pub struct TransformerModel<T = f64> {
pub config: StandardModelConfig<T>,
pub features: ModelFeatures,
pub params: DeepModelParams<T>,
}Fields§
§config: StandardModelConfig<T>§features: ModelFeatures§params: DeepModelParams<T>Implementations§
Source§impl<T> TransformerModel<T>
impl<T> TransformerModel<T>
pub fn new(config: StandardModelConfig<T>, features: ModelFeatures) -> Self
pub fn init(self) -> Self
Sourcepub const fn config(&self) -> &StandardModelConfig<T>
pub const fn config(&self) -> &StandardModelConfig<T>
returns a reference to the model configuration
Sourcepub const fn config_mut(&mut self) -> &mut StandardModelConfig<T>
pub const fn config_mut(&mut self) -> &mut StandardModelConfig<T>
returns a mutable reference to the model configuration
Sourcepub const fn features(&self) -> ModelFeatures
pub const fn features(&self) -> ModelFeatures
returns the model features
Sourcepub const fn features_mut(&mut self) -> &mut ModelFeatures
pub const fn features_mut(&mut self) -> &mut ModelFeatures
returns a mutable reference to the model features
Sourcepub const fn params(&self) -> &DeepModelParams<T>
pub const fn params(&self) -> &DeepModelParams<T>
returns a reference to the model parameters
Sourcepub const fn params_mut(&mut self) -> &mut DeepModelParams<T>
pub const fn params_mut(&mut self) -> &mut DeepModelParams<T>
returns a mutable reference to the model parameters
Sourcepub fn set_config(&mut self, config: StandardModelConfig<T>) -> &mut Self
pub fn set_config(&mut self, config: StandardModelConfig<T>) -> &mut Self
set the current configuration and return a mutable reference to the model
Sourcepub fn set_features(&mut self, features: ModelFeatures) -> &mut Self
pub fn set_features(&mut self, features: ModelFeatures) -> &mut Self
set the current features and return a mutable reference to the model
Sourcepub fn set_params(&mut self, params: DeepModelParams<T>) -> &mut Self
pub fn set_params(&mut self, params: DeepModelParams<T>) -> &mut Self
set the current parameters and return a mutable reference to the model
Sourcepub fn with_config(self, config: StandardModelConfig<T>) -> Self
pub fn with_config(self, config: StandardModelConfig<T>) -> Self
consumes the current instance to create another with the given configuration
Sourcepub fn with_features(self, features: ModelFeatures) -> Self
pub fn with_features(self, features: ModelFeatures) -> Self
consumes the current instance to create another with the given features
Sourcepub fn with_params(self, params: DeepModelParams<T>) -> Self
pub fn with_params(self, params: DeepModelParams<T>) -> Self
consumes the current instance to create another with the given parameters
Trait Implementations§
Source§impl<T: Clone> Clone for TransformerModel<T>
impl<T: Clone> Clone for TransformerModel<T>
Source§fn clone(&self) -> TransformerModel<T>
fn clone(&self) -> TransformerModel<T>
Returns a duplicate of the value. Read more
1.0.0 · Source§const fn clone_from(&mut self, source: &Self)
const fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moreSource§impl<T: Debug> Debug for TransformerModel<T>
impl<T: Debug> Debug for TransformerModel<T>
Source§impl<A, U, V> Forward<U> for TransformerModel<A>
impl<A, U, V> Forward<U> for TransformerModel<A>
type Output = V
Source§fn forward_then<F>(&self, input: &Rhs, then: F) -> Result<Self::Output, Error>
fn forward_then<F>(&self, input: &Rhs, then: F) -> Result<Self::Output, Error>
this method enables the forward pass to be generically activated using some closure.
This is useful for isolating the logic of the forward pass from that of the activation
function and is often used by layers and models.
Source§impl<T> Model<T> for TransformerModel<T>
impl<T> Model<T> for TransformerModel<T>
Source§type Config = StandardModelConfig<T>
type Config = StandardModelConfig<T>
The type of configuration used for the model
Source§type Layout = ModelFeatures
type Layout = ModelFeatures
The type of
ModelLayout used by the model for this implementation.Source§fn config(&self) -> &StandardModelConfig<T>
fn config(&self) -> &StandardModelConfig<T>
returns an immutable reference to the models configuration; this is typically used to
access the models hyperparameters (i.e. learning rate, momentum, etc.) and other
related control parameters.
Source§fn config_mut(&mut self) -> &mut StandardModelConfig<T>
fn config_mut(&mut self) -> &mut StandardModelConfig<T>
returns a mutable reference to the models configuration; useful for setting hyperparams
Source§fn layout(&self) -> ModelFeatures
fn layout(&self) -> ModelFeatures
returns a copy of the model’s current layout (features); a type providing the model
with a particular number of features for the various layers of a deep neural network. Read more
Source§fn params(&self) -> &DeepModelParams<T>
fn params(&self) -> &DeepModelParams<T>
returns an immutable reference to the model parameters
Source§fn params_mut(&mut self) -> &mut DeepModelParams<T>
fn params_mut(&mut self) -> &mut DeepModelParams<T>
returns a mutable reference to the model’s parameters
Source§fn predict<U, V>(&self, inputs: &U) -> Result<V, ModelError>where
Self: Predict<U, Output = V>,
fn predict<U, V>(&self, inputs: &U) -> Result<V, ModelError>where
Self: Predict<U, Output = V>,
propagates the input through the model; each layer is applied in sequence meaning that
the output of each previous layer is the input to the next layer. This pattern
repeats until the output layer returns the final result. Read more
Source§fn train<U, V, W>(
&mut self,
dataset: &DatasetBase<U, V>,
) -> Result<W, ModelError>where
Self: Train<U, V, Output = W>,
fn train<U, V, W>(
&mut self,
dataset: &DatasetBase<U, V>,
) -> Result<W, ModelError>where
Self: Train<U, V, Output = W>,
a convience method that trains the model using the provided dataset; this method
requires that the model implements the
Train trait and that the datasetSource§impl<A, S, T> Train<ArrayBase<S, Dim<[usize; 1]>>, ArrayBase<T, Dim<[usize; 1]>>> for TransformerModel<A>where
A: Float + FromPrimitive + NumAssign + ScalarOperand + Debug,
S: Data<Elem = A>,
T: Data<Elem = A>,
impl<A, S, T> Train<ArrayBase<S, Dim<[usize; 1]>>, ArrayBase<T, Dim<[usize; 1]>>> for TransformerModel<A>where
A: Float + FromPrimitive + NumAssign + ScalarOperand + Debug,
S: Data<Elem = A>,
T: Data<Elem = A>,
Auto Trait Implementations§
impl<T> Freeze for TransformerModel<T>
impl<T> RefUnwindSafe for TransformerModel<T>where
T: RefUnwindSafe,
impl<T> Send for TransformerModel<T>where
T: Send,
impl<T> Sync for TransformerModel<T>where
T: Sync,
impl<T> Unpin for TransformerModel<T>where
T: Unpin,
impl<T> UnwindSafe for TransformerModel<T>where
T: UnwindSafe + RefUnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CallInPlace<T> for Twhere
T: CallInto<T>,
impl<T> CallInPlace<T> for Twhere
T: CallInto<T>,
Source§fn call_inplace<F>(&mut self, f: F) -> <T as CallInto<T>>::Output
fn call_inplace<F>(&mut self, f: F) -> <T as CallInto<T>>::Output
The
call_on_mut method allows an object to be passed onto a function that takes a mutable reference
to the object. This is useful for cases where you want to perform an operation on
an object and mutate it in the process.Source§impl<T> CallInto<T> for T
impl<T> CallInto<T> for T
Source§impl<T> CallOn<T> for Twhere
T: CallInto<T>,
impl<T> CallOn<T> for Twhere
T: CallInto<T>,
Source§fn call_on<F>(&self, f: F) -> <T as CallInto<T>>::Output
fn call_on<F>(&self, f: F) -> <T as CallInto<T>>::Output
The
call_on method allows an object to be passed onto a function that takes a reference
to the object. This is useful for cases where you want to perform an operation on
an object without needing to extract it from a container or context.