_type cap = queue_vector_.capacity();
        size_type sz = queue_vector_.size();
        if (cap <= sz)
            return false;
        queue_vector_.push_back_no_check(v);
        return true;
    }

    /**
        Push value into the queue (with re-allocation)
     */
    void push(const value_type& v)
    {
        queue_vector_.push_back(v);
    }

    /**
        Return front element
     */
    const value_type& front() const BMNOEXCEPT
    {
        BM_ASSERT(queue_vector_.size());
        return queue_vector_[front_idx_];
    }

    /**
        Pop the front element
     */
    void pop() BMNOEXCEPT
    {
        BM_ASSERT(front_idx_ < queue_vector_.size());
        ++front_idx_;
        if (front_idx_ == queue_vector_.size())
            queue_vector_.resize(front_idx_ = 0); // reset the queue
    }

    /**
        Try to extract the front element from the queue
     */
    bool try_pop(value_type& front_value) BMNOEXCEPT
    {
        size_type sz = queue_vector_.size();
        if (!sz)
            return false;
        front_value = queue_vector_[front_idx_];
        ++front_idx_;
        if (front_idx_ == sz)
            queue_vector_.resize(front_idx_ = 0); // reset the queue
        return true;
    }

private:
    simple_queue(const simple_queue&) = delete;
    simple_queue& operator=(const simple_queue&) = delete;

protected:
    heap_vector_type  queue_vector_;
    size_type         front_idx_ = 0; ///< index of the front element
};



} // namespace bm


#endif