bencher 0.1.5

A port of the libtest (unstable Rust) benchmark runner to Rust stable releases. Supports running benchmarks and filtering based on the name. Benchmark execution works exactly the same way and no more (caveat: black_box is still missing!).
Documentation
// Copyright 2012-2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Simplified stable-compatible benchmark runner.
//!
//! Almost all user code will only be interested in `Bencher` and the
//! macros that are used to describe benchmarker functions and
//! the benchmark runner.
//!
//! NOTE: There's no proper `black_box` yet in this stable port of the
//! benchmark runner, only a workaround implementation. It may not work
//! exactly like the upstream `test::black_box`.
//!
//! One way to use this crate is to use it as dev-dependency and setup
//! cargo to compile a file in `benches/` that runs without the testing harness.
//!
//! In Cargo.toml:
//!
//! ```ignore
//! [[bench]]
//! name = "example"
//! harness = false
//! ```
//!
//! In benches/example.rs:
//!
//! ```
//! #[macro_use]
//! extern crate bencher;
//!
//! use bencher::Bencher;
//!
//! fn a(bench: &mut Bencher) {
//!     bench.iter(|| {
//!         (0..1000).fold(0, |x, y| x + y)
//!     })
//! }
//!
//! fn b(bench: &mut Bencher) {
//!     const N: usize = 1024;
//!     bench.iter(|| {
//!         vec![0u8; N]
//!     });
//! 
//!     bench.bytes = N as u64;
//! }
//!
//! benchmark_group!(benches, a, b);
//! benchmark_main!(benches);
//!
//! # #[cfg(never)]
//! # fn main() { }
//! ```
//!
//! Use `cargo bench` as usual. A command line argument can be used to filter
//! which benchmarks to run.

pub use self::TestFn::*;
use self::TestResult::*;
use self::TestEvent::*;
use self::NamePadding::*;
use self::OutputLocation::*;

use std::borrow::Cow;
use std::cmp;
use std::fmt;
use std::fs::File;
use std::io::prelude::*;
use std::io;
use std::iter::repeat;
use std::mem::forget;
use std::path::PathBuf;
use std::ptr;
use std::time::{Instant, Duration};

pub mod stats;
mod macros;

// The name of a test. By convention this follows the rules for rust
// paths; i.e. it should be a series of identifiers separated by double
// colons. This way if some test runner wants to arrange the tests
// hierarchically it may.

pub type TestName = Cow<'static, str>;

#[derive(Clone, Copy, PartialEq, Eq)]
enum NamePadding {
    PadOnRight,
}

impl TestDesc {
    fn padded_name(&self, column_count: usize, align: NamePadding) -> String {
        let mut name = self.name.to_string();
        let fill = column_count.saturating_sub(name.len());
        let pad = repeat(" ").take(fill).collect::<String>();
        match align {
            PadOnRight => {
                name.push_str(&pad);
                name
            }
        }
    }
}

/// Represents a benchmark function.
pub trait TDynBenchFn: Send {
    fn run(&self, harness: &mut Bencher);
}

// A function that runs a test. If the function returns successfully,
// the test succeeds; if the function panics then the test fails. We
// may need to come up with a more clever definition of test in order
// to support isolation of tests into threads.
pub enum TestFn {
    StaticBenchFn(fn(&mut Bencher)),
    DynBenchFn(Box<TDynBenchFn + 'static>),
}

impl TestFn {
    fn padding(&self) -> NamePadding {
        match *self {
            StaticBenchFn(..) |
            DynBenchFn(..) => PadOnRight,
        }
    }
}

impl fmt::Debug for TestFn {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.write_str(match *self {
            StaticBenchFn(..) => "StaticBenchFn(..)",
            DynBenchFn(..) => "DynBenchFn(..)",
        })
    }
}

/// Manager of the benchmarking runs.
///
/// This is fed into functions marked with `#[bench]` to allow for
/// set-up & tear-down before running a piece of code repeatedly via a
/// call to `iter`.
#[derive(Copy, Clone)]
pub struct Bencher {
    iterations: u64,
    dur: Duration,
    pub bytes: u64,
}

// The definition of a single test. A test runner will run a list of
// these.
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub struct TestDesc {
    pub name: TestName,
    pub ignore: bool,
}

#[derive(Clone)]
pub struct TestPaths {
    pub file: PathBuf,         // e.g., compile-test/foo/bar/baz.rs
    pub base: PathBuf,         // e.g., compile-test, auxiliary
    pub relative_dir: PathBuf, // e.g., foo/bar
}

#[derive(Debug)]
pub struct TestDescAndFn {
    pub desc: TestDesc,
    pub testfn: TestFn,
}

#[derive(Default)]
pub struct TestOpts {
    pub filter: Option<String>,
    pub run_ignored: bool,
    pub logfile: Option<PathBuf>,
    pub quiet: bool,
    pub test_threads: Option<usize>,
}

#[derive(Clone, PartialEq)]
pub struct BenchSamples {
    ns_iter_summ: stats::Summary,
    mb_s: usize,
}

#[derive(Clone, PartialEq)]
enum TestResult {
    TrIgnored,
    TrBench(BenchSamples),
}

unsafe impl Send for TestResult {}

enum OutputLocation<T> {
    Raw(T),
}

struct ConsoleTestState<T> {
    log_out: Option<File>,
    out: OutputLocation<T>,
    quiet: bool,
    total: usize,
    passed: usize,
    failed: usize,
    ignored: usize,
    measured: usize,
    failures: Vec<(TestDesc, Vec<u8>)>,
    max_name_len: usize, // number of columns to fill when aligning names
}

impl ConsoleTestState<()> {
    pub fn new(opts: &TestOpts) -> io::Result<ConsoleTestState<io::Stdout>> {
        let log_out = match opts.logfile {
            Some(ref path) => Some(try!(File::create(path))),
            None => None,
        };
        let out = Raw(io::stdout());

        Ok(ConsoleTestState {
            out: out,
            log_out: log_out,
            quiet: opts.quiet,
            total: 0,
            passed: 0,
            failed: 0,
            ignored: 0,
            measured: 0,
            failures: Vec::new(),
            max_name_len: 0,
        })
    }
}

impl<T: Write> ConsoleTestState<T> {
    pub fn write_ignored(&mut self) -> io::Result<()> {
        self.write_short_result("ignored", "i")
    }

    pub fn write_bench(&mut self) -> io::Result<()> {
        self.write_pretty("bench")
    }

    pub fn write_short_result(&mut self, verbose: &str, quiet: &str)
                              -> io::Result<()> {
        if self.quiet {
            self.write_pretty(quiet)
        } else {
            try!(self.write_pretty(verbose));
            self.write_plain("\n")
        }
    }

    pub fn write_pretty(&mut self, word: &str) -> io::Result<()> {
        match self.out {
            Raw(ref mut stdout) => {
                try!(stdout.write_all(word.as_bytes()));
                stdout.flush()
            }
        }
    }

    pub fn write_plain(&mut self, s: &str) -> io::Result<()> {
        match self.out {
            Raw(ref mut stdout) => {
                try!(stdout.write_all(s.as_bytes()));
                stdout.flush()
            }
        }
    }

    pub fn write_run_start(&mut self, len: usize) -> io::Result<()> {
        self.total = len;
        let noun = if len != 1 {
            "tests"
        } else {
            "test"
        };
        self.write_plain(&format!("\nrunning {} {}\n", len, noun))
    }

    pub fn write_test_start(&mut self, test: &TestDesc, align: NamePadding) -> io::Result<()> {
        if self.quiet && align != PadOnRight {
            Ok(())
        } else {
            let name = test.padded_name(self.max_name_len, align);
            self.write_plain(&format!("test {} ... ", name))
        }
    }

    pub fn write_result(&mut self, result: &TestResult) -> io::Result<()> {
        match *result {
            TrIgnored => self.write_ignored(),
            TrBench(ref bs) => {
                try!(self.write_bench());
                self.write_plain(&format!(": {}\n", fmt_bench_samples(bs)))
            }
        }
    }

    pub fn write_log(&mut self, test: &TestDesc, result: &TestResult) -> io::Result<()> {
        match self.log_out {
            None => Ok(()),
            Some(ref mut o) => {
                let s = format!("{} {}\n",
                                match *result {
                                    TrIgnored => "ignored".to_owned(),
                                    TrBench(ref bs) => fmt_bench_samples(bs),
                                },
                                test.name);
                o.write_all(s.as_bytes())
            }
        }
    }

    pub fn write_failures(&mut self) -> io::Result<()> {
        try!(self.write_plain("\nfailures:\n"));
        let mut failures = Vec::new();
        let mut fail_out = String::new();
        for &(ref f, ref stdout) in &self.failures {
            failures.push(f.name.to_string());
            if !stdout.is_empty() {
                fail_out.push_str(&format!("---- {} stdout ----\n\t", f.name));
                let output = String::from_utf8_lossy(stdout);
                fail_out.push_str(&output);
                fail_out.push_str("\n");
            }
        }
        if !fail_out.is_empty() {
            try!(self.write_plain("\n"));
            try!(self.write_plain(&fail_out));
        }

        try!(self.write_plain("\nfailures:\n"));
        failures.sort();
        for name in &failures {
            try!(self.write_plain(&format!("    {}\n", name)));
        }
        Ok(())
    }

    pub fn write_run_finish(&mut self) -> io::Result<bool> {
        assert_eq!(self.passed + self.failed + self.ignored + self.measured, self.total);

        let success = self.failed == 0;
        if !success {
            try!(self.write_failures());
        }

        try!(self.write_plain("\ntest result: "));
        if success {
            // There's no parallelism at this point so it's safe to use color
            try!(self.write_pretty("ok"));
        } else {
            try!(self.write_pretty("FAILED"));
        }
        let s = format!(". {} passed; {} failed; {} ignored; {} measured\n\n",
                        self.passed,
                        self.failed,
                        self.ignored,
                        self.measured);
        try!(self.write_plain(&s));
        Ok(success)
    }
}

// Format a number with thousands separators
fn fmt_thousands_sep(mut n: usize, sep: char) -> String {
    use std::fmt::Write;
    let mut output = String::new();
    let mut trailing = false;
    for &pow in &[9, 6, 3, 0] {
        let base = 10_usize.pow(pow);
        if pow == 0 || trailing || n / base != 0 {
            if !trailing {
                output.write_fmt(format_args!("{}", n / base)).unwrap();
            } else {
                output.write_fmt(format_args!("{:03}", n / base)).unwrap();
            }
            if pow != 0 {
                output.push(sep);
            }
            trailing = true;
        }
        n %= base;
    }

    output
}

pub fn fmt_bench_samples(bs: &BenchSamples) -> String {
    use std::fmt::Write;
    let mut output = String::new();

    let median = bs.ns_iter_summ.median as usize;
    let deviation = (bs.ns_iter_summ.max - bs.ns_iter_summ.min) as usize;

    output.write_fmt(format_args!("{:>11} ns/iter (+/- {})",
                                  fmt_thousands_sep(median, ','),
                                  fmt_thousands_sep(deviation, ',')))
          .unwrap();
    if bs.mb_s != 0 {
        output.write_fmt(format_args!(" = {} MB/s", bs.mb_s)).unwrap();
    }
    output
}

// A simple console test runner
pub fn run_tests_console(opts: &TestOpts, tests: Vec<TestDescAndFn>) -> io::Result<bool> {

    fn callback<T: Write>(event: &TestEvent, st: &mut ConsoleTestState<T>) -> io::Result<()> {
        match (*event).clone() {
            TeFiltered(ref filtered_tests) => st.write_run_start(filtered_tests.len()),
            TeWait(ref test, padding) => st.write_test_start(test, padding),
            TeResult(test, result, _) => {
                try!(st.write_log(&test, &result));
                try!(st.write_result(&result));
                match result {
                    TrIgnored => st.ignored += 1,
                    TrBench(_) => {
                        st.measured += 1
                    }
                }
                Ok(())
            }
        }
    }

    let mut st = try!(ConsoleTestState::new(opts));
    fn len_if_padded(t: &TestDescAndFn) -> usize {
        match t.testfn.padding() {
            PadOnRight => t.desc.name.len(),
        }
    }
    if let Some(t) = tests.iter().max_by_key(|t| len_if_padded(*t)) {
        let n = &t.desc.name;
        st.max_name_len = n.len();
    }
    try!(run_tests(opts, tests, |x| callback(&x, &mut st)));
    st.write_run_finish()
}

#[test]
fn should_sort_failures_before_printing_them() {
    let test_a = TestDesc {
        name: Cow::from("a"),
        ignore: false,
    };

    let test_b = TestDesc {
        name: Cow::from("b"),
        ignore: false,
    };

    let mut st = ConsoleTestState {
        log_out: None,
        out: Raw(Vec::new()),
        quiet: false,
        total: 0,
        passed: 0,
        failed: 0,
        ignored: 0,
        measured: 0,
        max_name_len: 10,
        failures: vec![(test_b, Vec::new()), (test_a, Vec::new())],
    };

    st.write_failures().unwrap();
    let s = match st.out {
        Raw(ref m) => String::from_utf8_lossy(&m[..]),
    };

    let apos = s.find("a").unwrap();
    let bpos = s.find("b").unwrap();
    assert!(apos < bpos);
}

#[derive(Clone)]
enum TestEvent {
    TeFiltered(Vec<TestDesc>),
    TeWait(TestDesc, NamePadding),
    TeResult(TestDesc, TestResult, Vec<u8>),
}

type MonitorMsg = (TestDesc, TestResult, Vec<u8>);


fn run_tests<F>(opts: &TestOpts, tests: Vec<TestDescAndFn>, mut callback: F) -> io::Result<()>
    where F: FnMut(TestEvent) -> io::Result<()>
{

    let filtered_tests = filter_tests(opts, tests);

    let filtered_descs = filtered_tests.iter()
                                       .map(|t| t.desc.clone())
                                       .collect();

    try!(callback(TeFiltered(filtered_descs)));

    let filtered_benchs_and_metrics = filtered_tests;

    // All benchmarks run at the end, in serial.
    // (this includes metric fns)
    for b in filtered_benchs_and_metrics {
        try!(callback(TeWait(b.desc.clone(), b.testfn.padding())));
        let (test, result, stdout) = run_test(opts, false, b);
        try!(callback(TeResult(test, result, stdout)));
    }
    Ok(())
}

fn filter_tests(opts: &TestOpts, tests: Vec<TestDescAndFn>) -> Vec<TestDescAndFn> {
    let mut filtered = tests;

    // Remove tests that don't match the test filter
    filtered = match opts.filter {
        None => filtered,
        Some(ref filter) => {
            filtered.into_iter()
                    .filter(|test| test.desc.name.contains(&filter[..]))
                    .collect()
        }
    };

    // Maybe pull out the ignored test and unignore them
    filtered = if !opts.run_ignored {
        filtered
    } else {
        fn filter(test: TestDescAndFn) -> Option<TestDescAndFn> {
            if test.desc.ignore {
                let TestDescAndFn {desc, testfn} = test;
                Some(TestDescAndFn {
                    desc: TestDesc { ignore: false, ..desc },
                    testfn: testfn,
                })
            } else {
                None
            }
        }
        filtered.into_iter().filter_map(filter).collect()
    };

    // Sort the tests alphabetically
    filtered.sort_by(|t1, t2| t1.desc.name.cmp(&t2.desc.name));

    filtered
}

fn run_test(_opts: &TestOpts,
            force_ignore: bool,
            test: TestDescAndFn) -> MonitorMsg
{

    let TestDescAndFn {desc, testfn} = test;

    if force_ignore || desc.ignore {
        return (desc, TrIgnored, Vec::new());
    }

    match testfn {
        DynBenchFn(bencher) => {
            let bs = ::bench::benchmark(|harness| bencher.run(harness));
            (desc, TrBench(bs), Vec::new())
        }
        StaticBenchFn(benchfn) => {
            let bs = ::bench::benchmark(|harness| benchfn(harness));
            (desc, TrBench(bs), Vec::new())
        }
    }
}


// Benchmarking

// FIXME: We don't have black_box in stable rust

/// NOTE: We don't have a proper black box in stable Rust. This is
/// a workaround implementation, that may have a too big performance overhead,
/// depending on operation, or it may fail to properly avoid having code
/// optimized out. It is good enough that it is used by default.
///
/// A function that is opaque to the optimizer, to allow benchmarks to
/// pretend to use outputs to assist in avoiding dead-code
/// elimination.
pub fn black_box<T>(dummy: T) -> T {
    unsafe {
        let ret = ptr::read_volatile(&dummy);
        forget(dummy);
        ret
    }
}


impl Bencher {
    /// Callback for benchmark functions to run in their body.
    pub fn iter<T, F>(&mut self, mut inner: F)
        where F: FnMut() -> T
    {
        let start = Instant::now();
        let k = self.iterations;
        for _ in 0..k {
            black_box(inner());
        }
        self.dur = start.elapsed();
    }

    pub fn ns_elapsed(&mut self) -> u64 {
        self.dur.as_secs() * 1_000_000_000 + (self.dur.subsec_nanos() as u64)
    }

    pub fn ns_per_iter(&mut self) -> u64 {
        if self.iterations == 0 {
            0
        } else {
            self.ns_elapsed() / cmp::max(self.iterations, 1)
        }
    }

    pub fn bench_n<F>(&mut self, n: u64, f: F)
        where F: FnOnce(&mut Bencher)
    {
        self.iterations = n;
        f(self);
    }

    // This is a more statistics-driven benchmark algorithm
    pub fn auto_bench<F>(&mut self, mut f: F) -> stats::Summary
        where F: FnMut(&mut Bencher)
    {
        // Initial bench run to get ballpark figure.
        let mut n = 1;
        self.bench_n(n, |x| f(x));

        // Try to estimate iter count for 1ms falling back to 1m
        // iterations if first run took < 1ns.
        if self.ns_per_iter() == 0 {
            n = 1_000_000;
        } else {
            n = 1_000_000 / cmp::max(self.ns_per_iter(), 1);
        }
        // if the first run took more than 1ms we don't want to just
        // be left doing 0 iterations on every loop. The unfortunate
        // side effect of not being able to do as many runs is
        // automatically handled by the statistical analysis below
        // (i.e. larger error bars).
        if n == 0 {
            n = 1;
        }

        let mut total_run = Duration::new(0, 0);
        let samples: &mut [f64] = &mut [0.0_f64; 50];
        loop {
            let loop_start = Instant::now();

            for p in &mut *samples {
                self.bench_n(n, |x| f(x));
                *p = self.ns_per_iter() as f64;
            }

            stats::winsorize(samples, 5.0);
            let summ = stats::Summary::new(samples);

            for p in &mut *samples {
                self.bench_n(5 * n, |x| f(x));
                *p = self.ns_per_iter() as f64;
            }

            stats::winsorize(samples, 5.0);
            let summ5 = stats::Summary::new(samples);
            let loop_run = loop_start.elapsed();

            // If we've run for 100ms and seem to have converged to a
            // stable median.
            if loop_run > Duration::from_millis(100) && summ.median_abs_dev_pct < 1.0 &&
               summ.median - summ5.median < summ5.median_abs_dev {
                return summ5;
            }

            total_run += loop_run;
            // Longest we ever run for is 3s.
            if total_run > Duration::from_secs(3) {
                return summ5;
            }

            // If we overflow here just return the results so far. We check a
            // multiplier of 10 because we're about to multiply by 2 and the
            // next iteration of the loop will also multiply by 5 (to calculate
            // the summ5 result)
            n = match n.checked_mul(10) {
                Some(_) => n * 2,
                None => return summ5,
            };
        }
    }
}

pub mod bench {
    use std::cmp;
    use std::time::Duration;
    use super::{Bencher, BenchSamples};

    pub fn benchmark<F>(f: F) -> BenchSamples
        where F: FnMut(&mut Bencher)
    {
        let mut bs = Bencher {
            iterations: 0,
            dur: Duration::new(0, 0),
            bytes: 0,
        };

        let ns_iter_summ = bs.auto_bench(f);

        let ns_iter = cmp::max(ns_iter_summ.median as u64, 1);
        let mb_s = bs.bytes * 1000 / ns_iter;

        BenchSamples {
            ns_iter_summ: ns_iter_summ,
            mb_s: mb_s as usize,
        }
    }

    pub fn run_once<F>(f: F)
        where F: FnOnce(&mut Bencher)
    {
        let mut bs = Bencher {
            iterations: 0,
            dur: Duration::new(0, 0),
            bytes: 0,
        };
        bs.bench_n(1, f);
    }
}