use crate::distributions::Distribution;
use num::Complex;
use statrs::function::gamma::{gamma_li, gamma_ui};
use RustQuant_error::RustQuantError;
pub struct Poisson {
        lambda: f64,
}
impl Poisson {
                                                                #[must_use]
    pub fn new(lambda: f64) -> Poisson {
        assert!(lambda > 0.0);
        Poisson { lambda }
    }
}
impl Distribution for Poisson {
                                                fn cf(&self, t: f64) -> Complex<f64> {
        let i: Complex<f64> = Complex::i();
        (self.lambda * ((i * t).exp() - 1.0)).exp()
    }
                                                fn pdf(&self, x: f64) -> f64 {
        self.pmf(x)
    }
                                            fn pmf(&self, x: f64) -> f64 {
        (self.lambda).powi(x as i32) * (-(self.lambda)).exp()
            / ((1..=x as usize).product::<usize>() as f64)
    }
                                                fn cdf(&self, x: f64) -> f64 {
        1.0 - gamma_li(x + 1., self.lambda) / gamma_ui(x + 1., self.lambda)
    }
                                                            fn inv_cdf(&self, p: f64) -> f64 {
        if !(0.0..=1.0).contains(&p) {
            return f64::NAN;
        }
        if (p - 1.0).abs() < f64::EPSILON {
            return f64::INFINITY;
        }
        let mut sum = 0.0;
        let mut k = 0;
        while sum < p {
            sum += self.pmf(f64::from(k));
            k += 1;
        }
        f64::from(k - 1)
    }
                                        fn mean(&self) -> f64 {
        self.lambda
    }
                                        fn median(&self) -> f64 {
        (self.lambda + 1.0 / 3.0 - 0.02 / self.lambda).floor()
    }
                                        fn mode(&self) -> f64 {
        self.lambda.floor()
    }
                                        fn variance(&self) -> f64 {
        self.lambda
    }
                                        fn skewness(&self) -> f64 {
        self.lambda.sqrt().recip()
    }
                                            fn kurtosis(&self) -> f64 {
        self.lambda.recip()
    }
    fn entropy(&self) -> f64 {
        todo!()
    }
                                            fn mgf(&self, t: f64) -> f64 {
        (self.lambda * (t.exp() - 1.0)).exp()
    }
                                                        fn sample(&self, n: usize) -> Result<Vec<f64>, RustQuantError> {
                        use rand::thread_rng;
        use rand_distr::{Distribution, Poisson};
        assert!(n > 0);
        let mut rng = thread_rng();
        let dist = Poisson::new(self.lambda)?;
        let mut variates: Vec<f64> = Vec::with_capacity(n);
        for _ in 0..variates.capacity() {
            variates.push(dist.sample(&mut rng) as usize as f64);
        }
        Ok(variates)
    }
}
#[cfg(test)]
mod tests {
    use super::*;
    use RustQuant_utils::{assert_approx_equal, RUSTQUANT_EPSILON as EPS};
    #[allow(clippy::similar_names)]
    #[test]
    fn test_poisson_distribution() -> Result<(), RustQuantError> {
        let dist: Poisson = Poisson::new(1.0);
                let cf = dist.cf(1.0);
        assert_approx_equal!(cf.re, 0.420_793_617_430_045_7, EPS);
        assert_approx_equal!(cf.im, 0.470_842_643_309_935_9, EPS);
                let pmf = dist.pmf(1.);
        assert_approx_equal!(pmf, 0.367_879_441_171_442_33, EPS);
                assert_approx_equal!(dist.pdf(1.), pmf, EPS);
                let cdf = dist.cdf(1.);
        assert_approx_equal!(cdf, 0.640_859_085_770_477_5, EPS);
                let icdf = dist.inv_cdf(0.5);
        assert_approx_equal!(icdf, 1.0, EPS);
                assert!(dist.inv_cdf(1.1).is_nan());
        assert!(dist.inv_cdf(-0.1).is_nan());
                assert!(dist.inv_cdf(1.0).is_infinite() && dist.inv_cdf(1.0).is_sign_positive());
                assert_approx_equal!(dist.mean(), 1.0, EPS);
                assert_approx_equal!(dist.median(), 1.0, EPS);
                assert_approx_equal!(dist.mode(), 1.0, EPS);
                assert_approx_equal!(dist.variance(), 1.0, EPS);
                assert_approx_equal!(dist.skewness(), 1.0, EPS);
                assert_approx_equal!(dist.kurtosis(), 1.0, EPS);
                let mgf = dist.mgf(1.0);
        assert_approx_equal!(mgf, 5.574_941_5, 1e-7);
                let sample = dist.sample(1000)?;
        let mean = sample.iter().sum::<f64>() / sample.len() as f64;
        assert_approx_equal!(mean, dist.mean(), 0.1);
        Ok(())
    }
}