aml 0.11.0

Library for parsing AML
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
use crate::{pkg_length::PkgLength, AmlContext, AmlError, AmlValue, DebugVerbosity};
use alloc::vec::Vec;
use core::{convert::TryInto, marker::PhantomData};
use log::trace;

/// This is the number of spaces added to indent a scope when printing parser debug messages.
pub const INDENT_PER_SCOPE: usize = 2;

impl AmlContext {
    /// This is used by the parser to provide debug comments about the current object, which are indented to the
    /// correct level for the current object. We most often need to print these comments from `map_with_context`s,
    /// so it's most convenient to have this method on `AmlContext`.
    pub(crate) fn comment(&self, verbosity: DebugVerbosity, message: &str) {
        if verbosity <= self.debug_verbosity {
            log::trace!("{:indent$}{}", "", message, indent = self.scope_indent);
        }
    }
}

#[derive(Debug)]
pub enum Propagate {
    Err(AmlError),
    Return(AmlValue),
}

impl From<AmlError> for Propagate {
    fn from(error: AmlError) -> Self {
        Self::Err(error)
    }
}

pub type ParseResult<'a, 'c, R> =
    Result<(&'a [u8], &'c mut AmlContext, R), (&'a [u8], &'c mut AmlContext, Propagate)>;

pub trait Parser<'a, 'c, R>: Sized
where
    'c: 'a,
{
    fn parse(&self, input: &'a [u8], context: &'c mut AmlContext) -> ParseResult<'a, 'c, R>;

    fn map<F, A>(self, map_fn: F) -> Map<'a, 'c, Self, F, R, A>
    where
        F: Fn(R) -> Result<A, Propagate>,
    {
        Map { parser: self, map_fn, _phantom: PhantomData }
    }

    fn map_with_context<F, A>(self, map_fn: F) -> MapWithContext<'a, 'c, Self, F, R, A>
    where
        F: Fn(R, &'c mut AmlContext) -> (Result<A, Propagate>, &'c mut AmlContext),
    {
        MapWithContext { parser: self, map_fn, _phantom: PhantomData }
    }

    fn discard_result(self) -> DiscardResult<'a, 'c, Self, R> {
        DiscardResult { parser: self, _phantom: PhantomData }
    }

    /// Try parsing with `self`. If it succeeds, return its result. If it returns `AmlError::WrongParser`, try
    /// parsing with `other`, returning the result of that parser in all cases. Other errors from the first
    /// parser are propagated without attempting the second parser. To chain more than two parsers using
    /// `or`, see the `choice!` macro.
    fn or<OtherParser>(self, other: OtherParser) -> Or<'a, 'c, Self, OtherParser, R>
    where
        OtherParser: Parser<'a, 'c, R>,
    {
        Or { p1: self, p2: other, _phantom: PhantomData }
    }

    fn then<NextParser, NextR>(self, next: NextParser) -> Then<'a, 'c, Self, NextParser, R, NextR>
    where
        NextParser: Parser<'a, 'c, NextR>,
    {
        Then { p1: self, p2: next, _phantom: PhantomData }
    }

    /// `feed` takes a function that takes the result of this parser (`self`) and creates another
    /// parser, which is then used to parse the next part of the stream. This sounds convoluted,
    /// but is useful for when the next parser's behaviour depends on a property of the result of
    /// the first (e.g. the first parser might parse a length `n`, and the second parser then
    /// consumes `n` bytes).
    fn feed<F, P2, R2>(self, producer_fn: F) -> Feed<'a, 'c, Self, P2, F, R, R2>
    where
        P2: Parser<'a, 'c, R2>,
        F: Fn(R) -> P2,
    {
        Feed { parser: self, producer_fn, _phantom: PhantomData }
    }
}

impl<'a, 'c, F, R> Parser<'a, 'c, R> for F
where
    'c: 'a,
    F: Fn(&'a [u8], &'c mut AmlContext) -> ParseResult<'a, 'c, R>,
{
    fn parse(&self, input: &'a [u8], context: &'c mut AmlContext) -> ParseResult<'a, 'c, R> {
        self(input, context)
    }
}

/// The identity parser - returns the stream and context unchanged. Useful for producing parsers
/// that produce a result without parsing anything by doing: `id().map(|()| Ok(foo))`.
pub fn id<'a, 'c>() -> impl Parser<'a, 'c, ()>
where
    'c: 'a,
{
    move |input: &'a [u8], context: &'c mut AmlContext| Ok((input, context, ()))
}

pub fn take<'a, 'c>() -> impl Parser<'a, 'c, u8>
where
    'c: 'a,
{
    move |input: &'a [u8], context: &'c mut AmlContext| match input.first() {
        Some(&byte) => Ok((&input[1..], context, byte)),
        None => Err((input, context, Propagate::Err(AmlError::UnexpectedEndOfStream))),
    }
}

pub fn take_u16<'a, 'c>() -> impl Parser<'a, 'c, u16>
where
    'c: 'a,
{
    move |input: &'a [u8], context: &'c mut AmlContext| {
        if input.len() < 2 {
            return Err((input, context, Propagate::Err(AmlError::UnexpectedEndOfStream)));
        }

        Ok((&input[2..], context, u16::from_le_bytes(input[0..2].try_into().unwrap())))
    }
}

pub fn take_u32<'a, 'c>() -> impl Parser<'a, 'c, u32>
where
    'c: 'a,
{
    move |input: &'a [u8], context: &'c mut AmlContext| {
        if input.len() < 4 {
            return Err((input, context, Propagate::Err(AmlError::UnexpectedEndOfStream)));
        }

        Ok((&input[4..], context, u32::from_le_bytes(input[0..4].try_into().unwrap())))
    }
}

pub fn take_u64<'a, 'c>() -> impl Parser<'a, 'c, u64>
where
    'c: 'a,
{
    move |input: &'a [u8], context: &'c mut AmlContext| {
        if input.len() < 8 {
            return Err((input, context, Propagate::Err(AmlError::UnexpectedEndOfStream)));
        }

        Ok((&input[8..], context, u64::from_le_bytes(input[0..8].try_into().unwrap())))
    }
}

pub fn take_n<'a, 'c>(n: u32) -> impl Parser<'a, 'c, &'a [u8]>
where
    'c: 'a,
{
    move |input: &'a [u8], context| {
        if (input.len() as u32) < n {
            return Err((input, context, Propagate::Err(AmlError::UnexpectedEndOfStream)));
        }

        let (result, new_input) = input.split_at(n as usize);
        Ok((new_input, context, result))
    }
}

pub fn take_to_end_of_pkglength<'a, 'c>(length: PkgLength) -> impl Parser<'a, 'c, &'a [u8]>
where
    'c: 'a,
{
    move |input: &'a [u8], context| {
        /*
         * TODO: fuzzing manages to find PkgLengths that correctly parse during construction, but later crash here.
         * I would've thought we would pick up all invalid lengths there, so have a look at why this is needed.
         */
        let bytes_to_take = match (input.len() as u32).checked_sub(length.end_offset) {
            Some(bytes_to_take) => bytes_to_take,
            None => return Err((input, context, Propagate::Err(AmlError::InvalidPkgLength))),
        };
        take_n(bytes_to_take).parse(input, context)
    }
}

pub fn n_of<'a, 'c, P, R>(parser: P, n: usize) -> impl Parser<'a, 'c, Vec<R>>
where
    'c: 'a,
    P: Parser<'a, 'c, R>,
{
    // TODO: can we write this more nicely?
    move |mut input, mut context| {
        let mut results = Vec::with_capacity(n);

        for _ in 0..n {
            let (new_input, new_context, result) = match parser.parse(input, context) {
                Ok((input, context, result)) => (input, context, result),
                Err((_, context, propagate)) => return Err((input, context, propagate)),
            };
            results.push(result);
            input = new_input;
            context = new_context;
        }

        Ok((input, context, results))
    }
}

pub fn take_while<'a, 'c, P, R>(parser: P) -> impl Parser<'a, 'c, usize>
where
    'c: 'a,
    P: Parser<'a, 'c, R>,
{
    move |mut input: &'a [u8], mut context: &'c mut AmlContext| {
        let mut num_passed = 0;
        loop {
            match parser.parse(input, context) {
                Ok((new_input, new_context, _)) => {
                    input = new_input;
                    context = new_context;
                    num_passed += 1;
                }
                Err((_, context, Propagate::Err(AmlError::WrongParser))) => {
                    return Ok((input, context, num_passed))
                }
                Err((_, context, err)) => return Err((input, context, err)),
            }
        }
    }
}

pub fn consume<'a, 'c, F>(condition: F) -> impl Parser<'a, 'c, u8>
where
    'c: 'a,
    F: Fn(u8) -> bool,
{
    move |input: &'a [u8], context: &'c mut AmlContext| match input.first() {
        Some(&byte) if condition(byte) => Ok((&input[1..], context, byte)),
        Some(&byte) => Err((input, context, Propagate::Err(AmlError::UnexpectedByte(byte)))),
        None => Err((input, context, Propagate::Err(AmlError::UnexpectedEndOfStream))),
    }
}

pub fn comment_scope<'a, 'c, P, R>(
    verbosity: DebugVerbosity,
    scope_name: &'a str,
    parser: P,
) -> impl Parser<'a, 'c, R>
where
    'c: 'a,
    R: core::fmt::Debug,
    P: Parser<'a, 'c, R>,
{
    move |input, context: &'c mut AmlContext| {
        if verbosity <= context.debug_verbosity {
            trace!("{:indent$}--> {}", "", scope_name, indent = context.scope_indent);
            context.scope_indent += INDENT_PER_SCOPE;
        }

        // Return if the parse fails, so we don't print the tail. Makes it easier to debug.
        let (new_input, context, result) = parser.parse(input, context)?;

        if verbosity <= context.debug_verbosity {
            context.scope_indent -= INDENT_PER_SCOPE;
            trace!("{:indent$}<-- {}", "", scope_name, indent = context.scope_indent);
        }

        Ok((new_input, context, result))
    }
}

pub struct Or<'a, 'c, P1, P2, R>
where
    'c: 'a,
    P1: Parser<'a, 'c, R>,
    P2: Parser<'a, 'c, R>,
{
    p1: P1,
    p2: P2,
    _phantom: PhantomData<(&'a R, &'c ())>,
}

impl<'a, 'c, P1, P2, R> Parser<'a, 'c, R> for Or<'a, 'c, P1, P2, R>
where
    'c: 'a,
    P1: Parser<'a, 'c, R>,
    P2: Parser<'a, 'c, R>,
{
    fn parse(&self, input: &'a [u8], context: &'c mut AmlContext) -> ParseResult<'a, 'c, R> {
        match self.p1.parse(input, context) {
            Ok(parse_result) => Ok(parse_result),
            Err((_, context, Propagate::Err(AmlError::WrongParser))) => self.p2.parse(input, context),
            Err((_, context, err)) => Err((input, context, err)),
        }
    }
}

pub struct Map<'a, 'c, P, F, R, A>
where
    'c: 'a,
    P: Parser<'a, 'c, R>,
    F: Fn(R) -> Result<A, Propagate>,
{
    parser: P,
    map_fn: F,
    _phantom: PhantomData<(&'a (R, A), &'c ())>,
}

impl<'a, 'c, P, F, R, A> Parser<'a, 'c, A> for Map<'a, 'c, P, F, R, A>
where
    'c: 'a,
    P: Parser<'a, 'c, R>,
    F: Fn(R) -> Result<A, Propagate>,
{
    fn parse(&self, input: &'a [u8], context: &'c mut AmlContext) -> ParseResult<'a, 'c, A> {
        match self.parser.parse(input, context) {
            Ok((new_input, context, result)) => match (self.map_fn)(result) {
                Ok(result_value) => Ok((new_input, context, result_value)),
                Err(err) => Err((input, context, err)),
            },
            Err(result) => Err(result),
        }
    }
}

pub struct MapWithContext<'a, 'c, P, F, R, A>
where
    'c: 'a,
    P: Parser<'a, 'c, R>,
    F: Fn(R, &'c mut AmlContext) -> (Result<A, Propagate>, &'c mut AmlContext),
{
    parser: P,
    map_fn: F,
    _phantom: PhantomData<(&'a (R, A), &'c ())>,
}

impl<'a, 'c, P, F, R, A> Parser<'a, 'c, A> for MapWithContext<'a, 'c, P, F, R, A>
where
    'c: 'a,
    P: Parser<'a, 'c, R>,
    F: Fn(R, &'c mut AmlContext) -> (Result<A, Propagate>, &'c mut AmlContext),
{
    fn parse(&self, input: &'a [u8], context: &'c mut AmlContext) -> ParseResult<'a, 'c, A> {
        match self.parser.parse(input, context) {
            Ok((new_input, context, result)) => match (self.map_fn)(result, context) {
                (Ok(result_value), context) => Ok((new_input, context, result_value)),
                (Err(err), context) => Err((input, context, err)),
            },
            Err(result) => Err(result),
        }
    }
}

pub struct DiscardResult<'a, 'c, P, R>
where
    'c: 'a,
    P: Parser<'a, 'c, R>,
{
    parser: P,
    _phantom: PhantomData<(&'a R, &'c ())>,
}

impl<'a, 'c, P, R> Parser<'a, 'c, ()> for DiscardResult<'a, 'c, P, R>
where
    'c: 'a,
    P: Parser<'a, 'c, R>,
{
    fn parse(&self, input: &'a [u8], context: &'c mut AmlContext) -> ParseResult<'a, 'c, ()> {
        self.parser.parse(input, context).map(|(new_input, new_context, _)| (new_input, new_context, ()))
    }
}

pub struct Then<'a, 'c, P1, P2, R1, R2>
where
    'c: 'a,
    P1: Parser<'a, 'c, R1>,
    P2: Parser<'a, 'c, R2>,
{
    p1: P1,
    p2: P2,
    _phantom: PhantomData<(&'a (R1, R2), &'c ())>,
}

impl<'a, 'c, P1, P2, R1, R2> Parser<'a, 'c, (R1, R2)> for Then<'a, 'c, P1, P2, R1, R2>
where
    'c: 'a,
    P1: Parser<'a, 'c, R1>,
    P2: Parser<'a, 'c, R2>,
{
    fn parse(&self, input: &'a [u8], context: &'c mut AmlContext) -> ParseResult<'a, 'c, (R1, R2)> {
        self.p1.parse(input, context).and_then(|(next_input, context, result_a)| {
            self.p2
                .parse(next_input, context)
                .map(|(final_input, context, result_b)| (final_input, context, (result_a, result_b)))
        })
    }
}

pub struct Feed<'a, 'c, P1, P2, F, R1, R2>
where
    'c: 'a,
    P1: Parser<'a, 'c, R1>,
    P2: Parser<'a, 'c, R2>,
    F: Fn(R1) -> P2,
{
    parser: P1,
    producer_fn: F,
    _phantom: PhantomData<(&'a (R1, R2), &'c ())>,
}

impl<'a, 'c, P1, P2, F, R1, R2> Parser<'a, 'c, R2> for Feed<'a, 'c, P1, P2, F, R1, R2>
where
    'c: 'a,
    P1: Parser<'a, 'c, R1>,
    P2: Parser<'a, 'c, R2>,
    F: Fn(R1) -> P2,
{
    fn parse(&self, input: &'a [u8], context: &'c mut AmlContext) -> ParseResult<'a, 'c, R2> {
        let (input, context, first_result) = self.parser.parse(input, context)?;

        // We can now produce the second parser, and parse using that.
        let second_parser = (self.producer_fn)(first_result);
        second_parser.parse(input, context)
    }
}

/// Takes a number of parsers, and tries to apply each one to the input in order. Returns the
/// result of the first one that succeeds, or fails if all of them fail.
pub(crate) macro choice {
    () => {
        id().map(|()| Err(AmlError::WrongParser))
    },

    /*
     * The nice way of writing this would be something like:
     * ```
     * $first_parser
     * $(
     *     .or($other_parser)
     *  )*
     * .or(id().map(|()| Err(AmlError::WrongParser)))
     * ```
     * This problem with this is that it generates enormous types that very easily break `rustc`'s type
     * limit, so writing large parsers with choice required some gymnastics, which sucks for everyone involved.
     *
     * Instead, we manually call each parser sequentially, checking its result to see if we should return, or try
     * the next parser. This generates worse code at the macro callsite, but is much easier for the compiler to
     * type-check (and so reduces the cost of pulling us in as a dependency as well as improving ergonomics).
     */
    ($($parser: expr),+) => {
        move |input, context| {
            $(
                let context = match ($parser).parse(input, context) {
                    Ok(parse_result) => return Ok(parse_result),
                    Err((_, new_context, Propagate::Err(AmlError::WrongParser))) => new_context,
                    Err((_, context, propagate)) => return Err((input, context, propagate)),
                };
             )+
            Err((input, context, Propagate::Err(AmlError::WrongParser)))
        }
    }
}

/// This encapsulates an unfortunate hack we sometimes need to use, where the type checker gets
/// caught in an infinite loop of parser types. This occurs when an object can indirectly contain
/// itself, and so the parser type will contain its own type. This works by breaking the cycle of
/// `impl Parser` chains that build up, by effectively creating a "concrete" closure type.
///
/// You can try using this hack if you are writing a parser and end up with an error of the form:
/// `error[E0275]: overflow evaluating the requirement 'impl Parser<{a type}>'
///     help: consider adding a a '#![recursion_limit="128"] attribute to your crate`
/// Note: Increasing the recursion limit will not fix the issue, as the cycle will just continue
/// until you either hit the new recursion limit or `rustc` overflows its stack.
pub(crate) macro make_parser_concrete($parser: expr) {
    |input, context| ($parser).parse(input, context)
}

/// Helper macro for use within `map_with_context` as an alternative to "trying" an expression.
///
/// ### Example
/// Problem: `expr?` won't work because the expected return type is `(Result<R, AmlError>, &mut AmlContext)`
/// Solution: use `try_with_context!(context, expr)` instead.
pub(crate) macro try_with_context($context: expr, $expr: expr) {
    match $expr {
        Ok(result) => result,
        Err(err) => return (Err(Propagate::Err(err)), $context),
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::test_utils::*;

    #[test]
    fn test_take_n() {
        let mut context = make_test_context();
        check_err!(take_n(1).parse(&[], &mut context), AmlError::UnexpectedEndOfStream, &[]);
        check_err!(take_n(2).parse(&[0xf5], &mut context), AmlError::UnexpectedEndOfStream, &[0xf5]);

        check_ok!(take_n(1).parse(&[0xff], &mut context), &[0xff], &[]);
        check_ok!(take_n(1).parse(&[0xff, 0xf8], &mut context), &[0xff], &[0xf8]);
        check_ok!(take_n(2).parse(&[0xff, 0xf8], &mut context), &[0xff, 0xf8], &[]);
    }

    #[test]
    fn test_take_ux() {
        let mut context = make_test_context();
        check_err!(take_u16().parse(&[0x34], &mut context), AmlError::UnexpectedEndOfStream, &[0x34]);
        check_ok!(take_u16().parse(&[0x34, 0x12], &mut context), 0x1234, &[]);

        check_err!(take_u32().parse(&[0x34, 0x12], &mut context), AmlError::UnexpectedEndOfStream, &[0x34, 0x12]);
        check_ok!(take_u32().parse(&[0x34, 0x12, 0xf4, 0xc3, 0x3e], &mut context), 0xc3f41234, &[0x3e]);

        check_err!(take_u64().parse(&[0x34], &mut context), AmlError::UnexpectedEndOfStream, &[0x34]);
        check_ok!(
            take_u64().parse(&[0x34, 0x12, 0x35, 0x76, 0xd4, 0x43, 0xa3, 0xb6, 0xff, 0x00], &mut context),
            0xb6a343d476351234,
            &[0xff, 0x00]
        );
    }
}