RustQuant_math 0.4.0

A Rust library for quantitative finance.
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// RustQuant: A Rust library for quantitative finance tools.
// Copyright (C) 2023 https://github.com/avhz
// Dual licensed under Apache 2.0 and MIT.
// See:
//      - LICENSE-APACHE.md
//      - LICENSE-MIT.md
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

use super::DistributionClass;
use crate::distributions::Distribution;
use num::Complex;
use RustQuant_error::RustQuantError;

// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// STRUCTS
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

/// Uniform distribution: X ~ Uni(a, b)
pub struct Uniform {
    /// Lower bound.
    a: f64,
    /// Upper bound.
    b: f64,
    /// Continuous or discrete ?
    class: DistributionClass,
}

// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// IMPLEMENTATIONS
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

impl Uniform {
    /// New instance of a Uniform distribution.
    /// # Examples
    /// ```
    /// # use RustQuant::utils::assert_approx_equal;
    /// # use RustQuant::math::*;
    ///
    /// let dist = Uniform::new(0.0, 1.0, DistributionClass::Continuous);
    ///
    /// assert_approx_equal!(dist.mean(), 0.5, 1e-7);
    /// ```
    ///
    /// # Panics
    ///
    /// Panics if `a` is greater than `b`.
    #[must_use]
    pub fn new(a: f64, b: f64, class: DistributionClass) -> Self {
        assert!(a <= b);

        match class {
            DistributionClass::Discrete => Self {
                a: a.round(),
                b: b.round(),
                class,
            },
            DistributionClass::Continuous => Self { a, b, class },
        }
    }
}

impl Distribution for Uniform {
    /// Characteristic function of the Uniform distribution.
    /// # Examples
    /// ```
    /// # use RustQuant::utils::assert_approx_equal;
    /// # use RustQuant::math::*;
    ///
    /// let dist = Uniform::new(0.0, 1.0, DistributionClass::Continuous);
    /// let cf = dist.cf(1.0);
    ///
    /// assert_approx_equal!(cf.re, 0.8414710, 1e-7);
    /// assert_approx_equal!(cf.im, 0.4596977, 1e-7);
    /// ```
    fn cf(&self, t: f64) -> Complex<f64> {
        let i: Complex<f64> = Complex::i();

        match self.class {
            DistributionClass::Discrete => {
                ((i * t * self.a).exp() - (i * t * (self.b + 1.0)).exp())
                    / ((1.0 - (i * t).exp()) * (self.b - self.a + 1.0))
            }
            DistributionClass::Continuous => {
                ((i * t * self.b).exp() - (i * t * self.a).exp()) / (i * t * (self.b - self.a))
            }
        }
    }

    /// Probability density function of the Uniform distribution.
    /// # Examples
    /// ```
    /// # use RustQuant::utils::assert_approx_equal;
    /// # use RustQuant::math::*;
    ///
    /// let dist = Uniform::new(0.0, 1.0, DistributionClass::Continuous);
    ///
    /// assert_approx_equal!(dist.pdf(0.5), 1.0, 1e-7);
    /// ```
    fn pdf(&self, x: f64) -> f64 {
        match self.class {
            DistributionClass::Discrete => {
                if x >= self.a && x <= self.b {
                    (self.b - self.a + 1.0).recip()
                } else {
                    0.0
                }
            }
            DistributionClass::Continuous => {
                if x >= self.a && x <= self.b {
                    (self.b - self.a).recip()
                } else {
                    0.0
                }
            }
        }
    }

    /// Probability mass function of the Uniform distribution.
    /// # Examples
    /// ```
    /// # use RustQuant::utils::assert_approx_equal;
    /// # use RustQuant::math::*;
    ///
    /// let dist = Uniform::new(0.0, 1.0, DistributionClass::Discrete);
    ///
    /// assert_approx_equal!(dist.pmf(0.5), 0.5, 1e-7);
    /// ```
    fn pmf(&self, x: f64) -> f64 {
        match self.class {
            DistributionClass::Discrete => {
                if x >= self.a && x <= self.b {
                    (self.b - self.a + 1.0).recip()
                } else {
                    0.0
                }
            }
            DistributionClass::Continuous => {
                if x >= self.a && x <= self.b {
                    (self.b - self.a).recip()
                } else {
                    0.0
                }
            }
        }
    }

    /// Cumulative distribution function of the Uniform distribution.
    /// # Examples
    /// ```
    /// # use RustQuant::utils::assert_approx_equal;
    /// # use RustQuant::math::*;
    ///
    /// let dist = Uniform::new(0.0, 1.0, DistributionClass::Continuous);
    ///
    /// assert_approx_equal!(dist.cdf(0.5), 0.5, 1e-7);
    /// ```
    fn cdf(&self, x: f64) -> f64 {
        match self.class {
            DistributionClass::Discrete => {
                if x < self.a {
                    0.0
                } else if x >= self.a && x <= self.b {
                    (x.floor() - self.a + 1.0) / (self.b - self.a + 1.0)
                } else {
                    1.0
                }
            }
            DistributionClass::Continuous => {
                if x < self.a {
                    0.0
                } else if x >= self.a && x <= self.b {
                    (x - self.a) / (self.b - self.a)
                } else {
                    1.0
                }
            }
        }
    }

    /// Inverse distribution (quantile) function of the Uniform distribution.
    /// Note: Only implemented for the continuous distribution.
    /// # Examples
    /// ```
    /// # use RustQuant::utils::assert_approx_equal;
    /// # use RustQuant::math::*;
    ///
    /// let dist = Uniform::new(0.0, 1.0, DistributionClass::Continuous);
    ///
    /// assert_approx_equal!(dist.inv_cdf(0.5), 0.5, 1e-7);
    /// ```
    fn inv_cdf(&self, p: f64) -> f64 {
        assert!((0.0..=1.0).contains(&p));
        match self.class {
            DistributionClass::Discrete => todo!(),
            DistributionClass::Continuous => self.a + p * (self.b - self.a),
        }
    }

    /// Mean of the Uniform distribution.
    /// The mean of the Uniform distribution is equal to its median.
    /// # Examples
    /// ```
    /// # use RustQuant::utils::assert_approx_equal;
    /// # use RustQuant::math::*;
    ///
    /// let dist = Uniform::new(0.0, 1.0, DistributionClass::Continuous);
    ///
    /// assert_approx_equal!(dist.mean(), 0.5, 1e-7);
    /// ```    
    fn mean(&self) -> f64 {
        0.5 * (self.a + self.b)
    }

    /// Median of the Uniform distribution.
    /// The mean of the Uniform distribution is equal to its median.
    /// # Examples
    /// ```
    /// # use RustQuant::utils::assert_approx_equal;
    /// # use RustQuant::math::*;
    ///
    /// let dist = Uniform::new(0.0, 1.0, DistributionClass::Continuous);
    ///
    /// assert_approx_equal!(dist.median(), 0.5, 1e-7);
    /// ```
    fn median(&self) -> f64 {
        0.5 * (self.a + self.b)
    }

    /// Mode of the Uniform distribution.
    /// # Examples
    /// ```
    /// # use RustQuant::utils::assert_approx_equal;
    /// # use RustQuant::math::*;
    ///
    /// let dist = Uniform::new(0.0, 1.0, DistributionClass::Continuous);
    ///
    /// assert_approx_equal!(dist.mode(), 0.5, 1e-7);
    /// ```
    fn mode(&self) -> f64 {
        match self.class {
            DistributionClass::Discrete => todo!(),
            DistributionClass::Continuous => (self.a + self.b) * 0.5,
        }
    }

    /// Variance of the Uniform distribution.
    /// # Examples
    /// ```
    /// # use RustQuant::utils::assert_approx_equal;
    /// # use RustQuant::math::*;
    ///
    /// let dist = Uniform::new(0.0, 1.0, DistributionClass::Continuous);
    ///
    /// assert_approx_equal!(dist.variance(), 0.0833333, 1e-7);
    /// ```
    fn variance(&self) -> f64 {
        match self.class {
            DistributionClass::Discrete => (self.b - self.a + 1.0).powi(2) / 12.0,
            DistributionClass::Continuous => (self.b - self.a).powi(2) / 12.0,
        }
    }

    /// Skewness of the Uniform distribution.
    /// The skewness of the Uniform distribution is equal to 0.
    /// # Examples
    /// ```
    /// # use RustQuant::math::*;
    ///
    /// let dist = Uniform::new(0.0, 1.0, DistributionClass::Continuous);
    ///
    /// assert_eq!(dist.skewness(), 0.0);
    /// ```
    fn skewness(&self) -> f64 {
        0.0
    }

    /// Kurtosis of the Uniform distribution.
    /// # Examples
    /// ```
    /// # use RustQuant::utils::assert_approx_equal;
    /// # use RustQuant::math::*;
    ///
    /// let dist = Uniform::new(0.0, 1.0, DistributionClass::Continuous);
    ///
    /// assert_approx_equal!(dist.kurtosis(), -6.0/5.0, 1e-7);
    /// ```
    fn kurtosis(&self) -> f64 {
        let n = self.b - self.a + 1.0;

        match self.class {
            DistributionClass::Discrete => -(6. * (n * n + 1.)) / (5. * (n * n - 1.)),
            DistributionClass::Continuous => -6.0 / 5.0,
        }
    }

    /// Entropy of the Uniform distribution.
    /// # Examples
    /// ```
    /// # use RustQuant::utils::assert_approx_equal;
    /// # use RustQuant::math::*;
    ///
    /// let dist = Uniform::new(0.5, 1.0, DistributionClass::Continuous);
    ///
    /// assert_approx_equal!(dist.entropy(), -0.6931472, 1e-7);
    /// ```
    fn entropy(&self) -> f64 {
        match self.class {
            DistributionClass::Discrete => (self.b - self.a + 1.0).ln(),
            DistributionClass::Continuous => (self.b - self.a).ln(),
        }
    }

    /// Moment generating function of the Uniform distribution.
    /// # Examples
    /// ```
    /// # use RustQuant::utils::assert_approx_equal;
    /// # use RustQuant::math::*;
    ///
    /// let dist = Uniform::new(0.0, 1.0, DistributionClass::Continuous);
    ///
    /// assert_approx_equal!(dist.mgf(1.0), 1.7182818, 1e-7);
    /// ```
    fn mgf(&self, t: f64) -> f64 {
        let n = self.b - self.a + 1.0;

        match self.class {
            DistributionClass::Discrete => {
                ((t * self.a).exp() - (t * (self.b + 1.0)).exp()) / (n * (1.0 - (t).exp()))
            }
            DistributionClass::Continuous => {
                ((t * self.b).exp() - (t * self.a).exp()) / (t * (self.b - self.a))
            }
        }
    }

    /// Generates a random sample from a Uniform distribution.
    /// # Examples
    /// ```
    /// # use RustQuant::utils::assert_approx_equal;
    /// # use RustQuant::math::*;
    ///
    /// let dist = Uniform::new(0.0, 1.0, DistributionClass::Continuous);
    /// let sample = dist.sample(1000).unwrap();
    /// let mean = sample.iter().sum::<f64>() / sample.len() as f64;
    ///
    /// assert_approx_equal!(mean, dist.mean(), 0.1);
    /// ```
    fn sample(&self, n: usize) -> Result<Vec<f64>, RustQuantError> {
        // IMPORT HERE TO AVOID CLASH WITH
        // `RustQuant::distributions::Distribution`
        use rand::thread_rng;
        use rand_distr::{Distribution, Uniform};

        assert!(n > 0);

        let mut rng = thread_rng();

        let dist = Uniform::new(self.a, self.b);

        let mut variates: Vec<f64> = Vec::with_capacity(n);
        match self.class {
            DistributionClass::Discrete => {
                for _ in 0..variates.capacity() {
                    variates.push(dist.sample(&mut rng) as usize as f64);
                }
            }
            DistributionClass::Continuous => {
                for _ in 0..variates.capacity() {
                    variates.push(dist.sample(&mut rng));
                }
            }
        }

        Ok(variates)
    }
}

// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// UNIT TESTS
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#[cfg(test)]
mod tests {
    use super::*;
    use RustQuant_utils::{assert_approx_equal, RUSTQUANT_EPSILON as EPS};

    #[test]
    fn test_uniform_distribution_continuous() {
        let dist: Uniform = Uniform::new(0.0, 1.0, DistributionClass::Continuous);

        // Characteristic function
        let cf = dist.cf(1.0);
        assert_approx_equal!(cf.re, 0.841_470_984_807_896_5, EPS);
        assert_approx_equal!(cf.im, 0.459_697_694_131_860_23, EPS);

        // Probability mass function
        let pmf = dist.pmf(0.5);
        assert_approx_equal!(pmf, 1.0, EPS);

        // Distribution function
        let cdf = dist.cdf(0.5);
        assert_approx_equal!(cdf, 0.5, EPS);
    }

    #[test]
    fn test_uniform_distribution_discrete() {
        let dist: Uniform = Uniform::new(0.0, 1.0, DistributionClass::Discrete);

        // Characteristic function
        let cf = dist.cf(1.0);
        assert_approx_equal!(cf.re, 0.770_151_152_934_069_9, EPS);
        assert_approx_equal!(cf.im, 0.420_735_492_403_948_36, EPS);

        // Probability mass function
        let pmf = dist.pmf(0.5);
        assert_approx_equal!(pmf, 0.5, EPS);

        // Distribution function
        let cdf = dist.cdf(0.5);
        assert_approx_equal!(cdf, 0.5, EPS);
    }
}