1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
/*
 * File: focus.rs
 * Project: stm
 * Created Date: 05/05/2022
 * Author: Shun Suzuki
 * -----
 * Last Modified: 27/07/2023
 * Modified By: Shun Suzuki (suzuki@hapis.k.u-tokyo.ac.jp)
 * -----
 * Copyright (c) 2022-2023 Shun Suzuki. All rights reserved.
 *
 */

use crate::{datagram::Datagram, error::AUTDInternalError, geometry::*};

use autd3_driver::float;

use super::STMProps;

/// Control point for FocusSTM
#[derive(Clone, Debug, Copy)]
pub struct ControlPoint {
    /// Focal point
    point: Vector3,
    /// Duty shift
    /// Duty ratio of ultrasound will be `50% >> shift`.
    /// If `shift` is 0, duty ratio is 50%, which means the amplitude is the maximum.
    shift: u8,
}

impl ControlPoint {
    /// constructor (shift is 0)
    ///
    /// # Arguments
    ///
    /// * `point` - focal point
    ///
    pub fn new(point: Vector3) -> Self {
        Self { point, shift: 0 }
    }

    /// constructor
    ///
    /// # Arguments
    ///
    /// * `point` - focal point
    /// * `shift` - duty shift
    ///
    pub fn with_shift(point: Vector3, shift: u8) -> Self {
        Self { point, shift }
    }

    pub fn point(&self) -> &Vector3 {
        &self.point
    }

    pub fn shift(&self) -> u8 {
        self.shift
    }
}

impl From<Vector3> for ControlPoint {
    fn from(point: Vector3) -> Self {
        Self::new(point)
    }
}

impl From<(Vector3, u8)> for ControlPoint {
    fn from((point, shift): (Vector3, u8)) -> Self {
        Self::with_shift(point, shift)
    }
}

impl From<&Vector3> for ControlPoint {
    fn from(point: &Vector3) -> Self {
        Self::new(*point)
    }
}

impl From<&(Vector3, u8)> for ControlPoint {
    fn from((point, shift): &(Vector3, u8)) -> Self {
        Self::with_shift(*point, *shift)
    }
}

/// FocusSTM is an STM for moving a single focal point.
///
/// The sampling timing is determined by hardware, thus the sampling time is precise.
///
/// FocusSTM has following restrictions:
/// - The maximum number of sampling points is 65536.
/// - The sampling frequency is [crate::FPGA_SUB_CLK_FREQ]/N, where `N` is a 32-bit unsigned integer and must be at least [crate::SAMPLING_FREQ_DIV_MIN]
///
#[derive(Clone)]
pub struct FocusSTM {
    control_points: Vec<ControlPoint>,
    props: STMProps,
}

impl FocusSTM {
    /// Add [ControlPoint] to FocusSTM
    pub fn add_focus<C: Into<ControlPoint>>(mut self, point: C) -> Self {
        self.control_points.push(point.into());
        self
    }

    /// Add [ControlPoint]s to FocusSTM
    pub fn add_foci_from_iter<C: Into<ControlPoint>, T: IntoIterator<Item = C>>(
        mut self,
        iter: T,
    ) -> Self {
        self.control_points
            .extend(iter.into_iter().map(|c| c.into()));
        self
    }

    /// Get [ControlPoint]s
    pub fn control_points(&self) -> &[ControlPoint] {
        &self.control_points
    }

    #[doc(hidden)]
    /// This is used only for capi.
    pub fn with_props(props: STMProps) -> Self {
        Self {
            control_points: Vec::new(),
            props,
        }
    }
}

impl<T: Transducer> Datagram<T> for FocusSTM {
    type H = autd3_driver::NullHeader;
    type B = autd3_driver::FocusSTM;

    fn operation(&self, geometry: &Geometry<T>) -> Result<(Self::H, Self::B), AUTDInternalError> {
        let points = geometry
            .device_map()
            .iter()
            .scan(0, |state, tr_num| {
                let r = Some(*state);
                *state += tr_num;
                r
            })
            .map(|origin_idx| {
                let tr = &geometry[origin_idx];
                let origin = tr.position();
                let trans_inv =
                    Matrix3::from_columns(&[tr.x_direction(), tr.y_direction(), tr.z_direction()])
                        .transpose();
                self.control_points
                    .iter()
                    .map(|p| {
                        let lp = trans_inv * (p.point() - origin);
                        autd3_driver::STMFocus::new(lp.x, lp.y, lp.z, p.shift())
                    })
                    .collect()
            })
            .collect();
        let tr_num_min = geometry.device_map().iter().min().unwrap();

        let props = autd3_driver::FocusSTMProps {
            freq_div: self.sampling_frequency_division(),
            sound_speed: geometry.sound_speed,
            start_idx: self.props.start_idx,
            finish_idx: self.props.finish_idx,
        };
        Ok((Self::H::default(), Self::B::new(points, *tr_num_min, props)))
    }
}

impl FocusSTM {
    /// constructor
    ///
    /// # Arguments
    ///
    /// * `freq` - Frequency of STM. The frequency closest to `freq` from the possible frequencies is set.
    ///
    pub fn new(freq: float) -> Self {
        Self {
            control_points: vec![],
            props: STMProps::new(freq),
        }
    }

    /// constructor
    ///
    /// # Arguments
    ///
    /// * `period` - Period. The period closest to `period` from the possible periods is set.
    ///
    pub fn with_period(period: std::time::Duration) -> Self {
        Self::new(1000000000. / period.as_nanos() as float)
    }

    /// constructor
    ///
    /// # Arguments
    ///
    /// * `freq_div` - Sampling frequency division of STM. The sampling frequency is [crate::FPGA_SUB_CLK_FREQ]/`freq_div`.
    ///
    pub fn with_sampling_frequency_division(freq_div: u32) -> Self {
        Self {
            control_points: vec![],
            props: STMProps::with_sampling_frequency_division(freq_div),
        }
    }

    /// constructor
    ///
    /// # Arguments
    ///
    /// * `freq` - Sampling frequency of STM. The sampling frequency closest to `freq` from the possible sampling frequencies is set.
    ///
    pub fn with_sampling_frequency(freq: float) -> Self {
        Self {
            control_points: vec![],
            props: STMProps::with_sampling_frequency(freq),
        }
    }

    /// constructor
    ///
    /// # Arguments
    ///
    /// * `period` - Sampling period. The sampling period closest to `period` from the possible sampling periods is set.
    ///
    pub fn with_sampling_period(period: std::time::Duration) -> Self {
        Self {
            control_points: vec![],
            props: STMProps::with_sampling_period(period),
        }
    }

    /// Set the start index of STM
    pub fn with_start_idx(self, idx: Option<u16>) -> Self {
        Self {
            props: self.props.with_start_idx(idx),
            ..self
        }
    }

    /// Set the finish index of STM
    pub fn with_finish_idx(self, idx: Option<u16>) -> Self {
        Self {
            props: self.props.with_finish_idx(idx),
            ..self
        }
    }

    pub fn start_idx(&self) -> Option<u16> {
        self.props.start_idx()
    }

    pub fn finish_idx(&self) -> Option<u16> {
        self.props.finish_idx()
    }

    #[doc(hidden)]
    /// This is used only for internal.
    pub fn size(&self) -> usize {
        self.control_points.len()
    }

    pub fn freq(&self) -> float {
        self.props.freq(self.size())
    }

    pub fn period(&self) -> std::time::Duration {
        self.props.period(self.size())
    }

    pub fn sampling_frequency(&self) -> float {
        self.props.sampling_frequency(self.size())
    }

    pub fn sampling_frequency_division(&self) -> u32 {
        self.props.sampling_frequency_division(self.size())
    }

    pub fn sampling_period(&self) -> std::time::Duration {
        self.props.sampling_period(self.size())
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use assert_approx_eq::assert_approx_eq;
    use autd3_driver::FPGA_SUB_CLK_FREQ;

    #[test]
    fn freq() {
        let stm = FocusSTM::new(1.0);
        assert_eq!(stm.freq(), 1.0);

        let stm = FocusSTM::with_sampling_frequency_division(512)
            .add_foci_from_iter((0..10).map(|_| (Vector3::zeros(), 0)));
        assert_approx_eq!(stm.freq(), FPGA_SUB_CLK_FREQ as float / 512. / 10.);

        let stm = FocusSTM::with_sampling_frequency(40e3)
            .add_foci_from_iter((0..10).map(|_| (Vector3::zeros(), 0)));
        assert_approx_eq!(stm.freq(), 40e3 / 10.);
    }

    #[test]
    fn period() {
        let stm = FocusSTM::with_period(std::time::Duration::from_millis(1));
        assert_eq!(stm.period(), std::time::Duration::from_millis(1));

        let stm = FocusSTM::with_sampling_period(std::time::Duration::from_millis(1))
            .add_foci_from_iter((0..10).map(|_| (Vector3::zeros(), 0)));
        assert_eq!(stm.period(), std::time::Duration::from_millis(10));
    }

    #[test]
    fn sampling_frequency_division() {
        let stm = FocusSTM::with_sampling_frequency_division(512);
        assert_eq!(stm.sampling_frequency_division(), 512);

        let stm = FocusSTM::new(1.0).add_foci_from_iter((0..10).map(|_| (Vector3::zeros(), 0)));
        assert_eq!(
            stm.sampling_frequency_division(),
            (FPGA_SUB_CLK_FREQ as float / 10.) as u32
        );

        let stm = FocusSTM::with_sampling_frequency(40e3);
        assert_eq!(
            stm.sampling_frequency_division(),
            (FPGA_SUB_CLK_FREQ as float / 40e3) as u32
        );
    }

    #[test]
    fn sampling_frequency() {
        let stm = FocusSTM::with_sampling_frequency(40e3);
        assert_eq!(stm.sampling_frequency(), 40e3);

        let stm = FocusSTM::with_sampling_frequency_division(512);
        assert_approx_eq!(stm.sampling_frequency(), FPGA_SUB_CLK_FREQ as float / 512.);

        let stm = FocusSTM::new(1.0).add_foci_from_iter((0..10).map(|_| (Vector3::zeros(), 0)));
        assert_approx_eq!(stm.sampling_frequency(), 1. * 10.);
    }

    #[test]
    fn sampling_period() {
        let stm = FocusSTM::with_sampling_period(std::time::Duration::from_millis(1));
        assert_eq!(stm.sampling_period(), std::time::Duration::from_millis(1));

        let stm = FocusSTM::with_period(std::time::Duration::from_millis(10))
            .add_foci_from_iter((0..10).map(|_| (Vector3::zeros(), 0)));
        assert_eq!(stm.sampling_period(), std::time::Duration::from_millis(1));
    }
}