use crate::{datagram::Datagram, error::AUTDInternalError, geometry::*};
use autd3_driver::float;
use super::STMProps;
#[derive(Clone, Debug, Copy)]
pub struct ControlPoint {
point: Vector3,
shift: u8,
}
impl ControlPoint {
pub fn new(point: Vector3) -> Self {
Self { point, shift: 0 }
}
pub fn with_shift(point: Vector3, shift: u8) -> Self {
Self { point, shift }
}
pub fn point(&self) -> &Vector3 {
&self.point
}
pub fn shift(&self) -> u8 {
self.shift
}
}
impl From<Vector3> for ControlPoint {
fn from(point: Vector3) -> Self {
Self::new(point)
}
}
impl From<(Vector3, u8)> for ControlPoint {
fn from((point, shift): (Vector3, u8)) -> Self {
Self::with_shift(point, shift)
}
}
impl From<&Vector3> for ControlPoint {
fn from(point: &Vector3) -> Self {
Self::new(*point)
}
}
impl From<&(Vector3, u8)> for ControlPoint {
fn from((point, shift): &(Vector3, u8)) -> Self {
Self::with_shift(*point, *shift)
}
}
#[derive(Clone)]
pub struct FocusSTM {
control_points: Vec<ControlPoint>,
props: STMProps,
}
impl FocusSTM {
pub fn add_focus<C: Into<ControlPoint>>(mut self, point: C) -> Self {
self.control_points.push(point.into());
self
}
pub fn add_foci_from_iter<C: Into<ControlPoint>, T: IntoIterator<Item = C>>(
mut self,
iter: T,
) -> Self {
self.control_points
.extend(iter.into_iter().map(|c| c.into()));
self
}
pub fn control_points(&self) -> &[ControlPoint] {
&self.control_points
}
#[doc(hidden)]
pub fn with_props(props: STMProps) -> Self {
Self {
control_points: Vec::new(),
props,
}
}
}
impl<T: Transducer> Datagram<T> for FocusSTM {
type H = autd3_driver::NullHeader;
type B = autd3_driver::FocusSTM;
fn operation(&self, geometry: &Geometry<T>) -> Result<(Self::H, Self::B), AUTDInternalError> {
let points = geometry
.device_map()
.iter()
.scan(0, |state, tr_num| {
let r = Some(*state);
*state += tr_num;
r
})
.map(|origin_idx| {
let tr = &geometry[origin_idx];
let origin = tr.position();
let trans_inv =
Matrix3::from_columns(&[tr.x_direction(), tr.y_direction(), tr.z_direction()])
.transpose();
self.control_points
.iter()
.map(|p| {
let lp = trans_inv * (p.point() - origin);
autd3_driver::STMFocus::new(lp.x, lp.y, lp.z, p.shift())
})
.collect()
})
.collect();
let tr_num_min = geometry.device_map().iter().min().unwrap();
let props = autd3_driver::FocusSTMProps {
freq_div: self.sampling_frequency_division(),
sound_speed: geometry.sound_speed,
start_idx: self.props.start_idx,
finish_idx: self.props.finish_idx,
};
Ok((Self::H::default(), Self::B::new(points, *tr_num_min, props)))
}
}
impl FocusSTM {
pub fn new(freq: float) -> Self {
Self {
control_points: vec![],
props: STMProps::new(freq),
}
}
pub fn with_period(period: std::time::Duration) -> Self {
Self::new(1000000000. / period.as_nanos() as float)
}
pub fn with_sampling_frequency_division(freq_div: u32) -> Self {
Self {
control_points: vec![],
props: STMProps::with_sampling_frequency_division(freq_div),
}
}
pub fn with_sampling_frequency(freq: float) -> Self {
Self {
control_points: vec![],
props: STMProps::with_sampling_frequency(freq),
}
}
pub fn with_sampling_period(period: std::time::Duration) -> Self {
Self {
control_points: vec![],
props: STMProps::with_sampling_period(period),
}
}
pub fn with_start_idx(self, idx: Option<u16>) -> Self {
Self {
props: self.props.with_start_idx(idx),
..self
}
}
pub fn with_finish_idx(self, idx: Option<u16>) -> Self {
Self {
props: self.props.with_finish_idx(idx),
..self
}
}
pub fn start_idx(&self) -> Option<u16> {
self.props.start_idx()
}
pub fn finish_idx(&self) -> Option<u16> {
self.props.finish_idx()
}
#[doc(hidden)]
pub fn size(&self) -> usize {
self.control_points.len()
}
pub fn freq(&self) -> float {
self.props.freq(self.size())
}
pub fn period(&self) -> std::time::Duration {
self.props.period(self.size())
}
pub fn sampling_frequency(&self) -> float {
self.props.sampling_frequency(self.size())
}
pub fn sampling_frequency_division(&self) -> u32 {
self.props.sampling_frequency_division(self.size())
}
pub fn sampling_period(&self) -> std::time::Duration {
self.props.sampling_period(self.size())
}
}
#[cfg(test)]
mod tests {
use super::*;
use assert_approx_eq::assert_approx_eq;
use autd3_driver::FPGA_SUB_CLK_FREQ;
#[test]
fn freq() {
let stm = FocusSTM::new(1.0);
assert_eq!(stm.freq(), 1.0);
let stm = FocusSTM::with_sampling_frequency_division(512)
.add_foci_from_iter((0..10).map(|_| (Vector3::zeros(), 0)));
assert_approx_eq!(stm.freq(), FPGA_SUB_CLK_FREQ as float / 512. / 10.);
let stm = FocusSTM::with_sampling_frequency(40e3)
.add_foci_from_iter((0..10).map(|_| (Vector3::zeros(), 0)));
assert_approx_eq!(stm.freq(), 40e3 / 10.);
}
#[test]
fn period() {
let stm = FocusSTM::with_period(std::time::Duration::from_millis(1));
assert_eq!(stm.period(), std::time::Duration::from_millis(1));
let stm = FocusSTM::with_sampling_period(std::time::Duration::from_millis(1))
.add_foci_from_iter((0..10).map(|_| (Vector3::zeros(), 0)));
assert_eq!(stm.period(), std::time::Duration::from_millis(10));
}
#[test]
fn sampling_frequency_division() {
let stm = FocusSTM::with_sampling_frequency_division(512);
assert_eq!(stm.sampling_frequency_division(), 512);
let stm = FocusSTM::new(1.0).add_foci_from_iter((0..10).map(|_| (Vector3::zeros(), 0)));
assert_eq!(
stm.sampling_frequency_division(),
(FPGA_SUB_CLK_FREQ as float / 10.) as u32
);
let stm = FocusSTM::with_sampling_frequency(40e3);
assert_eq!(
stm.sampling_frequency_division(),
(FPGA_SUB_CLK_FREQ as float / 40e3) as u32
);
}
#[test]
fn sampling_frequency() {
let stm = FocusSTM::with_sampling_frequency(40e3);
assert_eq!(stm.sampling_frequency(), 40e3);
let stm = FocusSTM::with_sampling_frequency_division(512);
assert_approx_eq!(stm.sampling_frequency(), FPGA_SUB_CLK_FREQ as float / 512.);
let stm = FocusSTM::new(1.0).add_foci_from_iter((0..10).map(|_| (Vector3::zeros(), 0)));
assert_approx_eq!(stm.sampling_frequency(), 1. * 10.);
}
#[test]
fn sampling_period() {
let stm = FocusSTM::with_sampling_period(std::time::Duration::from_millis(1));
assert_eq!(stm.sampling_period(), std::time::Duration::from_millis(1));
let stm = FocusSTM::with_period(std::time::Duration::from_millis(10))
.add_foci_from_iter((0..10).map(|_| (Vector3::zeros(), 0)));
assert_eq!(stm.sampling_period(), std::time::Duration::from_millis(1));
}
}