Struct cranelift_codegen::loop_analysis::LoopAnalysis
source · pub struct LoopAnalysis { /* private fields */ }Expand description
Loop tree information for a single function.
Loops are referenced by the Loop object, and for each loop you can access its header block, its eventual parent in the loop tree and all the block belonging to the loop.
Implementations§
source§impl LoopAnalysis
impl LoopAnalysis
Methods for querying the loop analysis.
sourcepub fn new() -> Self
pub fn new() -> Self
Allocate a new blank loop analysis struct. Use compute to compute the loop analysis for
a function.
sourcepub fn loops(&self) -> Keys<Loop>
pub fn loops(&self) -> Keys<Loop>
Returns all the loops contained in a function.
Examples found in repository?
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
pub fn do_licm(
func: &mut Function,
cfg: &mut ControlFlowGraph,
domtree: &mut DominatorTree,
loop_analysis: &mut LoopAnalysis,
) {
let _tt = timing::licm();
debug_assert!(cfg.is_valid());
debug_assert!(domtree.is_valid());
debug_assert!(loop_analysis.is_valid());
for lp in loop_analysis.loops() {
// For each loop that we want to optimize we determine the set of loop-invariant
// instructions
let invariant_insts = remove_loop_invariant_instructions(lp, func, cfg, loop_analysis);
// Then we create the loop's pre-header and fill it with the invariant instructions
// Then we remove the invariant instructions from the loop body
if !invariant_insts.is_empty() {
// If the loop has a natural pre-header we use it, otherwise we create it.
let mut pos;
match has_pre_header(&func.layout, cfg, domtree, loop_analysis.loop_header(lp)) {
None => {
let pre_header =
create_pre_header(loop_analysis.loop_header(lp), func, cfg, domtree);
pos = FuncCursor::new(func).at_last_inst(pre_header);
}
// If there is a natural pre-header we insert new instructions just before the
// related jumping instruction (which is not necessarily at the end).
Some((_, last_inst)) => {
pos = FuncCursor::new(func).at_inst(last_inst);
}
};
// The last instruction of the pre-header is the termination instruction (usually
// a jump) so we need to insert just before this.
for inst in invariant_insts {
pos.insert_inst(inst);
}
}
}
// We have to recompute the domtree to account for the changes
cfg.compute(func);
domtree.compute(func, cfg);
}More examples
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
fn discover_loop_blocks(
&mut self,
cfg: &ControlFlowGraph,
domtree: &DominatorTree,
layout: &Layout,
) {
let mut stack: Vec<Block> = Vec::new();
// We handle each loop header in reverse order, corresponding to a pseudo postorder
// traversal of the graph.
for lp in self.loops().rev() {
for BlockPredecessor {
block: pred,
inst: pred_inst,
} in cfg.pred_iter(self.loops[lp].header)
{
// We follow the back edges
if domtree.dominates(self.loops[lp].header, pred_inst, layout) {
stack.push(pred);
}
}
while let Some(node) = stack.pop() {
let continue_dfs: Option<Block>;
match self.block_loop_map[node].expand() {
None => {
// The node hasn't been visited yet, we tag it as part of the loop
self.block_loop_map[node] = PackedOption::from(lp);
continue_dfs = Some(node);
}
Some(node_loop) => {
// We copy the node_loop into a mutable reference passed along the while
let mut node_loop = node_loop;
// The node is part of a loop, which can be lp or an inner loop
let mut node_loop_parent_option = self.loops[node_loop].parent;
while let Some(node_loop_parent) = node_loop_parent_option.expand() {
if node_loop_parent == lp {
// We have encountered lp so we stop (already visited)
break;
} else {
//
node_loop = node_loop_parent;
// We lookup the parent loop
node_loop_parent_option = self.loops[node_loop].parent;
}
}
// Now node_loop_parent is either:
// - None and node_loop is an new inner loop of lp
// - Some(...) and the initial node_loop was a known inner loop of lp
match node_loop_parent_option.expand() {
Some(_) => continue_dfs = None,
None => {
if node_loop != lp {
self.loops[node_loop].parent = lp.into();
continue_dfs = Some(self.loops[node_loop].header)
} else {
// If lp is a one-block loop then we make sure we stop
continue_dfs = None
}
}
}
}
}
// Now we have handled the popped node and need to continue the DFS by adding the
// predecessors of that node
if let Some(continue_dfs) = continue_dfs {
for BlockPredecessor { block: pred, .. } in cfg.pred_iter(continue_dfs) {
stack.push(pred)
}
}
}
}
}sourcepub fn loop_header(&self, lp: Loop) -> Block
pub fn loop_header(&self, lp: Loop) -> Block
Returns the header block of a particular loop.
The characteristic property of a loop header block is that it dominates some of its predecessors.
Examples found in repository?
More examples
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
pub fn do_licm(
func: &mut Function,
cfg: &mut ControlFlowGraph,
domtree: &mut DominatorTree,
loop_analysis: &mut LoopAnalysis,
) {
let _tt = timing::licm();
debug_assert!(cfg.is_valid());
debug_assert!(domtree.is_valid());
debug_assert!(loop_analysis.is_valid());
for lp in loop_analysis.loops() {
// For each loop that we want to optimize we determine the set of loop-invariant
// instructions
let invariant_insts = remove_loop_invariant_instructions(lp, func, cfg, loop_analysis);
// Then we create the loop's pre-header and fill it with the invariant instructions
// Then we remove the invariant instructions from the loop body
if !invariant_insts.is_empty() {
// If the loop has a natural pre-header we use it, otherwise we create it.
let mut pos;
match has_pre_header(&func.layout, cfg, domtree, loop_analysis.loop_header(lp)) {
None => {
let pre_header =
create_pre_header(loop_analysis.loop_header(lp), func, cfg, domtree);
pos = FuncCursor::new(func).at_last_inst(pre_header);
}
// If there is a natural pre-header we insert new instructions just before the
// related jumping instruction (which is not necessarily at the end).
Some((_, last_inst)) => {
pos = FuncCursor::new(func).at_inst(last_inst);
}
};
// The last instruction of the pre-header is the termination instruction (usually
// a jump) so we need to insert just before this.
for inst in invariant_insts {
pos.insert_inst(inst);
}
}
}
// We have to recompute the domtree to account for the changes
cfg.compute(func);
domtree.compute(func, cfg);
}
/// Insert a pre-header before the header, modifying the function layout and CFG to reflect it.
/// A jump instruction to the header is placed at the end of the pre-header.
fn create_pre_header(
header: Block,
func: &mut Function,
cfg: &mut ControlFlowGraph,
domtree: &DominatorTree,
) -> Block {
let pool = &mut ListPool::<Value>::new();
let header_args_values = func.dfg.block_params(header).to_vec();
let header_args_types: Vec<Type> = header_args_values
.into_iter()
.map(|val| func.dfg.value_type(val))
.collect();
let pre_header = func.dfg.make_block();
let mut pre_header_args_value: EntityList<Value> = EntityList::new();
for typ in header_args_types {
pre_header_args_value.push(func.dfg.append_block_param(pre_header, typ), pool);
}
for BlockPredecessor {
inst: last_inst, ..
} in cfg.pred_iter(header)
{
// We only follow normal edges (not the back edges)
if !domtree.dominates(header, last_inst, &func.layout) {
func.rewrite_branch_destination(last_inst, header, pre_header);
}
}
// Inserts the pre-header at the right place in the layout.
let mut pos = FuncCursor::new(func).at_top(header);
pos.insert_block(pre_header);
pos.next_inst();
pos.ins().jump(header, pre_header_args_value.as_slice(pool));
pre_header
}
/// Detects if a loop header has a natural pre-header.
///
/// A loop header has a pre-header if there is only one predecessor that the header doesn't
/// dominate.
/// Returns the pre-header Block and the instruction jumping to the header.
fn has_pre_header(
layout: &Layout,
cfg: &ControlFlowGraph,
domtree: &DominatorTree,
header: Block,
) -> Option<(Block, Inst)> {
let mut result = None;
for BlockPredecessor {
block: pred_block,
inst: branch_inst,
} in cfg.pred_iter(header)
{
// We only count normal edges (not the back edges)
if !domtree.dominates(header, branch_inst, layout) {
if result.is_some() {
// We have already found one, there are more than one
return None;
}
if branch_inst != layout.last_inst(pred_block).unwrap()
|| cfg.succ_iter(pred_block).nth(1).is_some()
{
// It's along a critical edge, so don't use it.
return None;
}
result = Some((pred_block, branch_inst));
}
}
result
}
/// Test whether the given opcode is unsafe to even consider for LICM.
fn trivially_unsafe_for_licm(opcode: Opcode) -> bool {
opcode.can_store()
|| opcode.is_call()
|| opcode.is_branch()
|| opcode.is_terminator()
|| opcode.is_return()
|| opcode.can_trap()
|| opcode.other_side_effects()
|| opcode.writes_cpu_flags()
}
fn is_unsafe_load(inst_data: &InstructionData) -> bool {
match *inst_data {
InstructionData::Load { flags, .. } => !flags.readonly() || !flags.notrap(),
_ => inst_data.opcode().can_load(),
}
}
/// Test whether the given instruction is loop-invariant.
fn is_loop_invariant(inst: Inst, dfg: &DataFlowGraph, loop_values: &FxHashSet<Value>) -> bool {
if trivially_unsafe_for_licm(dfg[inst].opcode()) {
return false;
}
if is_unsafe_load(&dfg[inst]) {
return false;
}
let inst_args = dfg.inst_args(inst);
for arg in inst_args {
let arg = dfg.resolve_aliases(*arg);
if loop_values.contains(&arg) {
return false;
}
}
true
}
/// Traverses a loop in reverse post-order from a header block and identify loop-invariant
/// instructions. These loop-invariant instructions are then removed from the code and returned
/// (in reverse post-order) for later use.
fn remove_loop_invariant_instructions(
lp: Loop,
func: &mut Function,
cfg: &ControlFlowGraph,
loop_analysis: &LoopAnalysis,
) -> Vec<Inst> {
let mut loop_values: FxHashSet<Value> = FxHashSet();
let mut invariant_insts: Vec<Inst> = Vec::new();
let mut pos = FuncCursor::new(func);
// We traverse the loop block in reverse post-order.
for block in postorder_blocks_loop(loop_analysis, cfg, lp).iter().rev() {
// Arguments of the block are loop values
for val in pos.func.dfg.block_params(*block) {
loop_values.insert(*val);
}
pos.goto_top(*block);
#[cfg_attr(feature = "cargo-clippy", allow(clippy::block_in_if_condition_stmt))]
while let Some(inst) = pos.next_inst() {
if is_loop_invariant(inst, &pos.func.dfg, &loop_values) {
// If all the instruction's argument are defined outside the loop
// then this instruction is loop-invariant
invariant_insts.push(inst);
// We remove it from the loop
pos.remove_inst_and_step_back();
} else {
// If the instruction is not loop-invariant we push its results in the set of
// loop values
for out in pos.func.dfg.inst_results(inst) {
loop_values.insert(*out);
}
}
}
}
invariant_insts
}
/// Return blocks from a loop in post-order, starting from an entry point in the block.
fn postorder_blocks_loop(
loop_analysis: &LoopAnalysis,
cfg: &ControlFlowGraph,
lp: Loop,
) -> Vec<Block> {
let mut grey = FxHashSet();
let mut black = FxHashSet();
let mut stack = vec![loop_analysis.loop_header(lp)];
let mut postorder = Vec::new();
while !stack.is_empty() {
let node = stack.pop().unwrap();
if !grey.contains(&node) {
// This is a white node. Mark it as gray.
grey.insert(node);
stack.push(node);
// Get any children we've never seen before.
for child in cfg.succ_iter(node) {
if loop_analysis.is_in_loop(child, lp) && !grey.contains(&child) {
stack.push(child);
}
}
} else if !black.contains(&node) {
postorder.push(node);
black.insert(node);
}
}
postorder
}sourcepub fn loop_parent(&self, lp: Loop) -> Option<Loop>
pub fn loop_parent(&self, lp: Loop) -> Option<Loop>
Return the eventual parent of a loop in the loop tree.
sourcepub fn innermost_loop(&self, block: Block) -> Option<Loop>
pub fn innermost_loop(&self, block: Block) -> Option<Loop>
Return the innermost loop for a given block.
Examples found in repository?
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
pub fn is_loop_header(&self, block: Block) -> Option<Loop> {
self.innermost_loop(block)
.filter(|&lp| self.loop_header(lp) == block)
}
/// Determine if a Block belongs to a loop by running a finger along the loop tree.
///
/// Returns `true` if `block` is in loop `lp`.
pub fn is_in_loop(&self, block: Block, lp: Loop) -> bool {
let block_loop = self.block_loop_map[block];
match block_loop.expand() {
None => false,
Some(block_loop) => self.is_child_loop(block_loop, lp),
}
}
/// Determines if a loop is contained in another loop.
///
/// `is_child_loop(child,parent)` returns `true` if and only if `child` is a child loop of
/// `parent` (or `child == parent`).
pub fn is_child_loop(&self, child: Loop, parent: Loop) -> bool {
let mut finger = Some(child);
while let Some(finger_loop) = finger {
if finger_loop == parent {
return true;
}
finger = self.loop_parent(finger_loop);
}
false
}
/// Returns the loop-nest level of a given block.
pub fn loop_level(&self, block: Block) -> LoopLevel {
self.innermost_loop(block)
.map_or(LoopLevel(0), |lp| self.loops[lp].level)
}sourcepub fn is_loop_header(&self, block: Block) -> Option<Loop>
pub fn is_loop_header(&self, block: Block) -> Option<Loop>
Determine if a Block is a loop header. If so, return the loop.
Examples found in repository?
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
fn start_block(&mut self, idom: Option<Block>, block: Block, block_params: &[(Id, Type)]) {
trace!(
"start_block: block {:?} with idom {:?} at loop depth {} scope depth {}",
block,
idom,
self.cur_loop_depth(),
self.id_to_value.depth()
);
// Note that if the *entry* block is a loop header, we will
// not make note of the loop here because it will not have an
// immediate dominator. We must disallow this case because we
// will skip adding the `LoopStackEntry` here but our
// `LoopAnalysis` will otherwise still make note of this loop
// and loop depths will not match.
if let Some(idom) = idom {
if self.loop_analysis.is_loop_header(block).is_some() {
self.loop_stack.push(LoopStackEntry {
// Any code hoisted out of this loop will have code
// placed in `idom`, and will have def mappings
// inserted in to the scoped hashmap at that block's
// level.
hoist_block: idom,
scope_depth: (self.id_to_value.depth() - 1) as u32,
});
trace!(
" -> loop header, pushing; depth now {}",
self.loop_stack.len()
);
}
} else {
debug_assert!(
self.loop_analysis.is_loop_header(block).is_none(),
"Entry block (domtree root) cannot be a loop header!"
);
}
self.cur_block = Some(block);
for &(id, ty) in block_params {
let value = self.func.dfg.append_block_param(block, ty);
trace!(" -> block param id {:?} value {:?}", id, value);
self.id_to_value.insert_if_absent(
id,
IdValue::Value {
depth: self.cur_loop_depth(),
block,
value,
},
);
}
}sourcepub fn is_in_loop(&self, block: Block, lp: Loop) -> bool
pub fn is_in_loop(&self, block: Block, lp: Loop) -> bool
Determine if a Block belongs to a loop by running a finger along the loop tree.
Returns true if block is in loop lp.
Examples found in repository?
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
fn postorder_blocks_loop(
loop_analysis: &LoopAnalysis,
cfg: &ControlFlowGraph,
lp: Loop,
) -> Vec<Block> {
let mut grey = FxHashSet();
let mut black = FxHashSet();
let mut stack = vec![loop_analysis.loop_header(lp)];
let mut postorder = Vec::new();
while !stack.is_empty() {
let node = stack.pop().unwrap();
if !grey.contains(&node) {
// This is a white node. Mark it as gray.
grey.insert(node);
stack.push(node);
// Get any children we've never seen before.
for child in cfg.succ_iter(node) {
if loop_analysis.is_in_loop(child, lp) && !grey.contains(&child) {
stack.push(child);
}
}
} else if !black.contains(&node) {
postorder.push(node);
black.insert(node);
}
}
postorder
}sourcepub fn is_child_loop(&self, child: Loop, parent: Loop) -> bool
pub fn is_child_loop(&self, child: Loop, parent: Loop) -> bool
Determines if a loop is contained in another loop.
is_child_loop(child,parent) returns true if and only if child is a child loop of
parent (or child == parent).
sourcepub fn loop_level(&self, block: Block) -> LoopLevel
pub fn loop_level(&self, block: Block) -> LoopLevel
Returns the loop-nest level of a given block.
Examples found in repository?
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
fn build(&mut self, func: &Function) {
// Mapping of SSA `Value` to eclass ID.
let mut value_to_id = FxHashMap::default();
// For each block in RPO, create an enode for block entry, for
// each block param, and for each instruction.
for &block in self.domtree.cfg_postorder().iter().rev() {
let loop_level = self.loop_analysis.loop_level(block);
let blockparam_start =
u32::try_from(self.blockparam_ids_tys.len()).expect("Overflow in blockparam count");
for (i, &value) in func.dfg.block_params(block).iter().enumerate() {
let ty = func.dfg.value_type(value);
let param = self
.egraph
.add(
Node::Param {
block,
index: i
.try_into()
.expect("blockparam index should fit in Node::Param"),
ty,
loop_level,
},
&mut self.node_ctx,
)
.get();
value_to_id.insert(value, param);
self.blockparam_ids_tys.push((param, ty));
self.stats.node_created += 1;
self.stats.node_param += 1;
}
let blockparam_end =
u32::try_from(self.blockparam_ids_tys.len()).expect("Overflow in blockparam count");
self.blockparams[block] = blockparam_start..blockparam_end;
let side_effect_start =
u32::try_from(self.side_effect_ids.len()).expect("Overflow in side-effect count");
for inst in func.layout.block_insts(block) {
// Build args from SSA values.
let args = EntityList::from_iter(
func.dfg.inst_args(inst).iter().map(|&arg| {
let arg = func.dfg.resolve_aliases(arg);
*value_to_id
.get(&arg)
.expect("Must have seen def before this use")
}),
&mut self.node_ctx.args,
);
let results = func.dfg.inst_results(inst);
let ty = if results.len() == 1 {
func.dfg.value_type(results[0])
} else {
crate::ir::types::INVALID
};
let load_mem_state = self.alias_analysis.get_state_for_load(inst);
let is_readonly_load = match func.dfg[inst] {
InstructionData::Load {
opcode: Opcode::Load,
flags,
..
} => flags.readonly() && flags.notrap(),
_ => false,
};
// Create the egraph node.
let op = InstructionImms::from(&func.dfg[inst]);
let opcode = op.opcode();
let srcloc = func.srclocs[inst];
let arity = u16::try_from(results.len())
.expect("More than 2^16 results from an instruction");
let node = if is_readonly_load {
self.stats.node_created += 1;
self.stats.node_pure += 1;
Node::Pure {
op,
args,
ty,
arity,
}
} else if let Some(load_mem_state) = load_mem_state {
let addr = args.as_slice(&self.node_ctx.args)[0];
trace!("load at inst {} has mem state {:?}", inst, load_mem_state);
self.stats.node_created += 1;
self.stats.node_load += 1;
Node::Load {
op,
ty,
addr,
mem_state: load_mem_state,
srcloc,
}
} else if has_side_effect(func, inst) || opcode.can_load() {
self.stats.node_created += 1;
self.stats.node_inst += 1;
Node::Inst {
op,
args,
ty,
arity,
srcloc,
loop_level,
}
} else {
self.stats.node_created += 1;
self.stats.node_pure += 1;
Node::Pure {
op,
args,
ty,
arity,
}
};
let dedup_needed = self.node_ctx.needs_dedup(&node);
let is_pure = matches!(node, Node::Pure { .. });
let mut id = self.egraph.add(node, &mut self.node_ctx);
if dedup_needed {
self.stats.node_dedup_query += 1;
match id {
NewOrExisting::New(_) => {
self.stats.node_dedup_miss += 1;
}
NewOrExisting::Existing(_) => {
self.stats.node_dedup_hit += 1;
}
}
}
if opcode == Opcode::Store {
let store_data_ty = func.dfg.value_type(func.dfg.inst_args(inst)[0]);
self.store_nodes.insert(inst, (store_data_ty, id.get()));
self.stats.store_map_insert += 1;
}
// Loads that did not already merge into an existing
// load: try to forward from a store (store-to-load
// forwarding).
if let NewOrExisting::New(new_id) = id {
if load_mem_state.is_some() {
let opt_id = crate::opts::store_to_load(new_id, self);
trace!("store_to_load: {} -> {}", new_id, opt_id);
if opt_id != new_id {
id = NewOrExisting::Existing(opt_id);
}
}
}
// Now either optimize (for new pure nodes), or add to
// the side-effecting list (for all other new nodes).
let id = match id {
NewOrExisting::Existing(id) => id,
NewOrExisting::New(id) if is_pure => {
// Apply all optimization rules immediately; the
// aegraph (acyclic egraph) works best when we do
// this so all uses pick up the eclass with all
// possible enodes.
crate::opts::optimize_eclass(id, self)
}
NewOrExisting::New(id) => {
self.side_effect_ids.push(id);
self.stats.side_effect_nodes += 1;
id
}
};
// Create results and save in Value->Id map.
match results {
&[] => {}
&[one_result] => {
trace!("build: value {} -> id {}", one_result, id);
value_to_id.insert(one_result, id);
}
many_results => {
debug_assert!(many_results.len() > 1);
for (i, &result) in many_results.iter().enumerate() {
let ty = func.dfg.value_type(result);
let projection = self
.egraph
.add(
Node::Result {
value: id,
result: i,
ty,
},
&mut self.node_ctx,
)
.get();
self.stats.node_created += 1;
self.stats.node_result += 1;
trace!("build: value {} -> id {}", result, projection);
value_to_id.insert(result, projection);
}
}
}
}
let side_effect_end =
u32::try_from(self.side_effect_ids.len()).expect("Overflow in side-effect count");
let side_effect_range = side_effect_start..side_effect_end;
self.side_effects[block] = side_effect_range;
}
}source§impl LoopAnalysis
impl LoopAnalysis
sourcepub fn compute(
&mut self,
func: &Function,
cfg: &ControlFlowGraph,
domtree: &DominatorTree
)
pub fn compute(
&mut self,
func: &Function,
cfg: &ControlFlowGraph,
domtree: &DominatorTree
)
Detects the loops in a function. Needs the control flow graph and the dominator tree.
sourcepub fn is_valid(&self) -> bool
pub fn is_valid(&self) -> bool
Check if the loop analysis is in a valid state.
Note that this doesn’t perform any kind of validity checks. It simply checks if the
compute() method has been called since the last clear(). It does not check that the
loop analysis is consistent with the CFG.
Examples found in repository?
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
pub fn do_licm(
func: &mut Function,
cfg: &mut ControlFlowGraph,
domtree: &mut DominatorTree,
loop_analysis: &mut LoopAnalysis,
) {
let _tt = timing::licm();
debug_assert!(cfg.is_valid());
debug_assert!(domtree.is_valid());
debug_assert!(loop_analysis.is_valid());
for lp in loop_analysis.loops() {
// For each loop that we want to optimize we determine the set of loop-invariant
// instructions
let invariant_insts = remove_loop_invariant_instructions(lp, func, cfg, loop_analysis);
// Then we create the loop's pre-header and fill it with the invariant instructions
// Then we remove the invariant instructions from the loop body
if !invariant_insts.is_empty() {
// If the loop has a natural pre-header we use it, otherwise we create it.
let mut pos;
match has_pre_header(&func.layout, cfg, domtree, loop_analysis.loop_header(lp)) {
None => {
let pre_header =
create_pre_header(loop_analysis.loop_header(lp), func, cfg, domtree);
pos = FuncCursor::new(func).at_last_inst(pre_header);
}
// If there is a natural pre-header we insert new instructions just before the
// related jumping instruction (which is not necessarily at the end).
Some((_, last_inst)) => {
pos = FuncCursor::new(func).at_inst(last_inst);
}
};
// The last instruction of the pre-header is the termination instruction (usually
// a jump) so we need to insert just before this.
for inst in invariant_insts {
pos.insert_inst(inst);
}
}
}
// We have to recompute the domtree to account for the changes
cfg.compute(func);
domtree.compute(func, cfg);
}sourcepub fn clear(&mut self)
pub fn clear(&mut self)
Clear all the data structures contained in the loop analysis. This will leave the
analysis in a similar state to a context returned by new() except that allocated
memory be retained.
Examples found in repository?
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
pub fn clear(&mut self) {
self.func.clear();
self.cfg.clear();
self.domtree.clear();
self.loop_analysis.clear();
self.compiled_code = None;
self.want_disasm = false;
}
/// Returns the compilation result for this function, available after any `compile` function
/// has been called.
pub fn compiled_code(&self) -> Option<&CompiledCode> {
self.compiled_code.as_ref()
}
/// Set the flag to request a disassembly when compiling with a
/// `MachBackend` backend.
pub fn set_disasm(&mut self, val: bool) {
self.want_disasm = val;
}
/// Compile the function, and emit machine code into a `Vec<u8>`.
///
/// Run the function through all the passes necessary to generate
/// code for the target ISA represented by `isa`, as well as the
/// final step of emitting machine code into a `Vec<u8>`. The
/// machine code is not relocated. Instead, any relocations can be
/// obtained from `compiled_code()`.
///
/// Performs any optimizations that are enabled, unless
/// `optimize()` was already invoked.
///
/// This function calls `compile`, taking care to resize `mem` as
/// needed.
///
/// Returns information about the function's code and read-only
/// data.
pub fn compile_and_emit(
&mut self,
isa: &dyn TargetIsa,
mem: &mut Vec<u8>,
) -> CompileResult<&CompiledCode> {
let compiled_code = self.compile(isa)?;
mem.extend_from_slice(compiled_code.code_buffer());
Ok(compiled_code)
}
/// Internally compiles the function into a stencil.
///
/// Public only for testing and fuzzing purposes.
pub fn compile_stencil(&mut self, isa: &dyn TargetIsa) -> CodegenResult<CompiledCodeStencil> {
let _tt = timing::compile();
self.verify_if(isa)?;
self.optimize(isa)?;
isa.compile_function(&self.func, self.want_disasm)
}
/// Optimize the function, performing all compilation steps up to
/// but not including machine-code lowering and register
/// allocation.
///
/// Public only for testing purposes.
pub fn optimize(&mut self, isa: &dyn TargetIsa) -> CodegenResult<()> {
log::debug!(
"Number of CLIF instructions to optimize: {}",
self.func.dfg.num_insts()
);
log::debug!(
"Number of CLIF blocks to optimize: {}",
self.func.dfg.num_blocks()
);
let opt_level = isa.flags().opt_level();
crate::trace!(
"Optimizing (opt level {:?}):\n{}",
opt_level,
self.func.display()
);
self.compute_cfg();
if !isa.flags().use_egraphs() && opt_level != OptLevel::None {
self.preopt(isa)?;
}
if isa.flags().enable_nan_canonicalization() {
self.canonicalize_nans(isa)?;
}
self.legalize(isa)?;
if !isa.flags().use_egraphs() && opt_level != OptLevel::None {
self.compute_domtree();
self.compute_loop_analysis();
self.licm(isa)?;
self.simple_gvn(isa)?;
}
self.compute_domtree();
self.eliminate_unreachable_code(isa)?;
if isa.flags().use_egraphs() || opt_level != OptLevel::None {
self.dce(isa)?;
}
self.remove_constant_phis(isa)?;
if isa.flags().use_egraphs() {
log::debug!(
"About to optimize with egraph phase:\n{}",
self.func.display()
);
self.compute_loop_analysis();
let mut eg = FuncEGraph::new(&self.func, &self.domtree, &self.loop_analysis, &self.cfg);
eg.elaborate(&mut self.func);
log::debug!("After egraph optimization:\n{}", self.func.display());
log::info!("egraph stats: {:?}", eg.stats);
} else if opt_level != OptLevel::None && isa.flags().enable_alias_analysis() {
self.replace_redundant_loads()?;
self.simple_gvn(isa)?;
}
Ok(())
}
/// Compile the function.
///
/// Run the function through all the passes necessary to generate code for the target ISA
/// represented by `isa`. This does not include the final step of emitting machine code into a
/// code sink.
///
/// Returns information about the function's code and read-only data.
pub fn compile(&mut self, isa: &dyn TargetIsa) -> CompileResult<&CompiledCode> {
let _tt = timing::compile();
let stencil = self.compile_stencil(isa).map_err(|error| CompileError {
inner: error,
func: &self.func,
})?;
Ok(self
.compiled_code
.insert(stencil.apply_params(&self.func.params)))
}
/// If available, return information about the code layout in the
/// final machine code: the offsets (in bytes) of each basic-block
/// start, and all basic-block edges.
#[deprecated = "use CompiledCode::get_code_bb_layout"]
pub fn get_code_bb_layout(&self) -> Option<(Vec<usize>, Vec<(usize, usize)>)> {
self.compiled_code().map(CompiledCode::get_code_bb_layout)
}
/// Creates unwind information for the function.
///
/// Returns `None` if the function has no unwind information.
#[cfg(feature = "unwind")]
#[deprecated = "use CompiledCode::create_unwind_info"]
pub fn create_unwind_info(
&self,
isa: &dyn TargetIsa,
) -> CodegenResult<Option<crate::isa::unwind::UnwindInfo>> {
self.compiled_code().unwrap().create_unwind_info(isa)
}
/// Run the verifier on the function.
///
/// Also check that the dominator tree and control flow graph are consistent with the function.
pub fn verify<'a, FOI: Into<FlagsOrIsa<'a>>>(&self, fisa: FOI) -> VerifierResult<()> {
let mut errors = VerifierErrors::default();
let _ = verify_context(&self.func, &self.cfg, &self.domtree, fisa, &mut errors);
if errors.is_empty() {
Ok(())
} else {
Err(errors)
}
}
/// Run the verifier only if the `enable_verifier` setting is true.
pub fn verify_if<'a, FOI: Into<FlagsOrIsa<'a>>>(&self, fisa: FOI) -> CodegenResult<()> {
let fisa = fisa.into();
if fisa.flags.enable_verifier() {
self.verify(fisa)?;
}
Ok(())
}
/// Perform dead-code elimination on the function.
pub fn dce<'a, FOI: Into<FlagsOrIsa<'a>>>(&mut self, fisa: FOI) -> CodegenResult<()> {
do_dce(&mut self.func, &mut self.domtree);
self.verify_if(fisa)?;
Ok(())
}
/// Perform constant-phi removal on the function.
pub fn remove_constant_phis<'a, FOI: Into<FlagsOrIsa<'a>>>(
&mut self,
fisa: FOI,
) -> CodegenResult<()> {
do_remove_constant_phis(&mut self.func, &mut self.domtree);
self.verify_if(fisa)?;
Ok(())
}
/// Perform pre-legalization rewrites on the function.
pub fn preopt(&mut self, isa: &dyn TargetIsa) -> CodegenResult<()> {
do_preopt(&mut self.func, &mut self.cfg, isa);
self.verify_if(isa)?;
Ok(())
}
/// Perform NaN canonicalizing rewrites on the function.
pub fn canonicalize_nans(&mut self, isa: &dyn TargetIsa) -> CodegenResult<()> {
do_nan_canonicalization(&mut self.func);
self.verify_if(isa)
}
/// Run the legalizer for `isa` on the function.
pub fn legalize(&mut self, isa: &dyn TargetIsa) -> CodegenResult<()> {
// Legalization invalidates the domtree and loop_analysis by mutating the CFG.
// TODO: Avoid doing this when legalization doesn't actually mutate the CFG.
self.domtree.clear();
self.loop_analysis.clear();
// Run some specific legalizations only.
simple_legalize(&mut self.func, &mut self.cfg, isa);
self.verify_if(isa)
}