pub struct NdArray<E = f32, I = i64, Q = i8>{ /* private fields */ }Expand description
Tensor backend that uses the ndarray crate for executing tensor operations.
This backend is compatible with CPUs and can be compiled for almost any platform, including
wasm, arm, and x86.
Trait Implementations§
Source§impl<E: FloatNdArrayElement, I: IntNdArrayElement, Q: QuantElement> ActivationOps<NdArray<E, I, Q>> for NdArray<E, I, Q>
impl<E: FloatNdArrayElement, I: IntNdArrayElement, Q: QuantElement> ActivationOps<NdArray<E, I, Q>> for NdArray<E, I, Q>
Source§fn relu(tensor: FloatTensor<Self>) -> FloatTensor<Self>
fn relu(tensor: FloatTensor<Self>) -> FloatTensor<Self>
Applies the ReLU activation function. Read more
Source§fn leaky_relu(
tensor: <B as Backend>::FloatTensorPrimitive,
negative_slope: <B as Backend>::FloatElem,
) -> <B as Backend>::FloatTensorPrimitive
fn leaky_relu( tensor: <B as Backend>::FloatTensorPrimitive, negative_slope: <B as Backend>::FloatElem, ) -> <B as Backend>::FloatTensorPrimitive
Applies the LeakyReLU activation function. Read more
Source§fn relu_backward(
output: <B as Backend>::FloatTensorPrimitive,
grad: <B as Backend>::FloatTensorPrimitive,
) -> <B as Backend>::FloatTensorPrimitive
fn relu_backward( output: <B as Backend>::FloatTensorPrimitive, grad: <B as Backend>::FloatTensorPrimitive, ) -> <B as Backend>::FloatTensorPrimitive
Applies the ReLU activation function backward. Read more
Source§fn gelu(
tensor: <B as Backend>::FloatTensorPrimitive,
) -> <B as Backend>::FloatTensorPrimitive
fn gelu( tensor: <B as Backend>::FloatTensorPrimitive, ) -> <B as Backend>::FloatTensorPrimitive
Applies the Gelu activation function. Read more
Source§fn prelu(
tensor: <B as Backend>::FloatTensorPrimitive,
alpha: <B as Backend>::FloatTensorPrimitive,
) -> <B as Backend>::FloatTensorPrimitive
fn prelu( tensor: <B as Backend>::FloatTensorPrimitive, alpha: <B as Backend>::FloatTensorPrimitive, ) -> <B as Backend>::FloatTensorPrimitive
Applies the PReLu activation function. Read more
Source§fn gelu_backward(
x: <B as Backend>::FloatTensorPrimitive,
grad: <B as Backend>::FloatTensorPrimitive,
) -> <B as Backend>::FloatTensorPrimitive
fn gelu_backward( x: <B as Backend>::FloatTensorPrimitive, grad: <B as Backend>::FloatTensorPrimitive, ) -> <B as Backend>::FloatTensorPrimitive
Applies the Gelu activation function backward. Read more
Source§fn sigmoid(
tensor: <B as Backend>::FloatTensorPrimitive,
) -> <B as Backend>::FloatTensorPrimitive
fn sigmoid( tensor: <B as Backend>::FloatTensorPrimitive, ) -> <B as Backend>::FloatTensorPrimitive
Applies the Sigmoid activation function. Read more
Source§fn sigmoid_backward(
output: <B as Backend>::FloatTensorPrimitive,
grad: <B as Backend>::FloatTensorPrimitive,
) -> <B as Backend>::FloatTensorPrimitive
fn sigmoid_backward( output: <B as Backend>::FloatTensorPrimitive, grad: <B as Backend>::FloatTensorPrimitive, ) -> <B as Backend>::FloatTensorPrimitive
Applies the Sigmoid activation function backward. Read more
Source§fn hard_sigmoid(
tensor: <B as Backend>::FloatTensorPrimitive,
alpha: <B as Backend>::FloatElem,
beta: <B as Backend>::FloatElem,
) -> <B as Backend>::FloatTensorPrimitive
fn hard_sigmoid( tensor: <B as Backend>::FloatTensorPrimitive, alpha: <B as Backend>::FloatElem, beta: <B as Backend>::FloatElem, ) -> <B as Backend>::FloatTensorPrimitive
Applies the hard Sigmoid activation function. Read more
Source§fn log_sigmoid(
tensor: <B as Backend>::FloatTensorPrimitive,
) -> <B as Backend>::FloatTensorPrimitive
fn log_sigmoid( tensor: <B as Backend>::FloatTensorPrimitive, ) -> <B as Backend>::FloatTensorPrimitive
Applies the LogSigmoid activation function. Read more
Source§fn log_sigmoid_backward(
x: <B as Backend>::FloatTensorPrimitive,
grad: <B as Backend>::FloatTensorPrimitive,
) -> <B as Backend>::FloatTensorPrimitive
fn log_sigmoid_backward( x: <B as Backend>::FloatTensorPrimitive, grad: <B as Backend>::FloatTensorPrimitive, ) -> <B as Backend>::FloatTensorPrimitive
Applies the LogSigmoid activation function backward. Read more
Source§impl<E: FloatNdArrayElement, I: IntNdArrayElement, Q: QuantElement> Backend for NdArray<E, I, Q>
impl<E: FloatNdArrayElement, I: IntNdArrayElement, Q: QuantElement> Backend for NdArray<E, I, Q>
Source§type Device = NdArrayDevice
type Device = NdArrayDevice
Device type.
Source§type FloatTensorPrimitive = NdArrayTensor
type FloatTensorPrimitive = NdArrayTensor
Tensor primitive to be used for all float operations.
Source§type IntTensorPrimitive = NdArrayTensor
type IntTensorPrimitive = NdArrayTensor
Tensor primitive to be used for all int operations.
Source§type BoolTensorPrimitive = NdArrayTensor
type BoolTensorPrimitive = NdArrayTensor
Tensor primitive to be used for all bool operations.
Source§type QuantizedTensorPrimitive = NdArrayQTensor
type QuantizedTensorPrimitive = NdArrayQTensor
Tensor primitive to be used for all quantized operations.
Source§fn ad_enabled() -> bool
fn ad_enabled() -> bool
If autodiff is enabled.
Source§fn seed(_device: &Self::Device, seed: u64)
fn seed(_device: &Self::Device, seed: u64)
Seeds the backend on the specified device. Read more
Source§fn memory_persistent_allocations<Output, Input, Func>(
device: &Self::Device,
input: Input,
func: Func,
) -> Outputwhere
Func: Fn(Input) -> Output,
fn memory_persistent_allocations<Output, Input, Func>(
device: &Self::Device,
input: Input,
func: Func,
) -> Outputwhere
Func: Fn(Input) -> Output,
Sets the current allocation mode to persistent.
Source§fn memory_cleanup(device: &Self::Device)
fn memory_cleanup(device: &Self::Device)
Manually triggers a memory cleanup on the given device.
Source§impl<E: FloatNdArrayElement, I: IntNdArrayElement, Q: QuantElement> BackendIr for NdArray<E, I, Q>
impl<E: FloatNdArrayElement, I: IntNdArrayElement, Q: QuantElement> BackendIr for NdArray<E, I, Q>
Source§type Handle = HandleKind<NdArray<E, I, Q>>
type Handle = HandleKind<NdArray<E, I, Q>>
The type that can be used to point to a tensor of any kind.
Source§fn float_tensor(handle: TensorHandle<Self::Handle>) -> FloatTensor<Self>
fn float_tensor(handle: TensorHandle<Self::Handle>) -> FloatTensor<Self>
Convert a handle to a float tensor.
Source§fn int_tensor(handle: TensorHandle<Self::Handle>) -> IntTensor<Self>
fn int_tensor(handle: TensorHandle<Self::Handle>) -> IntTensor<Self>
Convert a handle to an int tensor.
Source§fn bool_tensor(handle: TensorHandle<Self::Handle>) -> BoolTensor<Self>
fn bool_tensor(handle: TensorHandle<Self::Handle>) -> BoolTensor<Self>
Convert a handle to a bool tensor.
Source§fn quantized_tensor(handle: TensorHandle<Self::Handle>) -> QuantizedTensor<Self>
fn quantized_tensor(handle: TensorHandle<Self::Handle>) -> QuantizedTensor<Self>
Convert a handle to a quantized tensor.
Source§fn float_tensor_handle(tensor: FloatTensor<Self>) -> Self::Handle
fn float_tensor_handle(tensor: FloatTensor<Self>) -> Self::Handle
Convert a float tensor to a handle.
Source§fn int_tensor_handle(tensor: IntTensor<Self>) -> Self::Handle
fn int_tensor_handle(tensor: IntTensor<Self>) -> Self::Handle
Convert an int tensor to a handle.
Source§fn bool_tensor_handle(tensor: BoolTensor<Self>) -> Self::Handle
fn bool_tensor_handle(tensor: BoolTensor<Self>) -> Self::Handle
Convert a bool tensor to a handle.
Source§fn quantized_tensor_handle(tensor: QuantizedTensor<Self>) -> Self::Handle
fn quantized_tensor_handle(tensor: QuantizedTensor<Self>) -> Self::Handle
Convert a quantized tensor to a handle.
Source§impl<E: FloatNdArrayElement, I: IntNdArrayElement, Q: QuantElement> BoolTensorOps<NdArray<E, I, Q>> for NdArray<E, I, Q>
impl<E: FloatNdArrayElement, I: IntNdArrayElement, Q: QuantElement> BoolTensorOps<NdArray<E, I, Q>> for NdArray<E, I, Q>
Source§fn bool_from_data(data: TensorData, _device: &NdArrayDevice) -> NdArrayTensor
fn bool_from_data(data: TensorData, _device: &NdArrayDevice) -> NdArrayTensor
Creates a tensor from the data structure. Read more
Source§async fn bool_into_data(tensor: NdArrayTensor) -> TensorData
async fn bool_into_data(tensor: NdArrayTensor) -> TensorData
Converts the tensor to a data structure. Read more
Source§fn bool_to_device(
tensor: NdArrayTensor,
_device: &NdArrayDevice,
) -> NdArrayTensor
fn bool_to_device( tensor: NdArrayTensor, _device: &NdArrayDevice, ) -> NdArrayTensor
Moves the tensor to the device.
Source§fn bool_reshape(tensor: NdArrayTensor, shape: Shape) -> NdArrayTensor
fn bool_reshape(tensor: NdArrayTensor, shape: Shape) -> NdArrayTensor
Reshapes the tensor. Read more
Source§fn bool_slice(tensor: NdArrayTensor, slices: &[Slice]) -> NdArrayTensor
fn bool_slice(tensor: NdArrayTensor, slices: &[Slice]) -> NdArrayTensor
Gets the values from the tensor for the given ranges. Read more
Source§fn bool_into_int(tensor: NdArrayTensor) -> NdArrayTensor
fn bool_into_int(tensor: NdArrayTensor) -> NdArrayTensor
Converts bool tensor to int tensor. Read more
Source§fn bool_device(_tensor: &NdArrayTensor) -> <NdArray<E> as Backend>::Device
fn bool_device(_tensor: &NdArrayTensor) -> <NdArray<E> as Backend>::Device
Gets the device of the tensor. Read more
Source§fn bool_empty(
shape: Shape,
_device: &<NdArray<E> as Backend>::Device,
) -> NdArrayTensor
fn bool_empty( shape: Shape, _device: &<NdArray<E> as Backend>::Device, ) -> NdArrayTensor
Creates a new bool tensor. Read more
Source§fn bool_zeros(
shape: Shape,
_device: &<NdArray<E> as Backend>::Device,
) -> NdArrayTensor
fn bool_zeros( shape: Shape, _device: &<NdArray<E> as Backend>::Device, ) -> NdArrayTensor
Creates a new bool tensor filled false. Read more
Source§fn bool_ones(
shape: Shape,
_device: &<NdArray<E> as Backend>::Device,
) -> NdArrayTensor
fn bool_ones( shape: Shape, _device: &<NdArray<E> as Backend>::Device, ) -> NdArrayTensor
Creates a new bool tensor filled true. Read more
Source§fn bool_slice_assign(
tensor: NdArrayTensor,
slices: &[Slice],
value: NdArrayTensor,
) -> NdArrayTensor
fn bool_slice_assign( tensor: NdArrayTensor, slices: &[Slice], value: NdArrayTensor, ) -> NdArrayTensor
Sets the values in the tensor for the given ranges. Read more
Source§fn bool_cat(tensors: Vec<NdArrayTensor>, dim: usize) -> NdArrayTensor
fn bool_cat(tensors: Vec<NdArrayTensor>, dim: usize) -> NdArrayTensor
Concatenates the tensors along the given dimension. Read more
Source§fn bool_equal(lhs: NdArrayTensor, rhs: NdArrayTensor) -> NdArrayTensor
fn bool_equal(lhs: NdArrayTensor, rhs: NdArrayTensor) -> NdArrayTensor
Equates the two tensors. Read more
Source§fn bool_not(tensor: NdArrayTensor) -> NdArrayTensor
fn bool_not(tensor: NdArrayTensor) -> NdArrayTensor
Inverses boolean values. Read more
Source§fn bool_and(lhs: NdArrayTensor, rhs: NdArrayTensor) -> NdArrayTensor
fn bool_and(lhs: NdArrayTensor, rhs: NdArrayTensor) -> NdArrayTensor
Executes the logical and (
&&) operation on two boolean tensors. Read moreSource§fn bool_or(lhs: NdArrayTensor, rhs: NdArrayTensor) -> NdArrayTensor
fn bool_or(lhs: NdArrayTensor, rhs: NdArrayTensor) -> NdArrayTensor
Executes the logical or (
||) operation on two boolean tensors. Read moreSource§fn bool_into_float(tensor: NdArrayTensor) -> FloatTensor<Self>
fn bool_into_float(tensor: NdArrayTensor) -> FloatTensor<Self>
Converts bool tensor to float tensor. Read more
Source§fn bool_swap_dims(
tensor: NdArrayTensor,
dim1: usize,
dim2: usize,
) -> NdArrayTensor
fn bool_swap_dims( tensor: NdArrayTensor, dim1: usize, dim2: usize, ) -> NdArrayTensor
Swaps two dimensions of a bool tensor. Read more
Source§fn bool_permute(tensor: NdArrayTensor, axes: &[usize]) -> NdArrayTensor
fn bool_permute(tensor: NdArrayTensor, axes: &[usize]) -> NdArrayTensor
Permutes the dimensions of a tensor. Read more
Source§fn bool_expand(tensor: NdArrayTensor, shape: Shape) -> NdArrayTensor
fn bool_expand(tensor: NdArrayTensor, shape: Shape) -> NdArrayTensor
Broadcasts the bool
tensor to the given shape.Source§fn bool_select(
tensor: NdArrayTensor,
dim: usize,
indices: NdArrayTensor,
) -> NdArrayTensor
fn bool_select( tensor: NdArrayTensor, dim: usize, indices: NdArrayTensor, ) -> NdArrayTensor
Select tensor elements along the given dimension corresponding to the given indices. Read more
Source§fn bool_select_assign(
tensor: NdArrayTensor,
dim: usize,
indices: NdArrayTensor,
value: NdArrayTensor,
) -> NdArrayTensor
fn bool_select_assign( tensor: NdArrayTensor, dim: usize, indices: NdArrayTensor, value: NdArrayTensor, ) -> NdArrayTensor
Assign the selected elements along the given dimension corresponding to the given indices
to the given value. Read more
Source§fn bool_flip(tensor: NdArrayTensor, axes: &[usize]) -> NdArrayTensor
fn bool_flip(tensor: NdArrayTensor, axes: &[usize]) -> NdArrayTensor
Reverse the order of elements in a tensor along the given axes. Read more
Source§fn bool_unfold(
tensor: NdArrayTensor,
dim: usize,
size: usize,
step: usize,
) -> NdArrayTensor
fn bool_unfold( tensor: NdArrayTensor, dim: usize, size: usize, step: usize, ) -> NdArrayTensor
Unfold windows along a dimension. Read more
Source§fn bool_repeat_dim(
tensor: <B as Backend>::BoolTensorPrimitive,
dim: usize,
times: usize,
) -> <B as Backend>::BoolTensorPrimitive
fn bool_repeat_dim( tensor: <B as Backend>::BoolTensorPrimitive, dim: usize, times: usize, ) -> <B as Backend>::BoolTensorPrimitive
Repeats one dimension of the tensor a given number of times along that dimension. Read more
Source§fn bool_not_equal(
lhs: <B as Backend>::BoolTensorPrimitive,
rhs: <B as Backend>::BoolTensorPrimitive,
) -> <B as Backend>::BoolTensorPrimitive
fn bool_not_equal( lhs: <B as Backend>::BoolTensorPrimitive, rhs: <B as Backend>::BoolTensorPrimitive, ) -> <B as Backend>::BoolTensorPrimitive
Element-wise non-equality comparison. Read more
Source§fn bool_xor(
lhs: <B as Backend>::BoolTensorPrimitive,
rhs: <B as Backend>::BoolTensorPrimitive,
) -> <B as Backend>::BoolTensorPrimitive
fn bool_xor( lhs: <B as Backend>::BoolTensorPrimitive, rhs: <B as Backend>::BoolTensorPrimitive, ) -> <B as Backend>::BoolTensorPrimitive
Element-wise exclusive or. Read more
Source§fn bool_transpose(
tensor: <B as Backend>::BoolTensorPrimitive,
) -> <B as Backend>::BoolTensorPrimitive
fn bool_transpose( tensor: <B as Backend>::BoolTensorPrimitive, ) -> <B as Backend>::BoolTensorPrimitive
Transposes a bool tensor. Read more
Source§fn bool_any(
tensor: <B as Backend>::BoolTensorPrimitive,
) -> <B as Backend>::BoolTensorPrimitive
fn bool_any( tensor: <B as Backend>::BoolTensorPrimitive, ) -> <B as Backend>::BoolTensorPrimitive
Tests if any element in the boolean
tensor evaluates to True. Read moreSource§fn bool_any_dim(
tensor: <B as Backend>::BoolTensorPrimitive,
dim: usize,
) -> <B as Backend>::BoolTensorPrimitive
fn bool_any_dim( tensor: <B as Backend>::BoolTensorPrimitive, dim: usize, ) -> <B as Backend>::BoolTensorPrimitive
Source§fn bool_all(
tensor: <B as Backend>::BoolTensorPrimitive,
) -> <B as Backend>::BoolTensorPrimitive
fn bool_all( tensor: <B as Backend>::BoolTensorPrimitive, ) -> <B as Backend>::BoolTensorPrimitive
Tests if all elements in the boolean
tensor evaluate to True. Read moreSource§fn bool_all_dim(
tensor: <B as Backend>::BoolTensorPrimitive,
dim: usize,
) -> <B as Backend>::BoolTensorPrimitive
fn bool_all_dim( tensor: <B as Backend>::BoolTensorPrimitive, dim: usize, ) -> <B as Backend>::BoolTensorPrimitive
Source§fn bool_argwhere(
tensor: <B as Backend>::BoolTensorPrimitive,
) -> impl Future<Output = <B as Backend>::IntTensorPrimitive> + Send + 'static
fn bool_argwhere( tensor: <B as Backend>::BoolTensorPrimitive, ) -> impl Future<Output = <B as Backend>::IntTensorPrimitive> + Send + 'static
Compute the indices of the elements that are non-zero, grouped by element. Read more
Source§impl<E: FloatNdArrayElement, I: IntNdArrayElement, Q: QuantElement> FloatTensorOps<NdArray<E, I, Q>> for NdArray<E, I, Q>
impl<E: FloatNdArrayElement, I: IntNdArrayElement, Q: QuantElement> FloatTensorOps<NdArray<E, I, Q>> for NdArray<E, I, Q>
Source§fn float_from_data(
data: TensorData,
_device: &NdArrayDevice,
) -> FloatTensor<Self>
fn float_from_data( data: TensorData, _device: &NdArrayDevice, ) -> FloatTensor<Self>
Creates a new tensor from the data structure. Read more
Source§fn float_random(
shape: Shape,
distribution: Distribution,
device: &NdArrayDevice,
) -> FloatTensor<Self>
fn float_random( shape: Shape, distribution: Distribution, device: &NdArrayDevice, ) -> FloatTensor<Self>
Creates a new tensor with random values. Read more
Source§async fn float_into_data(tensor: FloatTensor<Self>) -> TensorData
async fn float_into_data(tensor: FloatTensor<Self>) -> TensorData
Converts the tensor to a data structure. Read more
Source§fn float_device(_tensor: &FloatTensor<Self>) -> NdArrayDevice
fn float_device(_tensor: &FloatTensor<Self>) -> NdArrayDevice
Gets the device of the tensor. Read more
Source§fn float_to_device(
tensor: FloatTensor<Self>,
_device: &NdArrayDevice,
) -> FloatTensor<Self>
fn float_to_device( tensor: FloatTensor<Self>, _device: &NdArrayDevice, ) -> FloatTensor<Self>
Moves the tensor to the given device. Read more
Source§fn float_empty(
shape: Shape,
device: &<NdArray<E> as Backend>::Device,
dtype: FloatDType,
) -> FloatTensor<Self>
fn float_empty( shape: Shape, device: &<NdArray<E> as Backend>::Device, dtype: FloatDType, ) -> FloatTensor<Self>
Creates an empty tensor with the given shape. Read more
Source§fn float_add(
lhs: FloatTensor<Self>,
rhs: FloatTensor<Self>,
) -> FloatTensor<Self>
fn float_add( lhs: FloatTensor<Self>, rhs: FloatTensor<Self>, ) -> FloatTensor<Self>
Adds two tensors together. Read more
Source§fn float_add_scalar(lhs: FloatTensor<Self>, rhs: E) -> FloatTensor<Self>
fn float_add_scalar(lhs: FloatTensor<Self>, rhs: E) -> FloatTensor<Self>
Adds a scalar to a tensor. Read more
Source§fn float_sub(
lhs: FloatTensor<Self>,
rhs: FloatTensor<Self>,
) -> FloatTensor<Self>
fn float_sub( lhs: FloatTensor<Self>, rhs: FloatTensor<Self>, ) -> FloatTensor<Self>
Subtracts two tensors. Read more
Source§fn float_sub_scalar(lhs: FloatTensor<Self>, rhs: E) -> FloatTensor<Self>
fn float_sub_scalar(lhs: FloatTensor<Self>, rhs: E) -> FloatTensor<Self>
Subtracts a scalar from a tensor. Read more
Source§fn float_mul(
lhs: FloatTensor<Self>,
rhs: FloatTensor<Self>,
) -> FloatTensor<Self>
fn float_mul( lhs: FloatTensor<Self>, rhs: FloatTensor<Self>, ) -> FloatTensor<Self>
Multiplies two tensors together element-wise.
Source§fn float_mul_scalar(lhs: FloatTensor<Self>, rhs: E) -> FloatTensor<Self>
fn float_mul_scalar(lhs: FloatTensor<Self>, rhs: E) -> FloatTensor<Self>
Multiplies a tensor by a scalar. Read more
Source§fn float_div(
lhs: FloatTensor<Self>,
rhs: FloatTensor<Self>,
) -> FloatTensor<Self>
fn float_div( lhs: FloatTensor<Self>, rhs: FloatTensor<Self>, ) -> FloatTensor<Self>
Divides two tensors element-wise. Read more
Source§fn float_div_scalar(lhs: FloatTensor<Self>, rhs: E) -> FloatTensor<Self>
fn float_div_scalar(lhs: FloatTensor<Self>, rhs: E) -> FloatTensor<Self>
Divides a tensor by a scalar. Read more
Source§fn float_remainder(
lhs: FloatTensor<Self>,
rhs: FloatTensor<Self>,
) -> FloatTensor<Self>
fn float_remainder( lhs: FloatTensor<Self>, rhs: FloatTensor<Self>, ) -> FloatTensor<Self>
Computes the remainder of division between two tensors element-wise. Read more
Source§fn float_remainder_scalar(lhs: FloatTensor<Self>, rhs: E) -> FloatTensor<Self>
fn float_remainder_scalar(lhs: FloatTensor<Self>, rhs: E) -> FloatTensor<Self>
Computes the modulus of a tensor given a scalar. Read more
Source§fn float_matmul(
lhs: FloatTensor<Self>,
rhs: FloatTensor<Self>,
) -> FloatTensor<Self>
fn float_matmul( lhs: FloatTensor<Self>, rhs: FloatTensor<Self>, ) -> FloatTensor<Self>
Multiplies two tensors together using matrix multiplication. Read more
Source§fn float_cross(
lhs: FloatTensor<Self>,
rhs: FloatTensor<Self>,
dim: usize,
) -> FloatTensor<Self>
fn float_cross( lhs: FloatTensor<Self>, rhs: FloatTensor<Self>, dim: usize, ) -> FloatTensor<Self>
Computes the cross product of two tensors along a given dimension. Read more
Source§fn float_neg(tensor: FloatTensor<Self>) -> FloatTensor<Self>
fn float_neg(tensor: FloatTensor<Self>) -> FloatTensor<Self>
Negates a tensor element-wise.
Source§fn float_recip(tensor: FloatTensor<Self>) -> FloatTensor<Self>
fn float_recip(tensor: FloatTensor<Self>) -> FloatTensor<Self>
Calculates the reciprocals element-wise
Source§fn float_swap_dims(
tensor: FloatTensor<Self>,
dim1: usize,
dim2: usize,
) -> FloatTensor<Self>
fn float_swap_dims( tensor: FloatTensor<Self>, dim1: usize, dim2: usize, ) -> FloatTensor<Self>
Swaps two dimensions of a tensor. Read more
Source§fn float_reshape(tensor: FloatTensor<Self>, shape: Shape) -> FloatTensor<Self>
fn float_reshape(tensor: FloatTensor<Self>, shape: Shape) -> FloatTensor<Self>
Reshapes a tensor. Read more
Source§fn float_gather(
dim: usize,
tensor: FloatTensor<Self>,
indices: NdArrayTensor,
) -> FloatTensor<Self>
fn float_gather( dim: usize, tensor: FloatTensor<Self>, indices: NdArrayTensor, ) -> FloatTensor<Self>
Gather elements from a tensor. Read more
Source§fn float_scatter(
dim: usize,
tensor: FloatTensor<Self>,
indices: NdArrayTensor,
value: FloatTensor<Self>,
) -> FloatTensor<Self>
fn float_scatter( dim: usize, tensor: FloatTensor<Self>, indices: NdArrayTensor, value: FloatTensor<Self>, ) -> FloatTensor<Self>
Scatter elements into a tensor. Read more
Source§fn float_select(
tensor: FloatTensor<Self>,
dim: usize,
indices: NdArrayTensor,
) -> FloatTensor<Self>
fn float_select( tensor: FloatTensor<Self>, dim: usize, indices: NdArrayTensor, ) -> FloatTensor<Self>
Select tensor elements along the given dimension corresponding for the given indices. Read more
Source§fn float_select_assign(
tensor: FloatTensor<Self>,
dim: usize,
indices: NdArrayTensor,
value: FloatTensor<Self>,
) -> FloatTensor<Self>
fn float_select_assign( tensor: FloatTensor<Self>, dim: usize, indices: NdArrayTensor, value: FloatTensor<Self>, ) -> FloatTensor<Self>
Assign the selected elements along the given dimension corresponding for the given indices
to the given value. Read more
Source§fn float_slice(tensor: FloatTensor<Self>, slices: &[Slice]) -> FloatTensor<Self>
fn float_slice(tensor: FloatTensor<Self>, slices: &[Slice]) -> FloatTensor<Self>
Select tensor elements corresponding to the given slices. Read more
Source§fn float_slice_assign(
tensor: FloatTensor<Self>,
slices: &[Slice],
value: FloatTensor<Self>,
) -> FloatTensor<Self>
fn float_slice_assign( tensor: FloatTensor<Self>, slices: &[Slice], value: FloatTensor<Self>, ) -> FloatTensor<Self>
Assign the selected elements corresponding to the given slices to the given value. Read more
Source§fn float_mask_where(
tensor: FloatTensor<Self>,
mask: NdArrayTensor,
value: FloatTensor<Self>,
) -> FloatTensor<Self>
fn float_mask_where( tensor: FloatTensor<Self>, mask: NdArrayTensor, value: FloatTensor<Self>, ) -> FloatTensor<Self>
Update the given tensor with the value tensor where the mask is true. Read more
Source§fn float_mask_fill(
tensor: FloatTensor<Self>,
mask: NdArrayTensor,
value: E,
) -> FloatTensor<Self>
fn float_mask_fill( tensor: FloatTensor<Self>, mask: NdArrayTensor, value: E, ) -> FloatTensor<Self>
Update the given tensor with the value where the mask is true. Read more
Source§fn float_equal(lhs: FloatTensor<Self>, rhs: FloatTensor<Self>) -> NdArrayTensor
fn float_equal(lhs: FloatTensor<Self>, rhs: FloatTensor<Self>) -> NdArrayTensor
Equal comparison of two tensors. Read more
Source§fn float_equal_elem(lhs: FloatTensor<Self>, rhs: E) -> NdArrayTensor
fn float_equal_elem(lhs: FloatTensor<Self>, rhs: E) -> NdArrayTensor
Equal comparison of a tensor and a scalar. Read more
Source§fn float_greater(
lhs: FloatTensor<Self>,
rhs: FloatTensor<Self>,
) -> NdArrayTensor
fn float_greater( lhs: FloatTensor<Self>, rhs: FloatTensor<Self>, ) -> NdArrayTensor
Greater than comparison of two tensors. Read more
Source§fn float_greater_elem(lhs: FloatTensor<Self>, rhs: E) -> NdArrayTensor
fn float_greater_elem(lhs: FloatTensor<Self>, rhs: E) -> NdArrayTensor
Greater than comparison of a tensor and a scalar. Read more
Source§fn float_greater_equal(
lhs: FloatTensor<Self>,
rhs: FloatTensor<Self>,
) -> NdArrayTensor
fn float_greater_equal( lhs: FloatTensor<Self>, rhs: FloatTensor<Self>, ) -> NdArrayTensor
Greater than or equal comparison of two tensors. Read more
Source§fn float_greater_equal_elem(lhs: FloatTensor<Self>, rhs: E) -> NdArrayTensor
fn float_greater_equal_elem(lhs: FloatTensor<Self>, rhs: E) -> NdArrayTensor
Greater than or equal comparison of a tensor and a scalar. Read more
Source§fn float_lower(lhs: FloatTensor<Self>, rhs: FloatTensor<Self>) -> NdArrayTensor
fn float_lower(lhs: FloatTensor<Self>, rhs: FloatTensor<Self>) -> NdArrayTensor
Less than comparison of two tensors. Read more
Source§fn float_lower_elem(lhs: FloatTensor<Self>, rhs: E) -> NdArrayTensor
fn float_lower_elem(lhs: FloatTensor<Self>, rhs: E) -> NdArrayTensor
Less than comparison of a tensor and a scalar. Read more
Source§fn float_lower_equal(
lhs: FloatTensor<Self>,
rhs: FloatTensor<Self>,
) -> NdArrayTensor
fn float_lower_equal( lhs: FloatTensor<Self>, rhs: FloatTensor<Self>, ) -> NdArrayTensor
Less than or equal comparison of two tensors. Read more
Source§fn float_lower_equal_elem(lhs: FloatTensor<Self>, rhs: E) -> NdArrayTensor
fn float_lower_equal_elem(lhs: FloatTensor<Self>, rhs: E) -> NdArrayTensor
Less than or equal comparison of a tensor and a scalar. Read more
Source§fn float_detach(tensor: FloatTensor<Self>) -> FloatTensor<Self>
fn float_detach(tensor: FloatTensor<Self>) -> FloatTensor<Self>
Detaches a tensor from the computation graph.
Source§fn float_mean(tensor: FloatTensor<Self>) -> FloatTensor<Self>
fn float_mean(tensor: FloatTensor<Self>) -> FloatTensor<Self>
Mean of all elements in a tensor. Read more
Source§fn float_sum(tensor: FloatTensor<Self>) -> FloatTensor<Self>
fn float_sum(tensor: FloatTensor<Self>) -> FloatTensor<Self>
Sum of all elements in a tensor. Read more
Source§fn float_mean_dim(tensor: FloatTensor<Self>, dim: usize) -> FloatTensor<Self>
fn float_mean_dim(tensor: FloatTensor<Self>, dim: usize) -> FloatTensor<Self>
Mean of all elements in a tensor along a dimension. Read more
Source§fn float_cumsum(tensor: FloatTensor<Self>, dim: usize) -> FloatTensor<Self>
fn float_cumsum(tensor: FloatTensor<Self>, dim: usize) -> FloatTensor<Self>
Computes the cumulative sum of elements along a dimension. Read more
Source§fn float_cumprod(tensor: FloatTensor<Self>, dim: usize) -> FloatTensor<Self>
fn float_cumprod(tensor: FloatTensor<Self>, dim: usize) -> FloatTensor<Self>
Computes the cumulative product of elements along a dimension. Read more
Source§fn float_cummin(tensor: FloatTensor<Self>, dim: usize) -> FloatTensor<Self>
fn float_cummin(tensor: FloatTensor<Self>, dim: usize) -> FloatTensor<Self>
Computes the cumulative minimum of elements along a dimension. Read more
Source§fn float_cummax(tensor: FloatTensor<Self>, dim: usize) -> FloatTensor<Self>
fn float_cummax(tensor: FloatTensor<Self>, dim: usize) -> FloatTensor<Self>
Computes the cumulative maximum of elements along a dimension. Read more
Source§fn float_sum_dim(tensor: FloatTensor<Self>, dim: usize) -> FloatTensor<Self>
fn float_sum_dim(tensor: FloatTensor<Self>, dim: usize) -> FloatTensor<Self>
Sum of all elements in a tensor along a dimension. Read more
Source§fn float_argmax(tensor: FloatTensor<Self>, dim: usize) -> NdArrayTensor
fn float_argmax(tensor: FloatTensor<Self>, dim: usize) -> NdArrayTensor
Gets the indices of the maximum elements of a tensor along an axis. Read more
Source§fn float_argmin(tensor: FloatTensor<Self>, dim: usize) -> NdArrayTensor
fn float_argmin(tensor: FloatTensor<Self>, dim: usize) -> NdArrayTensor
Gets the indices of the minimum elements of a tensor along an axis. Read more
Source§fn float_exp(tensor: FloatTensor<Self>) -> FloatTensor<Self>
fn float_exp(tensor: FloatTensor<Self>) -> FloatTensor<Self>
Returns a new tensor with exponential values. Read more
Source§fn float_log(tensor: FloatTensor<Self>) -> FloatTensor<Self>
fn float_log(tensor: FloatTensor<Self>) -> FloatTensor<Self>
Returns a new tensor with natural logarithm values. Read more
Source§fn float_prod(tensor: FloatTensor<Self>) -> FloatTensor<Self>
fn float_prod(tensor: FloatTensor<Self>) -> FloatTensor<Self>
Product of all elements in a tensor. Read more
Source§fn float_prod_dim(tensor: FloatTensor<Self>, dim: usize) -> FloatTensor<Self>
fn float_prod_dim(tensor: FloatTensor<Self>, dim: usize) -> FloatTensor<Self>
Product of all elements in a tensor along a dimension. Read more
Source§fn float_log1p(tensor: FloatTensor<Self>) -> FloatTensor<Self>
fn float_log1p(tensor: FloatTensor<Self>) -> FloatTensor<Self>
Returns a new tensor with logarithm values of (1 + Xi). Read more
Source§fn float_powf_scalar_impl(
tensor: FloatTensor<Self>,
value: f32,
) -> FloatTensor<Self>
fn float_powf_scalar_impl( tensor: FloatTensor<Self>, value: f32, ) -> FloatTensor<Self>
Returns a new tensor with values raised to the power of float
value. Read moreSource§fn float_sqrt(tensor: FloatTensor<Self>) -> FloatTensor<Self>
fn float_sqrt(tensor: FloatTensor<Self>) -> FloatTensor<Self>
Returns a new tensor with square root values. Read more
Source§fn float_abs(tensor: FloatTensor<Self>) -> FloatTensor<Self>
fn float_abs(tensor: FloatTensor<Self>) -> FloatTensor<Self>
Returns a new tensor with absolute values. Read more
Source§fn float_cos(tensor: FloatTensor<Self>) -> FloatTensor<Self>
fn float_cos(tensor: FloatTensor<Self>) -> FloatTensor<Self>
Returns a new tensor with cosine values. Read more
Source§fn float_sin(tensor: FloatTensor<Self>) -> FloatTensor<Self>
fn float_sin(tensor: FloatTensor<Self>) -> FloatTensor<Self>
Returns a new tensor with sine values. Read more
Source§fn float_tanh(tensor: FloatTensor<Self>) -> FloatTensor<Self>
fn float_tanh(tensor: FloatTensor<Self>) -> FloatTensor<Self>
Returns a new tensor with hyperbolic tangent values. Read more
Source§fn float_round(tensor: FloatTensor<Self>) -> FloatTensor<Self>
fn float_round(tensor: FloatTensor<Self>) -> FloatTensor<Self>
Returns a new tensor with rounded values. Read more
Source§fn float_floor(tensor: FloatTensor<Self>) -> FloatTensor<Self>
fn float_floor(tensor: FloatTensor<Self>) -> FloatTensor<Self>
Returns a new tensor with floored values. Read more
Source§fn float_ceil(tensor: FloatTensor<Self>) -> FloatTensor<Self>
fn float_ceil(tensor: FloatTensor<Self>) -> FloatTensor<Self>
Returns a new tensor with ceiled values. Read more
Source§fn float_trunc(tensor: FloatTensor<Self>) -> FloatTensor<Self>
fn float_trunc(tensor: FloatTensor<Self>) -> FloatTensor<Self>
Returns a new tensor with truncated values. Read more
Source§fn float_erf(tensor: FloatTensor<Self>) -> FloatTensor<Self>
fn float_erf(tensor: FloatTensor<Self>) -> FloatTensor<Self>
Returns a new tensor with the error function values. Read more
Source§fn float_cat(tensors: Vec<FloatTensor<Self>>, dim: usize) -> FloatTensor<Self>
fn float_cat(tensors: Vec<FloatTensor<Self>>, dim: usize) -> FloatTensor<Self>
Concatenates tensors along a dimension. Read more
Source§fn float_clamp_min(tensor: FloatTensor<Self>, min: E) -> FloatTensor<Self>
fn float_clamp_min(tensor: FloatTensor<Self>, min: E) -> FloatTensor<Self>
Clamps a tensor under a minimum value. Read more
Source§fn float_clamp_max(tensor: FloatTensor<Self>, max: E) -> FloatTensor<Self>
fn float_clamp_max(tensor: FloatTensor<Self>, max: E) -> FloatTensor<Self>
Clamps a tensor over a maximum value. Read more
Source§fn float_clamp(tensor: FloatTensor<Self>, min: E, max: E) -> FloatTensor<Self>
fn float_clamp(tensor: FloatTensor<Self>, min: E, max: E) -> FloatTensor<Self>
Clamps a tensor between a minimum and maximum value. Read more
Source§fn float_into_int(tensor: FloatTensor<Self>) -> NdArrayTensor
fn float_into_int(tensor: FloatTensor<Self>) -> NdArrayTensor
Converts float tensor to int tensor. Read more
Source§fn float_powf(
lhs: FloatTensor<Self>,
rhs: FloatTensor<Self>,
) -> FloatTensor<Self>
fn float_powf( lhs: FloatTensor<Self>, rhs: FloatTensor<Self>, ) -> FloatTensor<Self>
Element-wise power with a FloatTensor. Read more
Source§fn float_permute(tensor: FloatTensor<Self>, axes: &[usize]) -> FloatTensor<Self>
fn float_permute(tensor: FloatTensor<Self>, axes: &[usize]) -> FloatTensor<Self>
Permutes the dimensions of a tensor. Read more
Source§fn float_flip(tensor: FloatTensor<Self>, axes: &[usize]) -> FloatTensor<Self>
fn float_flip(tensor: FloatTensor<Self>, axes: &[usize]) -> FloatTensor<Self>
Reverse the order of elements in a tensor along the given axes. Read more
Source§fn float_sign(tensor: FloatTensor<Self>) -> FloatTensor<Self>
fn float_sign(tensor: FloatTensor<Self>) -> FloatTensor<Self>
Returns the signs of the float
tensor. Read moreSource§fn float_expand(tensor: FloatTensor<Self>, shape: Shape) -> FloatTensor<Self>
fn float_expand(tensor: FloatTensor<Self>, shape: Shape) -> FloatTensor<Self>
Broadcasts the float
tensor to the given shape.Source§fn float_cast(tensor: FloatTensor<Self>, dtype: FloatDType) -> FloatTensor<Self>
fn float_cast(tensor: FloatTensor<Self>, dtype: FloatDType) -> FloatTensor<Self>
Converts a tensor to another floating point data type. Read more
Source§fn float_grid_sample_2d(
tensor: FloatTensor<Self>,
grid: FloatTensor<Self>,
method: InterpolateMode,
) -> FloatTensor<Self>
fn float_grid_sample_2d( tensor: FloatTensor<Self>, grid: FloatTensor<Self>, method: InterpolateMode, ) -> FloatTensor<Self>
Samples tensor as a two-dimensional spatial grid of (possibly multi-channel) values,
using the given locations in [-1, 1]. Read more
Source§fn float_unfold(
tensor: FloatTensor<Self>,
dim: usize,
size: usize,
step: usize,
) -> FloatTensor<Self>
fn float_unfold( tensor: FloatTensor<Self>, dim: usize, size: usize, step: usize, ) -> FloatTensor<Self>
Unfold windows along a dimension. Read more
Source§fn float_zeros(
shape: Shape,
device: &<B as Backend>::Device,
dtype: FloatDType,
) -> <B as Backend>::FloatTensorPrimitive
fn float_zeros( shape: Shape, device: &<B as Backend>::Device, dtype: FloatDType, ) -> <B as Backend>::FloatTensorPrimitive
Creates a new tensor with zeros. Read more
Source§fn float_ones(
shape: Shape,
device: &<B as Backend>::Device,
dtype: FloatDType,
) -> <B as Backend>::FloatTensorPrimitive
fn float_ones( shape: Shape, device: &<B as Backend>::Device, dtype: FloatDType, ) -> <B as Backend>::FloatTensorPrimitive
Creates a new tensor with ones. Read more
Source§fn float_full(
shape: Shape,
fill_value: <B as Backend>::FloatElem,
device: &<B as Backend>::Device,
dtype: FloatDType,
) -> <B as Backend>::FloatTensorPrimitive
fn float_full( shape: Shape, fill_value: <B as Backend>::FloatElem, device: &<B as Backend>::Device, dtype: FloatDType, ) -> <B as Backend>::FloatTensorPrimitive
Creates a tensor filled with given value. Read more
Source§fn float_repeat_dim(
tensor: <B as Backend>::FloatTensorPrimitive,
dim: usize,
times: usize,
) -> <B as Backend>::FloatTensorPrimitive
fn float_repeat_dim( tensor: <B as Backend>::FloatTensorPrimitive, dim: usize, times: usize, ) -> <B as Backend>::FloatTensorPrimitive
Repeat the tensor along the given dimension. Read more
Source§fn float_transpose(
tensor: <B as Backend>::FloatTensorPrimitive,
) -> <B as Backend>::FloatTensorPrimitive
fn float_transpose( tensor: <B as Backend>::FloatTensorPrimitive, ) -> <B as Backend>::FloatTensorPrimitive
Transposes a tensor. Read more
Source§fn float_not_equal(
lhs: <B as Backend>::FloatTensorPrimitive,
rhs: <B as Backend>::FloatTensorPrimitive,
) -> <B as Backend>::BoolTensorPrimitive
fn float_not_equal( lhs: <B as Backend>::FloatTensorPrimitive, rhs: <B as Backend>::FloatTensorPrimitive, ) -> <B as Backend>::BoolTensorPrimitive
Element-wise non-equality comparison. Read more
Source§fn float_not_equal_elem(
lhs: <B as Backend>::FloatTensorPrimitive,
rhs: <B as Backend>::FloatElem,
) -> <B as Backend>::BoolTensorPrimitive
fn float_not_equal_elem( lhs: <B as Backend>::FloatTensorPrimitive, rhs: <B as Backend>::FloatElem, ) -> <B as Backend>::BoolTensorPrimitive
Element-wise non-equality comparison with a scalar. Read more
Source§fn float_set_require_grad(
tensor: <B as Backend>::FloatTensorPrimitive,
_require_grad: bool,
) -> <B as Backend>::FloatTensorPrimitive
fn float_set_require_grad( tensor: <B as Backend>::FloatTensorPrimitive, _require_grad: bool, ) -> <B as Backend>::FloatTensorPrimitive
Sets the
require_grad flag of a tensor.Source§fn float_is_require_grad(_tensor: &<B as Backend>::FloatTensorPrimitive) -> bool
fn float_is_require_grad(_tensor: &<B as Backend>::FloatTensorPrimitive) -> bool
Returns the
require_grad flag of a tensor.Source§fn float_powi(
lhs: <B as Backend>::FloatTensorPrimitive,
rhs: <B as Backend>::IntTensorPrimitive,
) -> <B as Backend>::FloatTensorPrimitive
fn float_powi( lhs: <B as Backend>::FloatTensorPrimitive, rhs: <B as Backend>::IntTensorPrimitive, ) -> <B as Backend>::FloatTensorPrimitive
Element-wise power with an IntTensor. Read more
Source§fn float_powi_scalar(
lhs: <B as Backend>::FloatTensorPrimitive,
rhs: <B as Backend>::IntElem,
) -> <B as Backend>::FloatTensorPrimitive
fn float_powi_scalar( lhs: <B as Backend>::FloatTensorPrimitive, rhs: <B as Backend>::IntElem, ) -> <B as Backend>::FloatTensorPrimitive
Raises a tensor to the power of an int scalar. Read more
Source§fn float_powi_scalar_impl(
lhs: <B as Backend>::FloatTensorPrimitive,
rhs: <B as Backend>::IntElem,
) -> <B as Backend>::FloatTensorPrimitive
fn float_powi_scalar_impl( lhs: <B as Backend>::FloatTensorPrimitive, rhs: <B as Backend>::IntElem, ) -> <B as Backend>::FloatTensorPrimitive
Raises a tensor to the power of an int scalar. Read more
Source§fn float_powf_scalar(
tensor: <B as Backend>::FloatTensorPrimitive,
value: f32,
) -> <B as Backend>::FloatTensorPrimitive
fn float_powf_scalar( tensor: <B as Backend>::FloatTensorPrimitive, value: f32, ) -> <B as Backend>::FloatTensorPrimitive
Returns a new tensor with values raised to the power of float
value. Read moreSource§fn float_tan(
tensor: <B as Backend>::FloatTensorPrimitive,
) -> <B as Backend>::FloatTensorPrimitive
fn float_tan( tensor: <B as Backend>::FloatTensorPrimitive, ) -> <B as Backend>::FloatTensorPrimitive
Returns a new tensor with tangent values. Read more
Source§fn float_cosh(
tensor: <B as Backend>::FloatTensorPrimitive,
) -> <B as Backend>::FloatTensorPrimitive
fn float_cosh( tensor: <B as Backend>::FloatTensorPrimitive, ) -> <B as Backend>::FloatTensorPrimitive
Returns a new tensor with hyperbolic cosine values. Read more
Source§fn float_sinh(
tensor: <B as Backend>::FloatTensorPrimitive,
) -> <B as Backend>::FloatTensorPrimitive
fn float_sinh( tensor: <B as Backend>::FloatTensorPrimitive, ) -> <B as Backend>::FloatTensorPrimitive
Returns a new tensor with hyperbolic sine values. Read more
Source§fn float_max(
tensor: <B as Backend>::FloatTensorPrimitive,
) -> <B as Backend>::FloatTensorPrimitive
fn float_max( tensor: <B as Backend>::FloatTensorPrimitive, ) -> <B as Backend>::FloatTensorPrimitive
Gets the maximum element of a tensor. Read more
Source§fn float_max_dim(
tensor: <B as Backend>::FloatTensorPrimitive,
dim: usize,
) -> <B as Backend>::FloatTensorPrimitive
fn float_max_dim( tensor: <B as Backend>::FloatTensorPrimitive, dim: usize, ) -> <B as Backend>::FloatTensorPrimitive
Gets the maximum elements of a tensor along an axis. Read more
Source§fn float_max_dim_with_indices(
tensor: <B as Backend>::FloatTensorPrimitive,
dim: usize,
) -> (<B as Backend>::FloatTensorPrimitive, <B as Backend>::IntTensorPrimitive)
fn float_max_dim_with_indices( tensor: <B as Backend>::FloatTensorPrimitive, dim: usize, ) -> (<B as Backend>::FloatTensorPrimitive, <B as Backend>::IntTensorPrimitive)
Gets the maximum elements of a tensor along an axis and their indices. Read more
Source§fn float_min(
tensor: <B as Backend>::FloatTensorPrimitive,
) -> <B as Backend>::FloatTensorPrimitive
fn float_min( tensor: <B as Backend>::FloatTensorPrimitive, ) -> <B as Backend>::FloatTensorPrimitive
Gets the minimum element of a tensor. Read more
Source§fn float_min_dim(
tensor: <B as Backend>::FloatTensorPrimitive,
dim: usize,
) -> <B as Backend>::FloatTensorPrimitive
fn float_min_dim( tensor: <B as Backend>::FloatTensorPrimitive, dim: usize, ) -> <B as Backend>::FloatTensorPrimitive
Gets the minimum elements of a tensor along an axis. Read more
Source§fn float_min_dim_with_indices(
tensor: <B as Backend>::FloatTensorPrimitive,
dim: usize,
) -> (<B as Backend>::FloatTensorPrimitive, <B as Backend>::IntTensorPrimitive)
fn float_min_dim_with_indices( tensor: <B as Backend>::FloatTensorPrimitive, dim: usize, ) -> (<B as Backend>::FloatTensorPrimitive, <B as Backend>::IntTensorPrimitive)
Gets the minimum elements of a tensor along an axis and their indices. Read more
Source§fn float_max_abs(
tensor: <B as Backend>::FloatTensorPrimitive,
) -> <B as Backend>::FloatTensorPrimitive
fn float_max_abs( tensor: <B as Backend>::FloatTensorPrimitive, ) -> <B as Backend>::FloatTensorPrimitive
Gets the maximum absolute element of a tensor. Read more
Source§fn float_max_abs_dim(
tensor: <B as Backend>::FloatTensorPrimitive,
dim: usize,
) -> <B as Backend>::FloatTensorPrimitive
fn float_max_abs_dim( tensor: <B as Backend>::FloatTensorPrimitive, dim: usize, ) -> <B as Backend>::FloatTensorPrimitive
Gets the maximum absolute elements of a tensor along an axis. Read more
Source§fn float_any(
tensor: <B as Backend>::FloatTensorPrimitive,
) -> <B as Backend>::BoolTensorPrimitive
fn float_any( tensor: <B as Backend>::FloatTensorPrimitive, ) -> <B as Backend>::BoolTensorPrimitive
Tests if any element in the float
tensor evaluates to True. Read moreSource§fn float_any_dim(
tensor: <B as Backend>::FloatTensorPrimitive,
dim: usize,
) -> <B as Backend>::BoolTensorPrimitive
fn float_any_dim( tensor: <B as Backend>::FloatTensorPrimitive, dim: usize, ) -> <B as Backend>::BoolTensorPrimitive
Source§fn float_all(
tensor: <B as Backend>::FloatTensorPrimitive,
) -> <B as Backend>::BoolTensorPrimitive
fn float_all( tensor: <B as Backend>::FloatTensorPrimitive, ) -> <B as Backend>::BoolTensorPrimitive
Tests if all elements in the float
tensor evaluate to True. Read moreSource§fn float_all_dim(
tensor: <B as Backend>::FloatTensorPrimitive,
dim: usize,
) -> <B as Backend>::BoolTensorPrimitive
fn float_all_dim( tensor: <B as Backend>::FloatTensorPrimitive, dim: usize, ) -> <B as Backend>::BoolTensorPrimitive
Source§fn float_sort(
tensor: <B as Backend>::FloatTensorPrimitive,
dim: usize,
descending: bool,
) -> <B as Backend>::FloatTensorPrimitive
fn float_sort( tensor: <B as Backend>::FloatTensorPrimitive, dim: usize, descending: bool, ) -> <B as Backend>::FloatTensorPrimitive
Sort the elements of the input
tensor by value in along a given dimension. Read moreSource§fn float_sort_with_indices(
tensor: <B as Backend>::FloatTensorPrimitive,
dim: usize,
descending: bool,
) -> (<B as Backend>::FloatTensorPrimitive, <B as Backend>::IntTensorPrimitive)
fn float_sort_with_indices( tensor: <B as Backend>::FloatTensorPrimitive, dim: usize, descending: bool, ) -> (<B as Backend>::FloatTensorPrimitive, <B as Backend>::IntTensorPrimitive)
Sort the elements of the input
tensor by value in along a given dimension. Read moreSource§fn float_argsort(
tensor: <B as Backend>::FloatTensorPrimitive,
dim: usize,
descending: bool,
) -> <B as Backend>::IntTensorPrimitive
fn float_argsort( tensor: <B as Backend>::FloatTensorPrimitive, dim: usize, descending: bool, ) -> <B as Backend>::IntTensorPrimitive
Returns the indices that sort the elements of the input
tensor by value along a given dimension. Read moreSource§fn float_is_nan(
tensor: <B as Backend>::FloatTensorPrimitive,
) -> <B as Backend>::BoolTensorPrimitive
fn float_is_nan( tensor: <B as Backend>::FloatTensorPrimitive, ) -> <B as Backend>::BoolTensorPrimitive
Returns a new tensor with boolean elements indicating whether each element of the input is NaN. Read more
Source§fn float_is_inf(
tensor: <B as Backend>::FloatTensorPrimitive,
) -> <B as Backend>::BoolTensorPrimitive
fn float_is_inf( tensor: <B as Backend>::FloatTensorPrimitive, ) -> <B as Backend>::BoolTensorPrimitive
Returns a new tensor with boolean elements indicating whether each element of the input is infinite (either +INF or -INF). Read more
Source§impl<E: FloatNdArrayElement, I: IntNdArrayElement, Q: QuantElement> IntTensorOps<NdArray<E, I, Q>> for NdArray<E, I, Q>
impl<E: FloatNdArrayElement, I: IntNdArrayElement, Q: QuantElement> IntTensorOps<NdArray<E, I, Q>> for NdArray<E, I, Q>
Source§fn int_from_data(data: TensorData, _device: &NdArrayDevice) -> NdArrayTensor
fn int_from_data(data: TensorData, _device: &NdArrayDevice) -> NdArrayTensor
Creates a tensor from the data structure. Read more
Source§async fn int_into_data(tensor: NdArrayTensor) -> TensorData
async fn int_into_data(tensor: NdArrayTensor) -> TensorData
Converts the tensor to a data structure. Read more
Source§fn int_to_device(
tensor: NdArrayTensor,
_device: &NdArrayDevice,
) -> NdArrayTensor
fn int_to_device( tensor: NdArrayTensor, _device: &NdArrayDevice, ) -> NdArrayTensor
Moves the tensor to the given device.
Source§fn int_reshape(tensor: NdArrayTensor, shape: Shape) -> NdArrayTensor
fn int_reshape(tensor: NdArrayTensor, shape: Shape) -> NdArrayTensor
Reshapes the tensor. Read more
Source§fn int_slice(tensor: NdArrayTensor, slices: &[Slice]) -> NdArrayTensor
fn int_slice(tensor: NdArrayTensor, slices: &[Slice]) -> NdArrayTensor
Gets the element at the given indices. Read more
Source§fn int_device(_tensor: &NdArrayTensor) -> <NdArray<E> as Backend>::Device
fn int_device(_tensor: &NdArrayTensor) -> <NdArray<E> as Backend>::Device
Gets the device of the tensor. Read more
Source§fn int_empty(
shape: Shape,
device: &<NdArray<E> as Backend>::Device,
dtype: IntDType,
) -> NdArrayTensor
fn int_empty( shape: Shape, device: &<NdArray<E> as Backend>::Device, dtype: IntDType, ) -> NdArrayTensor
Creates a new int tensor. Read more
Source§fn int_matmul(lhs: IntTensor<Self>, rhs: IntTensor<Self>) -> IntTensor<Self>
fn int_matmul(lhs: IntTensor<Self>, rhs: IntTensor<Self>) -> IntTensor<Self>
Multiplies two tensors together using matrix multiplication. Read more
Source§fn int_mask_where(
tensor: NdArrayTensor,
mask: NdArrayTensor,
source: NdArrayTensor,
) -> NdArrayTensor
fn int_mask_where( tensor: NdArrayTensor, mask: NdArrayTensor, source: NdArrayTensor, ) -> NdArrayTensor
Fills the tensor with values from the source tensor if the mask is true at the given
indices. Read more
Source§fn int_mask_fill(
tensor: NdArrayTensor,
mask: NdArrayTensor,
value: I,
) -> NdArrayTensor
fn int_mask_fill( tensor: NdArrayTensor, mask: NdArrayTensor, value: I, ) -> NdArrayTensor
Fills the tensor with the given value if the mask is true at the given indices. Read more
Source§fn int_slice_assign(
tensor: NdArrayTensor,
slices: &[Slice],
value: NdArrayTensor,
) -> NdArrayTensor
fn int_slice_assign( tensor: NdArrayTensor, slices: &[Slice], value: NdArrayTensor, ) -> NdArrayTensor
Sets the values in the tensor for the given ranges. Read more
Source§fn int_cat(tensors: Vec<NdArrayTensor>, dim: usize) -> NdArrayTensor
fn int_cat(tensors: Vec<NdArrayTensor>, dim: usize) -> NdArrayTensor
Concatenates the given tensors along the given dimension. Read more
Source§fn int_equal(lhs: NdArrayTensor, rhs: NdArrayTensor) -> NdArrayTensor
fn int_equal(lhs: NdArrayTensor, rhs: NdArrayTensor) -> NdArrayTensor
Element-wise equality comparison. Read more
Source§fn int_equal_elem(lhs: NdArrayTensor, rhs: I) -> NdArrayTensor
fn int_equal_elem(lhs: NdArrayTensor, rhs: I) -> NdArrayTensor
Element-wise equality comparison with a scalar. Read more
Source§fn int_greater(lhs: NdArrayTensor, rhs: NdArrayTensor) -> NdArrayTensor
fn int_greater(lhs: NdArrayTensor, rhs: NdArrayTensor) -> NdArrayTensor
Element-wise greater than comparison. Read more
Source§fn int_greater_elem(lhs: NdArrayTensor, rhs: I) -> NdArrayTensor
fn int_greater_elem(lhs: NdArrayTensor, rhs: I) -> NdArrayTensor
Element-wise greater than comparison with a scalar. Read more
Source§fn int_greater_equal(lhs: NdArrayTensor, rhs: NdArrayTensor) -> NdArrayTensor
fn int_greater_equal(lhs: NdArrayTensor, rhs: NdArrayTensor) -> NdArrayTensor
Element-wise greater than or equal comparison. Read more
Source§fn int_greater_equal_elem(lhs: NdArrayTensor, rhs: I) -> NdArrayTensor
fn int_greater_equal_elem(lhs: NdArrayTensor, rhs: I) -> NdArrayTensor
Element-wise greater than or equal comparison with a scalar. Read more
Source§fn int_lower(lhs: NdArrayTensor, rhs: NdArrayTensor) -> NdArrayTensor
fn int_lower(lhs: NdArrayTensor, rhs: NdArrayTensor) -> NdArrayTensor
Element-wise less than comparison. Read more
Source§fn int_lower_elem(lhs: NdArrayTensor, rhs: I) -> NdArrayTensor
fn int_lower_elem(lhs: NdArrayTensor, rhs: I) -> NdArrayTensor
Element-wise less than comparison with a scalar. Read more
Source§fn int_lower_equal(lhs: NdArrayTensor, rhs: NdArrayTensor) -> NdArrayTensor
fn int_lower_equal(lhs: NdArrayTensor, rhs: NdArrayTensor) -> NdArrayTensor
Element-wise less than or equal comparison. Read more
Source§fn int_lower_equal_elem(lhs: NdArrayTensor, rhs: I) -> NdArrayTensor
fn int_lower_equal_elem(lhs: NdArrayTensor, rhs: I) -> NdArrayTensor
Element-wise less than or equal comparison with a scalar. Read more
Source§fn int_add(lhs: NdArrayTensor, rhs: NdArrayTensor) -> NdArrayTensor
fn int_add(lhs: NdArrayTensor, rhs: NdArrayTensor) -> NdArrayTensor
Element-wise addition. Read more
Source§fn int_add_scalar(lhs: NdArrayTensor, rhs: I) -> NdArrayTensor
fn int_add_scalar(lhs: NdArrayTensor, rhs: I) -> NdArrayTensor
Element-wise addition with a scalar. Read more
Source§fn int_sub(lhs: NdArrayTensor, rhs: NdArrayTensor) -> NdArrayTensor
fn int_sub(lhs: NdArrayTensor, rhs: NdArrayTensor) -> NdArrayTensor
Element-wise subtraction. Read more
Source§fn int_sub_scalar(lhs: NdArrayTensor, rhs: I) -> NdArrayTensor
fn int_sub_scalar(lhs: NdArrayTensor, rhs: I) -> NdArrayTensor
Element-wise subtraction with a scalar. Read more
Source§fn int_mul(lhs: NdArrayTensor, rhs: NdArrayTensor) -> NdArrayTensor
fn int_mul(lhs: NdArrayTensor, rhs: NdArrayTensor) -> NdArrayTensor
Element-wise multiplication. Read more
Source§fn int_mul_scalar(lhs: NdArrayTensor, rhs: I) -> NdArrayTensor
fn int_mul_scalar(lhs: NdArrayTensor, rhs: I) -> NdArrayTensor
Element-wise multiplication with a scalar. Read more
Source§fn int_div(lhs: NdArrayTensor, rhs: NdArrayTensor) -> NdArrayTensor
fn int_div(lhs: NdArrayTensor, rhs: NdArrayTensor) -> NdArrayTensor
Element-wise division. Read more
Source§fn int_div_scalar(lhs: NdArrayTensor, rhs: I) -> NdArrayTensor
fn int_div_scalar(lhs: NdArrayTensor, rhs: I) -> NdArrayTensor
Element-wise division with a scalar. Read more
Source§fn int_remainder(lhs: NdArrayTensor, rhs: NdArrayTensor) -> NdArrayTensor
fn int_remainder(lhs: NdArrayTensor, rhs: NdArrayTensor) -> NdArrayTensor
Element-wise modulus. Read more
Source§fn int_remainder_scalar(lhs: NdArrayTensor, rhs: I) -> NdArrayTensor
fn int_remainder_scalar(lhs: NdArrayTensor, rhs: I) -> NdArrayTensor
Element-wise modulus with a scalar. Read more
Source§fn int_neg(tensor: NdArrayTensor) -> NdArrayTensor
fn int_neg(tensor: NdArrayTensor) -> NdArrayTensor
Element-wise negation. Read more
Source§fn int_sum(tensor: NdArrayTensor) -> NdArrayTensor
fn int_sum(tensor: NdArrayTensor) -> NdArrayTensor
Sums all elements in the tensor. Read more
Source§fn int_sum_dim(tensor: NdArrayTensor, dim: usize) -> NdArrayTensor
fn int_sum_dim(tensor: NdArrayTensor, dim: usize) -> NdArrayTensor
Sums all elements in the tensor along a dimension. Read more
Source§fn int_prod(tensor: NdArrayTensor) -> NdArrayTensor
fn int_prod(tensor: NdArrayTensor) -> NdArrayTensor
Computes the product of all elements in the tensor. Read more
Source§fn int_prod_dim(tensor: NdArrayTensor, dim: usize) -> NdArrayTensor
fn int_prod_dim(tensor: NdArrayTensor, dim: usize) -> NdArrayTensor
Computes the product of all elements in the tensor along a dimension. Read more
Source§fn int_mean(tensor: NdArrayTensor) -> NdArrayTensor
fn int_mean(tensor: NdArrayTensor) -> NdArrayTensor
Computes the mean of all elements in the tensor. Read more
Source§fn int_mean_dim(tensor: NdArrayTensor, dim: usize) -> NdArrayTensor
fn int_mean_dim(tensor: NdArrayTensor, dim: usize) -> NdArrayTensor
Computes the mean of all elements in the tensor along a dimension. Read more
Source§fn int_cumsum(tensor: NdArrayTensor, dim: usize) -> NdArrayTensor
fn int_cumsum(tensor: NdArrayTensor, dim: usize) -> NdArrayTensor
Computes the cumulative sum of elements along a dimension. Read more
Source§fn int_cumprod(tensor: NdArrayTensor, dim: usize) -> NdArrayTensor
fn int_cumprod(tensor: NdArrayTensor, dim: usize) -> NdArrayTensor
Computes the cumulative product of elements along a dimension. Read more
Source§fn int_cummin(tensor: NdArrayTensor, dim: usize) -> NdArrayTensor
fn int_cummin(tensor: NdArrayTensor, dim: usize) -> NdArrayTensor
Computes the cumulative minimum of elements along a dimension. Read more
Source§fn int_cummax(tensor: NdArrayTensor, dim: usize) -> NdArrayTensor
fn int_cummax(tensor: NdArrayTensor, dim: usize) -> NdArrayTensor
Computes the cumulative maximum of elements along a dimension. Read more
Source§fn int_gather(
dim: usize,
tensor: NdArrayTensor,
indices: NdArrayTensor,
) -> NdArrayTensor
fn int_gather( dim: usize, tensor: NdArrayTensor, indices: NdArrayTensor, ) -> NdArrayTensor
Gather elements from the tensor at the given indices. Read more
Source§fn int_scatter(
dim: usize,
tensor: NdArrayTensor,
indices: NdArrayTensor,
value: NdArrayTensor,
) -> NdArrayTensor
fn int_scatter( dim: usize, tensor: NdArrayTensor, indices: NdArrayTensor, value: NdArrayTensor, ) -> NdArrayTensor
Scatter a given value to the tensor at the given indices. Read more
Source§fn int_select(
tensor: NdArrayTensor,
dim: usize,
indices: NdArrayTensor,
) -> NdArrayTensor
fn int_select( tensor: NdArrayTensor, dim: usize, indices: NdArrayTensor, ) -> NdArrayTensor
Select tensor elements along the given dimension corresponding to the given indices. Read more
Source§fn int_select_assign(
tensor: NdArrayTensor,
dim: usize,
indices: NdArrayTensor,
value: NdArrayTensor,
) -> NdArrayTensor
fn int_select_assign( tensor: NdArrayTensor, dim: usize, indices: NdArrayTensor, value: NdArrayTensor, ) -> NdArrayTensor
Assign the selected elements along the given dimension corresponding to the given indices
to the given value. Read more
Source§fn int_argmax(tensor: NdArrayTensor, dim: usize) -> NdArrayTensor
fn int_argmax(tensor: NdArrayTensor, dim: usize) -> NdArrayTensor
Gets the indices of the maximum elements along a dimension. Read more
Source§fn int_argmin(tensor: NdArrayTensor, dim: usize) -> NdArrayTensor
fn int_argmin(tensor: NdArrayTensor, dim: usize) -> NdArrayTensor
Gets the indices of the minimum elements along a dimension. Read more
Source§fn int_clamp_min(tensor: NdArrayTensor, min: I) -> NdArrayTensor
fn int_clamp_min(tensor: NdArrayTensor, min: I) -> NdArrayTensor
Clamps a tensor under a minimum value. Read more
Source§fn int_clamp_max(tensor: NdArrayTensor, max: I) -> NdArrayTensor
fn int_clamp_max(tensor: NdArrayTensor, max: I) -> NdArrayTensor
Clamps a tensor over a maximum value. Read more
Source§fn int_clamp(tensor: NdArrayTensor, min: I, max: I) -> NdArrayTensor
fn int_clamp(tensor: NdArrayTensor, min: I, max: I) -> NdArrayTensor
Clamps a tensor between a minimum and maximum value. Read more
Source§fn int_abs(tensor: NdArrayTensor) -> NdArrayTensor
fn int_abs(tensor: NdArrayTensor) -> NdArrayTensor
Returns a new tensor with absolute values. Read more
Source§fn int_into_float(tensor: NdArrayTensor) -> FloatTensor<Self>
fn int_into_float(tensor: NdArrayTensor) -> FloatTensor<Self>
Converts int tensor to float tensor. Read more
Source§fn int_swap_dims(
tensor: NdArrayTensor,
dim1: usize,
dim2: usize,
) -> NdArrayTensor
fn int_swap_dims( tensor: NdArrayTensor, dim1: usize, dim2: usize, ) -> NdArrayTensor
Swaps two dimensions of an int tensor. Read more
Source§fn int_random(
shape: Shape,
distribution: Distribution,
device: &NdArrayDevice,
) -> NdArrayTensor
fn int_random( shape: Shape, distribution: Distribution, device: &NdArrayDevice, ) -> NdArrayTensor
Creates a new int tensor with random values. Read more
Source§fn int_powi(lhs: NdArrayTensor, rhs: NdArrayTensor) -> NdArrayTensor
fn int_powi(lhs: NdArrayTensor, rhs: NdArrayTensor) -> NdArrayTensor
Element-wise power with a IntTensor. Read more
Source§fn int_powf(lhs: NdArrayTensor, rhs: FloatTensor<Self>) -> NdArrayTensor
fn int_powf(lhs: NdArrayTensor, rhs: FloatTensor<Self>) -> NdArrayTensor
Element-wise power with a floatTensor. Read more
Source§fn int_powf_scalar_impl(lhs: NdArrayTensor, rhs: f32) -> NdArrayTensor
fn int_powf_scalar_impl(lhs: NdArrayTensor, rhs: f32) -> NdArrayTensor
Element-wise power with a floatTensor. Read more
Source§fn int_permute(tensor: NdArrayTensor, axes: &[usize]) -> NdArrayTensor
fn int_permute(tensor: NdArrayTensor, axes: &[usize]) -> NdArrayTensor
Permutes the dimensions of a tensor. Read more
Source§fn int_flip(tensor: NdArrayTensor, axes: &[usize]) -> NdArrayTensor
fn int_flip(tensor: NdArrayTensor, axes: &[usize]) -> NdArrayTensor
Reverse the order of elements in a tensor along the given axes. Read more
Source§fn int_sign(tensor: NdArrayTensor) -> NdArrayTensor
fn int_sign(tensor: NdArrayTensor) -> NdArrayTensor
Returns the signs of the int
tensor. Read moreSource§fn int_expand(tensor: NdArrayTensor, shape: Shape) -> NdArrayTensor
fn int_expand(tensor: NdArrayTensor, shape: Shape) -> NdArrayTensor
Broadcasts the int
tensor to the given shape.Source§fn bitwise_and(lhs: NdArrayTensor, rhs: NdArrayTensor) -> NdArrayTensor
fn bitwise_and(lhs: NdArrayTensor, rhs: NdArrayTensor) -> NdArrayTensor
Bitwise AND operation for Int Tensors
Source§fn bitwise_and_scalar(lhs: NdArrayTensor, rhs: I) -> NdArrayTensor
fn bitwise_and_scalar(lhs: NdArrayTensor, rhs: I) -> NdArrayTensor
Bitwise AND operation for Int Tensors with a scalar
Source§fn bitwise_or(lhs: NdArrayTensor, rhs: NdArrayTensor) -> NdArrayTensor
fn bitwise_or(lhs: NdArrayTensor, rhs: NdArrayTensor) -> NdArrayTensor
Bitwise OR operation for Int Tensors
Source§fn bitwise_or_scalar(lhs: NdArrayTensor, rhs: I) -> NdArrayTensor
fn bitwise_or_scalar(lhs: NdArrayTensor, rhs: I) -> NdArrayTensor
Bitwise OR operation for Int Tensors with a scalar
Source§fn bitwise_xor(lhs: NdArrayTensor, rhs: NdArrayTensor) -> NdArrayTensor
fn bitwise_xor(lhs: NdArrayTensor, rhs: NdArrayTensor) -> NdArrayTensor
Bitwise XOR operation for Int Tensors
Source§fn bitwise_xor_scalar(lhs: NdArrayTensor, rhs: I) -> NdArrayTensor
fn bitwise_xor_scalar(lhs: NdArrayTensor, rhs: I) -> NdArrayTensor
Bitwise XOR operation for Int Tensors with a scalar
Source§fn bitwise_not(tensor: NdArrayTensor) -> NdArrayTensor
fn bitwise_not(tensor: NdArrayTensor) -> NdArrayTensor
Bitwise NOT operation for Int Tensors
Source§fn bitwise_left_shift(lhs: NdArrayTensor, rhs: NdArrayTensor) -> NdArrayTensor
fn bitwise_left_shift(lhs: NdArrayTensor, rhs: NdArrayTensor) -> NdArrayTensor
Bitwise left shift operation for Int Tensors
Source§fn bitwise_left_shift_scalar(lhs: NdArrayTensor, rhs: I) -> NdArrayTensor
fn bitwise_left_shift_scalar(lhs: NdArrayTensor, rhs: I) -> NdArrayTensor
Bitwise left shift operation for Int Tensors with a scalar
Source§fn bitwise_right_shift(lhs: NdArrayTensor, rhs: NdArrayTensor) -> NdArrayTensor
fn bitwise_right_shift(lhs: NdArrayTensor, rhs: NdArrayTensor) -> NdArrayTensor
Bitwise right shift operation for Int Tensors
Source§fn bitwise_right_shift_scalar(lhs: NdArrayTensor, rhs: I) -> NdArrayTensor
fn bitwise_right_shift_scalar(lhs: NdArrayTensor, rhs: I) -> NdArrayTensor
Bitwise right shift operation for Int Tensors with a scalar
Source§fn int_cast(tensor: IntTensor<Self>, dtype: IntDType) -> IntTensor<Self>
fn int_cast(tensor: IntTensor<Self>, dtype: IntDType) -> IntTensor<Self>
Converts a tensor to another integer data type. Read more
Source§fn int_unfold(
tensor: IntTensor<Self>,
dim: usize,
size: usize,
step: usize,
) -> IntTensor<Self>
fn int_unfold( tensor: IntTensor<Self>, dim: usize, size: usize, step: usize, ) -> IntTensor<Self>
Unfold windows along a dimension. Read more
Source§fn int_repeat_dim(
tensor: <B as Backend>::IntTensorPrimitive,
dim: usize,
times: usize,
) -> <B as Backend>::IntTensorPrimitive
fn int_repeat_dim( tensor: <B as Backend>::IntTensorPrimitive, dim: usize, times: usize, ) -> <B as Backend>::IntTensorPrimitive
Repeats the tensor along the given dimension the given number of times. Read more
Source§fn int_not_equal(
lhs: <B as Backend>::IntTensorPrimitive,
rhs: <B as Backend>::IntTensorPrimitive,
) -> <B as Backend>::BoolTensorPrimitive
fn int_not_equal( lhs: <B as Backend>::IntTensorPrimitive, rhs: <B as Backend>::IntTensorPrimitive, ) -> <B as Backend>::BoolTensorPrimitive
Element-wise non-equality comparison. Read more
Source§fn int_not_equal_elem(
lhs: <B as Backend>::IntTensorPrimitive,
rhs: <B as Backend>::IntElem,
) -> <B as Backend>::BoolTensorPrimitive
fn int_not_equal_elem( lhs: <B as Backend>::IntTensorPrimitive, rhs: <B as Backend>::IntElem, ) -> <B as Backend>::BoolTensorPrimitive
Element-wise non-equality comparison with a scalar. Read more
Source§fn int_powi_scalar(
lhs: <B as Backend>::IntTensorPrimitive,
rhs: <B as Backend>::IntElem,
) -> <B as Backend>::IntTensorPrimitive
fn int_powi_scalar( lhs: <B as Backend>::IntTensorPrimitive, rhs: <B as Backend>::IntElem, ) -> <B as Backend>::IntTensorPrimitive
Element-wise power with a scalar. Read more
Source§fn int_powi_scalar_impl(
lhs: <B as Backend>::IntTensorPrimitive,
rhs: <B as Backend>::IntElem,
) -> <B as Backend>::IntTensorPrimitive
fn int_powi_scalar_impl( lhs: <B as Backend>::IntTensorPrimitive, rhs: <B as Backend>::IntElem, ) -> <B as Backend>::IntTensorPrimitive
Element-wise power with a scalar. Read more
Source§fn int_powf_scalar(
lhs: <B as Backend>::IntTensorPrimitive,
rhs: f32,
) -> <B as Backend>::IntTensorPrimitive
fn int_powf_scalar( lhs: <B as Backend>::IntTensorPrimitive, rhs: f32, ) -> <B as Backend>::IntTensorPrimitive
Element-wise power with a floatTensor. Read more
Source§fn int_zeros(
shape: Shape,
device: &<B as Backend>::Device,
dtype: IntDType,
) -> <B as Backend>::IntTensorPrimitive
fn int_zeros( shape: Shape, device: &<B as Backend>::Device, dtype: IntDType, ) -> <B as Backend>::IntTensorPrimitive
Creates a tensor of zeros. Read more
Source§fn int_ones(
shape: Shape,
device: &<B as Backend>::Device,
dtype: IntDType,
) -> <B as Backend>::IntTensorPrimitive
fn int_ones( shape: Shape, device: &<B as Backend>::Device, dtype: IntDType, ) -> <B as Backend>::IntTensorPrimitive
Creates a tensor of ones. Read more
Source§fn int_full(
shape: Shape,
fill_value: <B as Backend>::IntElem,
device: &<B as Backend>::Device,
dtype: IntDType,
) -> <B as Backend>::IntTensorPrimitive
fn int_full( shape: Shape, fill_value: <B as Backend>::IntElem, device: &<B as Backend>::Device, dtype: IntDType, ) -> <B as Backend>::IntTensorPrimitive
Creates a tensor filled with given value. Read more
Source§fn int_max(
tensor: <B as Backend>::IntTensorPrimitive,
) -> <B as Backend>::IntTensorPrimitive
fn int_max( tensor: <B as Backend>::IntTensorPrimitive, ) -> <B as Backend>::IntTensorPrimitive
Gets the maximum element in the tensor. Read more
Source§fn int_max_dim(
tensor: <B as Backend>::IntTensorPrimitive,
dim: usize,
) -> <B as Backend>::IntTensorPrimitive
fn int_max_dim( tensor: <B as Backend>::IntTensorPrimitive, dim: usize, ) -> <B as Backend>::IntTensorPrimitive
Gets the maximum element in the tensor along a dimension. Read more
Source§fn int_max_dim_with_indices(
tensor: <B as Backend>::IntTensorPrimitive,
dim: usize,
) -> (<B as Backend>::IntTensorPrimitive, <B as Backend>::IntTensorPrimitive)
fn int_max_dim_with_indices( tensor: <B as Backend>::IntTensorPrimitive, dim: usize, ) -> (<B as Backend>::IntTensorPrimitive, <B as Backend>::IntTensorPrimitive)
Gets the maximum elements and corresponding indices along a dimension. Read more
Source§fn int_max_abs(
tensor: <B as Backend>::IntTensorPrimitive,
) -> <B as Backend>::IntTensorPrimitive
fn int_max_abs( tensor: <B as Backend>::IntTensorPrimitive, ) -> <B as Backend>::IntTensorPrimitive
Gets the maximum absolute element in the tensor. Read more
Source§fn int_max_abs_dim(
tensor: <B as Backend>::IntTensorPrimitive,
dim: usize,
) -> <B as Backend>::IntTensorPrimitive
fn int_max_abs_dim( tensor: <B as Backend>::IntTensorPrimitive, dim: usize, ) -> <B as Backend>::IntTensorPrimitive
Gets the maximum absolute element in the tensor along a dimension. Read more
Source§fn int_min(
tensor: <B as Backend>::IntTensorPrimitive,
) -> <B as Backend>::IntTensorPrimitive
fn int_min( tensor: <B as Backend>::IntTensorPrimitive, ) -> <B as Backend>::IntTensorPrimitive
Gets the minimum element in the tensor. Read more
Source§fn int_min_dim(
tensor: <B as Backend>::IntTensorPrimitive,
dim: usize,
) -> <B as Backend>::IntTensorPrimitive
fn int_min_dim( tensor: <B as Backend>::IntTensorPrimitive, dim: usize, ) -> <B as Backend>::IntTensorPrimitive
Gets the minimum elements in the tensor along a dimension. Read more
Source§fn int_min_dim_with_indices(
tensor: <B as Backend>::IntTensorPrimitive,
dim: usize,
) -> (<B as Backend>::IntTensorPrimitive, <B as Backend>::IntTensorPrimitive)
fn int_min_dim_with_indices( tensor: <B as Backend>::IntTensorPrimitive, dim: usize, ) -> (<B as Backend>::IntTensorPrimitive, <B as Backend>::IntTensorPrimitive)
Gets the minimum elements and corresponding indices along a dimension. Read more
Source§fn int_transpose(
tensor: <B as Backend>::IntTensorPrimitive,
) -> <B as Backend>::IntTensorPrimitive
fn int_transpose( tensor: <B as Backend>::IntTensorPrimitive, ) -> <B as Backend>::IntTensorPrimitive
Transposes an int tensor. Read more
Source§fn int_arange_step(
range: Range<i64>,
step: usize,
device: &<B as Backend>::Device,
) -> <B as Backend>::IntTensorPrimitive
fn int_arange_step( range: Range<i64>, step: usize, device: &<B as Backend>::Device, ) -> <B as Backend>::IntTensorPrimitive
Creates a new tensor with values from the given range with the given step size. Read more
Source§fn int_arange(
range: Range<i64>,
device: &<B as Backend>::Device,
) -> <B as Backend>::IntTensorPrimitive
fn int_arange( range: Range<i64>, device: &<B as Backend>::Device, ) -> <B as Backend>::IntTensorPrimitive
Creates a new tensor with values from the given range. Read more
Source§fn int_any(
tensor: <B as Backend>::IntTensorPrimitive,
) -> <B as Backend>::BoolTensorPrimitive
fn int_any( tensor: <B as Backend>::IntTensorPrimitive, ) -> <B as Backend>::BoolTensorPrimitive
Tests if any element in the int
tensor evaluates to True. Read moreSource§fn int_any_dim(
tensor: <B as Backend>::IntTensorPrimitive,
dim: usize,
) -> <B as Backend>::BoolTensorPrimitive
fn int_any_dim( tensor: <B as Backend>::IntTensorPrimitive, dim: usize, ) -> <B as Backend>::BoolTensorPrimitive
Source§fn int_all(
tensor: <B as Backend>::IntTensorPrimitive,
) -> <B as Backend>::BoolTensorPrimitive
fn int_all( tensor: <B as Backend>::IntTensorPrimitive, ) -> <B as Backend>::BoolTensorPrimitive
Tests if all elements in the int
tensor evaluate to True. Read moreSource§fn int_all_dim(
tensor: <B as Backend>::IntTensorPrimitive,
dim: usize,
) -> <B as Backend>::BoolTensorPrimitive
fn int_all_dim( tensor: <B as Backend>::IntTensorPrimitive, dim: usize, ) -> <B as Backend>::BoolTensorPrimitive
Source§fn int_sort(
tensor: <B as Backend>::IntTensorPrimitive,
dim: usize,
descending: bool,
) -> <B as Backend>::IntTensorPrimitive
fn int_sort( tensor: <B as Backend>::IntTensorPrimitive, dim: usize, descending: bool, ) -> <B as Backend>::IntTensorPrimitive
Sort the elements of the input
tensor by value along a given dimension. Read moreSource§fn int_sort_with_indices(
tensor: <B as Backend>::IntTensorPrimitive,
dim: usize,
descending: bool,
) -> (<B as Backend>::IntTensorPrimitive, <B as Backend>::IntTensorPrimitive)
fn int_sort_with_indices( tensor: <B as Backend>::IntTensorPrimitive, dim: usize, descending: bool, ) -> (<B as Backend>::IntTensorPrimitive, <B as Backend>::IntTensorPrimitive)
Sort the elements of the input
tensor by value along a given dimension. Read moreSource§fn int_argsort(
tensor: <B as Backend>::IntTensorPrimitive,
dim: usize,
descending: bool,
) -> <B as Backend>::IntTensorPrimitive
fn int_argsort( tensor: <B as Backend>::IntTensorPrimitive, dim: usize, descending: bool, ) -> <B as Backend>::IntTensorPrimitive
Returns the indices that sort the elements of the input
tensor by value
along a given dimension. Read moreSource§impl<E: FloatNdArrayElement, I: IntNdArrayElement, Q: QuantElement> ModuleOps<NdArray<E, I, Q>> for NdArray<E, I, Q>
impl<E: FloatNdArrayElement, I: IntNdArrayElement, Q: QuantElement> ModuleOps<NdArray<E, I, Q>> for NdArray<E, I, Q>
Source§fn conv2d(
x: NdArrayTensor,
weight: NdArrayTensor,
bias: Option<NdArrayTensor>,
options: ConvOptions<2>,
) -> NdArrayTensor
fn conv2d( x: NdArrayTensor, weight: NdArrayTensor, bias: Option<NdArrayTensor>, options: ConvOptions<2>, ) -> NdArrayTensor
Two dimensional convolution. Read more
Source§fn deform_conv2d(
x: FloatTensor<Self>,
offset: FloatTensor<Self>,
weight: FloatTensor<Self>,
mask: Option<FloatTensor<Self>>,
bias: Option<FloatTensor<Self>>,
options: DeformConvOptions<2>,
) -> FloatTensor<Self>
fn deform_conv2d( x: FloatTensor<Self>, offset: FloatTensor<Self>, weight: FloatTensor<Self>, mask: Option<FloatTensor<Self>>, bias: Option<FloatTensor<Self>>, options: DeformConvOptions<2>, ) -> FloatTensor<Self>
Two dimensional deformable convolution. Read more
Source§fn deform_conv2d_backward(
x: FloatTensor<Self>,
offset: FloatTensor<Self>,
weight: FloatTensor<Self>,
mask: Option<FloatTensor<Self>>,
bias: Option<FloatTensor<Self>>,
output_grad: FloatTensor<Self>,
options: DeformConvOptions<2>,
) -> DeformConv2dBackward<Self>
fn deform_conv2d_backward( x: FloatTensor<Self>, offset: FloatTensor<Self>, weight: FloatTensor<Self>, mask: Option<FloatTensor<Self>>, bias: Option<FloatTensor<Self>>, output_grad: FloatTensor<Self>, options: DeformConvOptions<2>, ) -> DeformConv2dBackward<Self>
Backward pass for the deform_conv2d operation.
Source§fn conv_transpose2d(
x: FloatTensor<Self>,
weight: FloatTensor<Self>,
bias: Option<FloatTensor<Self>>,
options: ConvTransposeOptions<2>,
) -> FloatTensor<Self>
fn conv_transpose2d( x: FloatTensor<Self>, weight: FloatTensor<Self>, bias: Option<FloatTensor<Self>>, options: ConvTransposeOptions<2>, ) -> FloatTensor<Self>
Two dimensional transposed convolution. Read more
Source§fn avg_pool2d(
x: FloatTensor<Self>,
kernel_size: [usize; 2],
stride: [usize; 2],
padding: [usize; 2],
count_include_pad: bool,
) -> FloatTensor<Self>
fn avg_pool2d( x: FloatTensor<Self>, kernel_size: [usize; 2], stride: [usize; 2], padding: [usize; 2], count_include_pad: bool, ) -> FloatTensor<Self>
Two dimensional avg pooling. Read more
Source§fn avg_pool2d_backward(
x: FloatTensor<Self>,
grad: FloatTensor<Self>,
kernel_size: [usize; 2],
stride: [usize; 2],
padding: [usize; 2],
count_include_pad: bool,
) -> FloatTensor<Self>
fn avg_pool2d_backward( x: FloatTensor<Self>, grad: FloatTensor<Self>, kernel_size: [usize; 2], stride: [usize; 2], padding: [usize; 2], count_include_pad: bool, ) -> FloatTensor<Self>
Backward pass for the avg pooling 2d operation.
Source§fn max_pool2d(
x: FloatTensor<Self>,
kernel_size: [usize; 2],
stride: [usize; 2],
padding: [usize; 2],
dilation: [usize; 2],
) -> FloatTensor<Self>
fn max_pool2d( x: FloatTensor<Self>, kernel_size: [usize; 2], stride: [usize; 2], padding: [usize; 2], dilation: [usize; 2], ) -> FloatTensor<Self>
Two dimensional max pooling. Read more
Source§fn max_pool2d_with_indices(
x: FloatTensor<Self>,
kernel_size: [usize; 2],
stride: [usize; 2],
padding: [usize; 2],
dilation: [usize; 2],
) -> MaxPool2dWithIndices<NdArray<E, I, Q>>
fn max_pool2d_with_indices( x: FloatTensor<Self>, kernel_size: [usize; 2], stride: [usize; 2], padding: [usize; 2], dilation: [usize; 2], ) -> MaxPool2dWithIndices<NdArray<E, I, Q>>
Two dimensional max pooling with indices. Read more
Source§fn max_pool2d_with_indices_backward(
x: FloatTensor<Self>,
kernel_size: [usize; 2],
stride: [usize; 2],
padding: [usize; 2],
dilation: [usize; 2],
output_grad: FloatTensor<Self>,
indices: NdArrayTensor,
) -> MaxPool2dBackward<NdArray<E, I, Q>>
fn max_pool2d_with_indices_backward( x: FloatTensor<Self>, kernel_size: [usize; 2], stride: [usize; 2], padding: [usize; 2], dilation: [usize; 2], output_grad: FloatTensor<Self>, indices: NdArrayTensor, ) -> MaxPool2dBackward<NdArray<E, I, Q>>
Backward pass for the max pooling 2d operation.
Source§fn adaptive_avg_pool2d(
x: FloatTensor<Self>,
output_size: [usize; 2],
) -> FloatTensor<Self>
fn adaptive_avg_pool2d( x: FloatTensor<Self>, output_size: [usize; 2], ) -> FloatTensor<Self>
Two dimensional adaptive avg pooling. Read more
Source§fn adaptive_avg_pool2d_backward(
x: FloatTensor<Self>,
grad: FloatTensor<Self>,
) -> FloatTensor<Self>
fn adaptive_avg_pool2d_backward( x: FloatTensor<Self>, grad: FloatTensor<Self>, ) -> FloatTensor<Self>
Backward pass for the adaptive avg pooling 2d operation.
Source§fn interpolate(
x: FloatTensor<Self>,
output_size: [usize; 2],
options: InterpolateOptions,
) -> FloatTensor<Self>
fn interpolate( x: FloatTensor<Self>, output_size: [usize; 2], options: InterpolateOptions, ) -> FloatTensor<Self>
Down/up samples the input. Read more
Source§fn interpolate_backward(
x: FloatTensor<Self>,
grad: FloatTensor<Self>,
output_size: [usize; 2],
options: InterpolateOptions,
) -> FloatTensor<Self>
fn interpolate_backward( x: FloatTensor<Self>, grad: FloatTensor<Self>, output_size: [usize; 2], options: InterpolateOptions, ) -> FloatTensor<Self>
Backward pass for the interpolate operation.
Source§fn conv3d(
x: FloatTensor<Self>,
weight: FloatTensor<Self>,
bias: Option<FloatTensor<Self>>,
options: ConvOptions<3>,
) -> FloatTensor<Self>
fn conv3d( x: FloatTensor<Self>, weight: FloatTensor<Self>, bias: Option<FloatTensor<Self>>, options: ConvOptions<3>, ) -> FloatTensor<Self>
Three dimensional convolution. Read more
Source§fn conv_transpose3d(
x: FloatTensor<Self>,
weight: FloatTensor<Self>,
bias: Option<FloatTensor<Self>>,
options: ConvTransposeOptions<3>,
) -> FloatTensor<Self>
fn conv_transpose3d( x: FloatTensor<Self>, weight: FloatTensor<Self>, bias: Option<FloatTensor<Self>>, options: ConvTransposeOptions<3>, ) -> FloatTensor<Self>
Three dimensional transposed convolution. Read more
Source§fn embedding(
weights: <B as Backend>::FloatTensorPrimitive,
indices: <B as Backend>::IntTensorPrimitive,
) -> <B as Backend>::FloatTensorPrimitive
fn embedding( weights: <B as Backend>::FloatTensorPrimitive, indices: <B as Backend>::IntTensorPrimitive, ) -> <B as Backend>::FloatTensorPrimitive
Embedding operation. Read more
Source§fn embedding_backward(
weights: <B as Backend>::FloatTensorPrimitive,
output_grad: <B as Backend>::FloatTensorPrimitive,
indices: <B as Backend>::IntTensorPrimitive,
) -> <B as Backend>::FloatTensorPrimitive
fn embedding_backward( weights: <B as Backend>::FloatTensorPrimitive, output_grad: <B as Backend>::FloatTensorPrimitive, indices: <B as Backend>::IntTensorPrimitive, ) -> <B as Backend>::FloatTensorPrimitive
Embedding backward operation. Read more
Source§fn conv1d(
x: <B as Backend>::FloatTensorPrimitive,
weight: <B as Backend>::FloatTensorPrimitive,
bias: Option<<B as Backend>::FloatTensorPrimitive>,
options: ConvOptions<1>,
) -> <B as Backend>::FloatTensorPrimitive
fn conv1d( x: <B as Backend>::FloatTensorPrimitive, weight: <B as Backend>::FloatTensorPrimitive, bias: Option<<B as Backend>::FloatTensorPrimitive>, options: ConvOptions<1>, ) -> <B as Backend>::FloatTensorPrimitive
One dimensional convolution. Read more
Source§fn conv1d_x_backward(
x: <B as Backend>::FloatTensorPrimitive,
weight: <B as Backend>::FloatTensorPrimitive,
output_grad: <B as Backend>::FloatTensorPrimitive,
options: ConvOptions<1>,
) -> <B as Backend>::FloatTensorPrimitive
fn conv1d_x_backward( x: <B as Backend>::FloatTensorPrimitive, weight: <B as Backend>::FloatTensorPrimitive, output_grad: <B as Backend>::FloatTensorPrimitive, options: ConvOptions<1>, ) -> <B as Backend>::FloatTensorPrimitive
Backward pass for the conv1d operation, returning the gradient for
x.Source§fn conv1d_weight_backward(
x: <B as Backend>::FloatTensorPrimitive,
weight: <B as Backend>::FloatTensorPrimitive,
output_grad: <B as Backend>::FloatTensorPrimitive,
options: ConvOptions<1>,
) -> <B as Backend>::FloatTensorPrimitive
fn conv1d_weight_backward( x: <B as Backend>::FloatTensorPrimitive, weight: <B as Backend>::FloatTensorPrimitive, output_grad: <B as Backend>::FloatTensorPrimitive, options: ConvOptions<1>, ) -> <B as Backend>::FloatTensorPrimitive
Backward pass for the conv1d operation, returning the gradient for
weight.Source§fn conv1d_bias_backward(
x: <B as Backend>::FloatTensorPrimitive,
bias: <B as Backend>::FloatTensorPrimitive,
output_grad: <B as Backend>::FloatTensorPrimitive,
) -> <B as Backend>::FloatTensorPrimitive
fn conv1d_bias_backward( x: <B as Backend>::FloatTensorPrimitive, bias: <B as Backend>::FloatTensorPrimitive, output_grad: <B as Backend>::FloatTensorPrimitive, ) -> <B as Backend>::FloatTensorPrimitive
Backward pass for the conv1d operation, returning the gradient for
bias.Source§fn conv2d_x_backward(
x: <B as Backend>::FloatTensorPrimitive,
weight: <B as Backend>::FloatTensorPrimitive,
output_grad: <B as Backend>::FloatTensorPrimitive,
options: ConvOptions<2>,
) -> <B as Backend>::FloatTensorPrimitive
fn conv2d_x_backward( x: <B as Backend>::FloatTensorPrimitive, weight: <B as Backend>::FloatTensorPrimitive, output_grad: <B as Backend>::FloatTensorPrimitive, options: ConvOptions<2>, ) -> <B as Backend>::FloatTensorPrimitive
Backward pass for the conv2d operation, returning the gradient for
x.Source§fn conv2d_weight_backward(
x: <B as Backend>::FloatTensorPrimitive,
weight: <B as Backend>::FloatTensorPrimitive,
output_grad: <B as Backend>::FloatTensorPrimitive,
options: ConvOptions<2>,
) -> <B as Backend>::FloatTensorPrimitive
fn conv2d_weight_backward( x: <B as Backend>::FloatTensorPrimitive, weight: <B as Backend>::FloatTensorPrimitive, output_grad: <B as Backend>::FloatTensorPrimitive, options: ConvOptions<2>, ) -> <B as Backend>::FloatTensorPrimitive
Backward pass for the conv2d operation, returning the gradient for
weight.Source§fn conv2d_bias_backward(
x: <B as Backend>::FloatTensorPrimitive,
weight: <B as Backend>::FloatTensorPrimitive,
bias: <B as Backend>::FloatTensorPrimitive,
output_grad: <B as Backend>::FloatTensorPrimitive,
) -> <B as Backend>::FloatTensorPrimitive
fn conv2d_bias_backward( x: <B as Backend>::FloatTensorPrimitive, weight: <B as Backend>::FloatTensorPrimitive, bias: <B as Backend>::FloatTensorPrimitive, output_grad: <B as Backend>::FloatTensorPrimitive, ) -> <B as Backend>::FloatTensorPrimitive
Backward pass for the conv2d operation, returning the gradient for
bias.Source§fn conv3d_x_backward(
x: <B as Backend>::FloatTensorPrimitive,
weight: <B as Backend>::FloatTensorPrimitive,
output_grad: <B as Backend>::FloatTensorPrimitive,
options: ConvOptions<3>,
) -> <B as Backend>::FloatTensorPrimitive
fn conv3d_x_backward( x: <B as Backend>::FloatTensorPrimitive, weight: <B as Backend>::FloatTensorPrimitive, output_grad: <B as Backend>::FloatTensorPrimitive, options: ConvOptions<3>, ) -> <B as Backend>::FloatTensorPrimitive
Backward pass for the conv3d operation, returning the gradient for
x.Source§fn conv3d_weight_backward(
x: <B as Backend>::FloatTensorPrimitive,
weight: <B as Backend>::FloatTensorPrimitive,
output_grad: <B as Backend>::FloatTensorPrimitive,
options: ConvOptions<3>,
) -> <B as Backend>::FloatTensorPrimitive
fn conv3d_weight_backward( x: <B as Backend>::FloatTensorPrimitive, weight: <B as Backend>::FloatTensorPrimitive, output_grad: <B as Backend>::FloatTensorPrimitive, options: ConvOptions<3>, ) -> <B as Backend>::FloatTensorPrimitive
Backward pass for the conv3d operation, returning the gradient for
weight.Source§fn conv3d_bias_backward(
x: <B as Backend>::FloatTensorPrimitive,
weight: <B as Backend>::FloatTensorPrimitive,
bias: <B as Backend>::FloatTensorPrimitive,
output_grad: <B as Backend>::FloatTensorPrimitive,
) -> <B as Backend>::FloatTensorPrimitive
fn conv3d_bias_backward( x: <B as Backend>::FloatTensorPrimitive, weight: <B as Backend>::FloatTensorPrimitive, bias: <B as Backend>::FloatTensorPrimitive, output_grad: <B as Backend>::FloatTensorPrimitive, ) -> <B as Backend>::FloatTensorPrimitive
Backward pass for the conv3d operation, returning the gradient for
bias.Source§fn conv_transpose1d(
x: <B as Backend>::FloatTensorPrimitive,
weight: <B as Backend>::FloatTensorPrimitive,
bias: Option<<B as Backend>::FloatTensorPrimitive>,
options: ConvTransposeOptions<1>,
) -> <B as Backend>::FloatTensorPrimitive
fn conv_transpose1d( x: <B as Backend>::FloatTensorPrimitive, weight: <B as Backend>::FloatTensorPrimitive, bias: Option<<B as Backend>::FloatTensorPrimitive>, options: ConvTransposeOptions<1>, ) -> <B as Backend>::FloatTensorPrimitive
One dimensional transposed convolution. Read more
Source§fn conv_transpose1d_x_backward(
weight: <B as Backend>::FloatTensorPrimitive,
output_grad: <B as Backend>::FloatTensorPrimitive,
options: ConvTransposeOptions<1>,
) -> <B as Backend>::FloatTensorPrimitive
fn conv_transpose1d_x_backward( weight: <B as Backend>::FloatTensorPrimitive, output_grad: <B as Backend>::FloatTensorPrimitive, options: ConvTransposeOptions<1>, ) -> <B as Backend>::FloatTensorPrimitive
Backward pass for the conv transpose 1d operation, returning the gradient for
x.Source§fn conv_transpose1d_weight_backward(
x: <B as Backend>::FloatTensorPrimitive,
weight: <B as Backend>::FloatTensorPrimitive,
output_grad: <B as Backend>::FloatTensorPrimitive,
options: ConvTransposeOptions<1>,
) -> <B as Backend>::FloatTensorPrimitive
fn conv_transpose1d_weight_backward( x: <B as Backend>::FloatTensorPrimitive, weight: <B as Backend>::FloatTensorPrimitive, output_grad: <B as Backend>::FloatTensorPrimitive, options: ConvTransposeOptions<1>, ) -> <B as Backend>::FloatTensorPrimitive
Backward pass for the conv transpose 1d operation, returning the gradient for
weight.Source§fn conv_transpose1d_bias_backward(
x: <B as Backend>::FloatTensorPrimitive,
bias: <B as Backend>::FloatTensorPrimitive,
output_grad: <B as Backend>::FloatTensorPrimitive,
) -> <B as Backend>::FloatTensorPrimitive
fn conv_transpose1d_bias_backward( x: <B as Backend>::FloatTensorPrimitive, bias: <B as Backend>::FloatTensorPrimitive, output_grad: <B as Backend>::FloatTensorPrimitive, ) -> <B as Backend>::FloatTensorPrimitive
Backward pass for the conv transpose 1d operation, returning the gradient for
bias.Source§fn conv_transpose2d_x_backward(
weight: <B as Backend>::FloatTensorPrimitive,
output_grad: <B as Backend>::FloatTensorPrimitive,
options: ConvTransposeOptions<2>,
) -> <B as Backend>::FloatTensorPrimitive
fn conv_transpose2d_x_backward( weight: <B as Backend>::FloatTensorPrimitive, output_grad: <B as Backend>::FloatTensorPrimitive, options: ConvTransposeOptions<2>, ) -> <B as Backend>::FloatTensorPrimitive
Backward pass for the conv transpose 2d operation, returning the gradient for
x.Source§fn conv_transpose2d_weight_backward(
x: <B as Backend>::FloatTensorPrimitive,
weight: <B as Backend>::FloatTensorPrimitive,
output_grad: <B as Backend>::FloatTensorPrimitive,
options: ConvTransposeOptions<2>,
) -> <B as Backend>::FloatTensorPrimitive
fn conv_transpose2d_weight_backward( x: <B as Backend>::FloatTensorPrimitive, weight: <B as Backend>::FloatTensorPrimitive, output_grad: <B as Backend>::FloatTensorPrimitive, options: ConvTransposeOptions<2>, ) -> <B as Backend>::FloatTensorPrimitive
Backward pass for the conv transpose 2d operation, returning the gradient for
weight.Source§fn conv_transpose2d_bias_backward(
x: <B as Backend>::FloatTensorPrimitive,
bias: <B as Backend>::FloatTensorPrimitive,
output_grad: <B as Backend>::FloatTensorPrimitive,
) -> <B as Backend>::FloatTensorPrimitive
fn conv_transpose2d_bias_backward( x: <B as Backend>::FloatTensorPrimitive, bias: <B as Backend>::FloatTensorPrimitive, output_grad: <B as Backend>::FloatTensorPrimitive, ) -> <B as Backend>::FloatTensorPrimitive
Backward pass for the conv transpose 2d operation, returning the gradient for
bias.Source§fn conv_transpose3d_x_backward(
weight: <B as Backend>::FloatTensorPrimitive,
output_grad: <B as Backend>::FloatTensorPrimitive,
options: ConvTransposeOptions<3>,
) -> <B as Backend>::FloatTensorPrimitive
fn conv_transpose3d_x_backward( weight: <B as Backend>::FloatTensorPrimitive, output_grad: <B as Backend>::FloatTensorPrimitive, options: ConvTransposeOptions<3>, ) -> <B as Backend>::FloatTensorPrimitive
Backward pass for the conv transpose 3d operation, returning the gradient for
x.Source§fn conv_transpose3d_weight_backward(
x: <B as Backend>::FloatTensorPrimitive,
weight: <B as Backend>::FloatTensorPrimitive,
output_grad: <B as Backend>::FloatTensorPrimitive,
options: ConvTransposeOptions<3>,
) -> <B as Backend>::FloatTensorPrimitive
fn conv_transpose3d_weight_backward( x: <B as Backend>::FloatTensorPrimitive, weight: <B as Backend>::FloatTensorPrimitive, output_grad: <B as Backend>::FloatTensorPrimitive, options: ConvTransposeOptions<3>, ) -> <B as Backend>::FloatTensorPrimitive
Backward pass for the conv transpose 3d operation, returning the gradient for
weight.Source§fn conv_transpose3d_bias_backward(
x: <B as Backend>::FloatTensorPrimitive,
bias: <B as Backend>::FloatTensorPrimitive,
output_grad: <B as Backend>::FloatTensorPrimitive,
) -> <B as Backend>::FloatTensorPrimitive
fn conv_transpose3d_bias_backward( x: <B as Backend>::FloatTensorPrimitive, bias: <B as Backend>::FloatTensorPrimitive, output_grad: <B as Backend>::FloatTensorPrimitive, ) -> <B as Backend>::FloatTensorPrimitive
Backward pass for the conv transpose 3d operation, returning the gradient for
bias.Source§fn unfold4d(
x: <B as Backend>::FloatTensorPrimitive,
kernel_size: [usize; 2],
options: UnfoldOptions,
) -> <B as Backend>::FloatTensorPrimitive
fn unfold4d( x: <B as Backend>::FloatTensorPrimitive, kernel_size: [usize; 2], options: UnfoldOptions, ) -> <B as Backend>::FloatTensorPrimitive
Four-dimensional unfolding. Read more
Source§fn avg_pool1d(
x: <B as Backend>::FloatTensorPrimitive,
kernel_size: usize,
stride: usize,
padding: usize,
count_include_pad: bool,
) -> <B as Backend>::FloatTensorPrimitive
fn avg_pool1d( x: <B as Backend>::FloatTensorPrimitive, kernel_size: usize, stride: usize, padding: usize, count_include_pad: bool, ) -> <B as Backend>::FloatTensorPrimitive
One dimensional avg pooling. Read more
Source§fn avg_pool1d_backward(
x: <B as Backend>::FloatTensorPrimitive,
grad: <B as Backend>::FloatTensorPrimitive,
kernel_size: usize,
stride: usize,
padding: usize,
count_include_pad: bool,
) -> <B as Backend>::FloatTensorPrimitive
fn avg_pool1d_backward( x: <B as Backend>::FloatTensorPrimitive, grad: <B as Backend>::FloatTensorPrimitive, kernel_size: usize, stride: usize, padding: usize, count_include_pad: bool, ) -> <B as Backend>::FloatTensorPrimitive
Backward pass for the avg pooling 1d operation.
Source§fn adaptive_avg_pool1d(
x: <B as Backend>::FloatTensorPrimitive,
output_size: usize,
) -> <B as Backend>::FloatTensorPrimitive
fn adaptive_avg_pool1d( x: <B as Backend>::FloatTensorPrimitive, output_size: usize, ) -> <B as Backend>::FloatTensorPrimitive
One dimensional adaptive avg pooling. Read more
Source§fn adaptive_avg_pool1d_backward(
x: <B as Backend>::FloatTensorPrimitive,
grad: <B as Backend>::FloatTensorPrimitive,
) -> <B as Backend>::FloatTensorPrimitive
fn adaptive_avg_pool1d_backward( x: <B as Backend>::FloatTensorPrimitive, grad: <B as Backend>::FloatTensorPrimitive, ) -> <B as Backend>::FloatTensorPrimitive
Backward pass for the adaptive avg pooling 1d operation.
Source§fn max_pool1d(
x: <B as Backend>::FloatTensorPrimitive,
kernel_size: usize,
stride: usize,
padding: usize,
dilation: usize,
) -> <B as Backend>::FloatTensorPrimitive
fn max_pool1d( x: <B as Backend>::FloatTensorPrimitive, kernel_size: usize, stride: usize, padding: usize, dilation: usize, ) -> <B as Backend>::FloatTensorPrimitive
One dimensional max pooling. Read more
Source§fn max_pool1d_with_indices(
x: <B as Backend>::FloatTensorPrimitive,
kernel_size: usize,
stride: usize,
padding: usize,
dilation: usize,
) -> MaxPool1dWithIndices<B>
fn max_pool1d_with_indices( x: <B as Backend>::FloatTensorPrimitive, kernel_size: usize, stride: usize, padding: usize, dilation: usize, ) -> MaxPool1dWithIndices<B>
One dimensional max pooling with indices. Read more
Source§fn max_pool1d_with_indices_backward(
x: <B as Backend>::FloatTensorPrimitive,
kernel_size: usize,
stride: usize,
padding: usize,
dilation: usize,
output_grad: <B as Backend>::FloatTensorPrimitive,
indices: <B as Backend>::IntTensorPrimitive,
) -> MaxPool1dBackward<B>
fn max_pool1d_with_indices_backward( x: <B as Backend>::FloatTensorPrimitive, kernel_size: usize, stride: usize, padding: usize, dilation: usize, output_grad: <B as Backend>::FloatTensorPrimitive, indices: <B as Backend>::IntTensorPrimitive, ) -> MaxPool1dBackward<B>
Backward pass for the max pooling 1d operation.
Source§impl<E: FloatNdArrayElement, I: IntNdArrayElement, Q: QuantElement> QTensorOps<NdArray<E, I, Q>> for NdArray<E, I, Q>
impl<E: FloatNdArrayElement, I: IntNdArrayElement, Q: QuantElement> QTensorOps<NdArray<E, I, Q>> for NdArray<E, I, Q>
Source§fn q_from_data(
data: TensorData,
_device: &NdArrayDevice,
) -> QuantizedTensor<Self>
fn q_from_data( data: TensorData, _device: &NdArrayDevice, ) -> QuantizedTensor<Self>
Creates a new tensor from the data structure. Read more
Source§fn quantize(
tensor: FloatTensor<Self>,
scheme: &QuantScheme,
qparams: QuantizationParametersPrimitive<Self>,
) -> QuantizedTensor<Self>
fn quantize( tensor: FloatTensor<Self>, scheme: &QuantScheme, qparams: QuantizationParametersPrimitive<Self>, ) -> QuantizedTensor<Self>
Convert the tensor to a lower precision data type based on the quantization scheme and parameters.
Source§fn dequantize(tensor: QuantizedTensor<Self>) -> FloatTensor<Self>
fn dequantize(tensor: QuantizedTensor<Self>) -> FloatTensor<Self>
Convert the tensor back to a higher precision data type.
Source§fn q_device(_tensor: &QuantizedTensor<Self>) -> NdArrayDevice
fn q_device(_tensor: &QuantizedTensor<Self>) -> NdArrayDevice
Gets the device of the tensor. Read more
Source§fn q_to_device(
tensor: QuantizedTensor<Self>,
_device: &NdArrayDevice,
) -> QuantizedTensor<Self>
fn q_to_device( tensor: QuantizedTensor<Self>, _device: &NdArrayDevice, ) -> QuantizedTensor<Self>
Moves the tensor to the given device. Read more
Source§fn q_reshape(
tensor: QuantizedTensor<Self>,
shape: Shape,
) -> QuantizedTensor<Self>
fn q_reshape( tensor: QuantizedTensor<Self>, shape: Shape, ) -> QuantizedTensor<Self>
Reshapes a tensor. Read more
Source§async fn q_into_data(tensor: QuantizedTensor<Self>) -> TensorData
async fn q_into_data(tensor: QuantizedTensor<Self>) -> TensorData
Converts the tensor to a data structure. Read more
Source§fn q_swap_dims(
tensor: QuantizedTensor<Self>,
dim1: usize,
dim2: usize,
) -> QuantizedTensor<Self>
fn q_swap_dims( tensor: QuantizedTensor<Self>, dim1: usize, dim2: usize, ) -> QuantizedTensor<Self>
Swaps two dimensions of a tensor. Read more
Source§fn q_permute(
tensor: QuantizedTensor<Self>,
axes: &[usize],
) -> QuantizedTensor<Self>
fn q_permute( tensor: QuantizedTensor<Self>, axes: &[usize], ) -> QuantizedTensor<Self>
Permutes the dimensions of a tensor. Read more
Source§fn q_flip(
tensor: QuantizedTensor<Self>,
axes: &[usize],
) -> QuantizedTensor<Self>
fn q_flip( tensor: QuantizedTensor<Self>, axes: &[usize], ) -> QuantizedTensor<Self>
Reverse the order of elements in a tensor along the given axes. Read more
Source§fn q_gather(
dim: usize,
tensor: QuantizedTensor<Self>,
indices: IntTensor<Self>,
) -> QuantizedTensor<Self>
fn q_gather( dim: usize, tensor: QuantizedTensor<Self>, indices: IntTensor<Self>, ) -> QuantizedTensor<Self>
Gather elements from a tensor. Read more
Source§fn q_select(
tensor: QuantizedTensor<Self>,
dim: usize,
indices: IntTensor<Self>,
) -> QuantizedTensor<Self>
fn q_select( tensor: QuantizedTensor<Self>, dim: usize, indices: IntTensor<Self>, ) -> QuantizedTensor<Self>
Select tensor elements along the given dimension corresponding for the given indices. Read more
Source§fn q_slice(
tensor: QuantizedTensor<Self>,
slices: &[Slice],
) -> QuantizedTensor<Self>
fn q_slice( tensor: QuantizedTensor<Self>, slices: &[Slice], ) -> QuantizedTensor<Self>
Select tensor elements corresponding to the given slices. Read more
Source§fn q_argmax(tensor: QuantizedTensor<Self>, dim: usize) -> IntTensor<Self>
fn q_argmax(tensor: QuantizedTensor<Self>, dim: usize) -> IntTensor<Self>
Gets the indices of the maximum elements of a tensor along an axis. Read more
Source§fn q_argmin(tensor: QuantizedTensor<Self>, dim: usize) -> IntTensor<Self>
fn q_argmin(tensor: QuantizedTensor<Self>, dim: usize) -> IntTensor<Self>
Gets the indices of the minimum elements of a tensor along an axis. Read more
Source§fn q_expand(
tensor: QuantizedTensor<Self>,
shape: Shape,
) -> QuantizedTensor<Self>
fn q_expand( tensor: QuantizedTensor<Self>, shape: Shape, ) -> QuantizedTensor<Self>
Broadcasts the
tensor to the given shape.Source§fn quantize_dynamic(
tensor: <B as Backend>::FloatTensorPrimitive,
scheme: &QuantScheme,
) -> <B as Backend>::QuantizedTensorPrimitive
fn quantize_dynamic( tensor: <B as Backend>::FloatTensorPrimitive, scheme: &QuantScheme, ) -> <B as Backend>::QuantizedTensorPrimitive
Dynamically convert the tensor to a lower precision data type based on the quantization scheme.
Source§fn q_detach(
tensor: <B as Backend>::QuantizedTensorPrimitive,
) -> <B as Backend>::QuantizedTensorPrimitive
fn q_detach( tensor: <B as Backend>::QuantizedTensorPrimitive, ) -> <B as Backend>::QuantizedTensorPrimitive
Detaches a tensor from the computation graph.
Source§fn q_set_require_grad(
tensor: <B as Backend>::QuantizedTensorPrimitive,
_require_grad: bool,
) -> <B as Backend>::QuantizedTensorPrimitive
fn q_set_require_grad( tensor: <B as Backend>::QuantizedTensorPrimitive, _require_grad: bool, ) -> <B as Backend>::QuantizedTensorPrimitive
Sets the
require_grad flag of a tensor.Source§fn q_is_require_grad(_tensor: &<B as Backend>::QuantizedTensorPrimitive) -> bool
fn q_is_require_grad(_tensor: &<B as Backend>::QuantizedTensorPrimitive) -> bool
Returns the
require_grad flag of a tensor.Source§fn q_transpose(
tensor: <B as Backend>::QuantizedTensorPrimitive,
) -> <B as Backend>::QuantizedTensorPrimitive
fn q_transpose( tensor: <B as Backend>::QuantizedTensorPrimitive, ) -> <B as Backend>::QuantizedTensorPrimitive
Transposes a tensor. Read more
Source§fn q_repeat_dim(
tensor: <B as Backend>::QuantizedTensorPrimitive,
dim: usize,
times: usize,
) -> <B as Backend>::QuantizedTensorPrimitive
fn q_repeat_dim( tensor: <B as Backend>::QuantizedTensorPrimitive, dim: usize, times: usize, ) -> <B as Backend>::QuantizedTensorPrimitive
Repeat the tensor along the given dimension. Read more
Source§fn q_add(
lhs: <B as Backend>::QuantizedTensorPrimitive,
rhs: <B as Backend>::QuantizedTensorPrimitive,
) -> TensorPrimitive<B>
fn q_add( lhs: <B as Backend>::QuantizedTensorPrimitive, rhs: <B as Backend>::QuantizedTensorPrimitive, ) -> TensorPrimitive<B>
Adds two tensors together. Read more
Source§fn q_add_scalar(
lhs: <B as Backend>::QuantizedTensorPrimitive,
rhs: <B as Backend>::FloatElem,
) -> TensorPrimitive<B>
fn q_add_scalar( lhs: <B as Backend>::QuantizedTensorPrimitive, rhs: <B as Backend>::FloatElem, ) -> TensorPrimitive<B>
Adds a scalar to a tensor. Read more
Source§fn q_clamp_min(
tensor: <B as Backend>::QuantizedTensorPrimitive,
min: <B as Backend>::FloatElem,
) -> TensorPrimitive<B>
fn q_clamp_min( tensor: <B as Backend>::QuantizedTensorPrimitive, min: <B as Backend>::FloatElem, ) -> TensorPrimitive<B>
Clamps a tensor under a minimum value. Read more
Source§fn q_clamp_max(
tensor: <B as Backend>::QuantizedTensorPrimitive,
max: <B as Backend>::FloatElem,
) -> TensorPrimitive<B>
fn q_clamp_max( tensor: <B as Backend>::QuantizedTensorPrimitive, max: <B as Backend>::FloatElem, ) -> TensorPrimitive<B>
Clamps a tensor over a maximum value. Read more
Source§fn q_clamp(
tensor: <B as Backend>::QuantizedTensorPrimitive,
min: <B as Backend>::FloatElem,
max: <B as Backend>::FloatElem,
) -> TensorPrimitive<B>
fn q_clamp( tensor: <B as Backend>::QuantizedTensorPrimitive, min: <B as Backend>::FloatElem, max: <B as Backend>::FloatElem, ) -> TensorPrimitive<B>
Clamps a tensor between a minimum and maximum value. Read more
Source§fn q_sub(
lhs: <B as Backend>::QuantizedTensorPrimitive,
rhs: <B as Backend>::QuantizedTensorPrimitive,
) -> TensorPrimitive<B>
fn q_sub( lhs: <B as Backend>::QuantizedTensorPrimitive, rhs: <B as Backend>::QuantizedTensorPrimitive, ) -> TensorPrimitive<B>
Subtracts two tensors. Read more
Source§fn q_sub_scalar(
lhs: <B as Backend>::QuantizedTensorPrimitive,
rhs: <B as Backend>::FloatElem,
) -> TensorPrimitive<B>
fn q_sub_scalar( lhs: <B as Backend>::QuantizedTensorPrimitive, rhs: <B as Backend>::FloatElem, ) -> TensorPrimitive<B>
Subtracts a scalar from a tensor. Read more
Source§fn q_mul(
lhs: <B as Backend>::QuantizedTensorPrimitive,
rhs: <B as Backend>::QuantizedTensorPrimitive,
) -> TensorPrimitive<B>
fn q_mul( lhs: <B as Backend>::QuantizedTensorPrimitive, rhs: <B as Backend>::QuantizedTensorPrimitive, ) -> TensorPrimitive<B>
Multiplies two tensors together element-wise.
Source§fn q_mul_scalar(
lhs: <B as Backend>::QuantizedTensorPrimitive,
rhs: <B as Backend>::FloatElem,
) -> TensorPrimitive<B>
fn q_mul_scalar( lhs: <B as Backend>::QuantizedTensorPrimitive, rhs: <B as Backend>::FloatElem, ) -> TensorPrimitive<B>
Multiplies a tensor by a scalar. Read more
Source§fn q_div(
lhs: <B as Backend>::QuantizedTensorPrimitive,
rhs: <B as Backend>::QuantizedTensorPrimitive,
) -> TensorPrimitive<B>
fn q_div( lhs: <B as Backend>::QuantizedTensorPrimitive, rhs: <B as Backend>::QuantizedTensorPrimitive, ) -> TensorPrimitive<B>
Divides two tensors element-wise. Read more
Source§fn q_div_scalar(
lhs: <B as Backend>::QuantizedTensorPrimitive,
rhs: <B as Backend>::FloatElem,
) -> TensorPrimitive<B>
fn q_div_scalar( lhs: <B as Backend>::QuantizedTensorPrimitive, rhs: <B as Backend>::FloatElem, ) -> TensorPrimitive<B>
Divides a tensor by a scalar. Read more
Source§fn q_matmul(
lhs: TensorPrimitive<B>,
rhs: TensorPrimitive<B>,
) -> TensorPrimitive<B>
fn q_matmul( lhs: TensorPrimitive<B>, rhs: TensorPrimitive<B>, ) -> TensorPrimitive<B>
Multiplies two tensors together using matrix multiplication. Read more
Source§fn q_neg(tensor: <B as Backend>::QuantizedTensorPrimitive) -> TensorPrimitive<B>
fn q_neg(tensor: <B as Backend>::QuantizedTensorPrimitive) -> TensorPrimitive<B>
Negates a tensor element-wise.
Source§fn q_recip(
tensor: <B as Backend>::QuantizedTensorPrimitive,
) -> TensorPrimitive<B>
fn q_recip( tensor: <B as Backend>::QuantizedTensorPrimitive, ) -> TensorPrimitive<B>
Calculates the reciprocals element-wise
Source§fn q_sum(tensor: <B as Backend>::QuantizedTensorPrimitive) -> TensorPrimitive<B>
fn q_sum(tensor: <B as Backend>::QuantizedTensorPrimitive) -> TensorPrimitive<B>
Sum of all elements in a tensor. Read more
Source§fn q_sum_dim(
tensor: <B as Backend>::QuantizedTensorPrimitive,
dim: usize,
) -> TensorPrimitive<B>
fn q_sum_dim( tensor: <B as Backend>::QuantizedTensorPrimitive, dim: usize, ) -> TensorPrimitive<B>
Sum of all elements in a tensor along a dimension. Read more
Source§fn q_prod(
tensor: <B as Backend>::QuantizedTensorPrimitive,
) -> TensorPrimitive<B>
fn q_prod( tensor: <B as Backend>::QuantizedTensorPrimitive, ) -> TensorPrimitive<B>
Product of all elements in a tensor. Read more
Source§fn q_prod_dim(
tensor: <B as Backend>::QuantizedTensorPrimitive,
dim: usize,
) -> TensorPrimitive<B>
fn q_prod_dim( tensor: <B as Backend>::QuantizedTensorPrimitive, dim: usize, ) -> TensorPrimitive<B>
Product of all elements in a tensor along a dimension. Read more
Source§fn q_mean(
tensor: <B as Backend>::QuantizedTensorPrimitive,
) -> TensorPrimitive<B>
fn q_mean( tensor: <B as Backend>::QuantizedTensorPrimitive, ) -> TensorPrimitive<B>
Mean of all elements in a tensor. Read more
Source§fn q_mean_dim(
tensor: <B as Backend>::QuantizedTensorPrimitive,
dim: usize,
) -> TensorPrimitive<B>
fn q_mean_dim( tensor: <B as Backend>::QuantizedTensorPrimitive, dim: usize, ) -> TensorPrimitive<B>
Mean of all elements in a tensor along a dimension. Read more
Source§fn q_cumsum(
tensor: <B as Backend>::QuantizedTensorPrimitive,
dim: usize,
) -> TensorPrimitive<B>
fn q_cumsum( tensor: <B as Backend>::QuantizedTensorPrimitive, dim: usize, ) -> TensorPrimitive<B>
Computes the cumulative sum of elements along a dimension. Read more
Source§fn q_cumprod(
tensor: <B as Backend>::QuantizedTensorPrimitive,
dim: usize,
) -> TensorPrimitive<B>
fn q_cumprod( tensor: <B as Backend>::QuantizedTensorPrimitive, dim: usize, ) -> TensorPrimitive<B>
Computes the cumulative product of elements along a dimension. Read more
Source§fn q_cummin(
tensor: <B as Backend>::QuantizedTensorPrimitive,
dim: usize,
) -> TensorPrimitive<B>
fn q_cummin( tensor: <B as Backend>::QuantizedTensorPrimitive, dim: usize, ) -> TensorPrimitive<B>
Computes the cumulative minimum of elements along a dimension. Read more
Source§fn q_cummax(
tensor: <B as Backend>::QuantizedTensorPrimitive,
dim: usize,
) -> TensorPrimitive<B>
fn q_cummax( tensor: <B as Backend>::QuantizedTensorPrimitive, dim: usize, ) -> TensorPrimitive<B>
Computes the cumulative maximum of elements along a dimension. Read more
Source§fn q_exp(tensor: <B as Backend>::QuantizedTensorPrimitive) -> TensorPrimitive<B>
fn q_exp(tensor: <B as Backend>::QuantizedTensorPrimitive) -> TensorPrimitive<B>
Returns a new tensor with exponential values. Read more
Source§fn q_log(tensor: <B as Backend>::QuantizedTensorPrimitive) -> TensorPrimitive<B>
fn q_log(tensor: <B as Backend>::QuantizedTensorPrimitive) -> TensorPrimitive<B>
Returns a new tensor with natural logarithm values. Read more
Source§fn q_log1p(
tensor: <B as Backend>::QuantizedTensorPrimitive,
) -> TensorPrimitive<B>
fn q_log1p( tensor: <B as Backend>::QuantizedTensorPrimitive, ) -> TensorPrimitive<B>
Returns a new tensor with logarithm values of (1 + Xi). Read more
Source§fn q_powf(
lhs: <B as Backend>::QuantizedTensorPrimitive,
rhs: <B as Backend>::QuantizedTensorPrimitive,
) -> TensorPrimitive<B>
fn q_powf( lhs: <B as Backend>::QuantizedTensorPrimitive, rhs: <B as Backend>::QuantizedTensorPrimitive, ) -> TensorPrimitive<B>
Element-wise power with another tensor. Read more
Source§fn q_powi(
lhs: <B as Backend>::QuantizedTensorPrimitive,
rhs: <B as Backend>::IntTensorPrimitive,
) -> TensorPrimitive<B>
fn q_powi( lhs: <B as Backend>::QuantizedTensorPrimitive, rhs: <B as Backend>::IntTensorPrimitive, ) -> TensorPrimitive<B>
Element-wise power with an IntTensor. Read more
Source§fn q_powi_scalar(
lhs: <B as Backend>::QuantizedTensorPrimitive,
rhs: <B as Backend>::IntElem,
) -> TensorPrimitive<B>
fn q_powi_scalar( lhs: <B as Backend>::QuantizedTensorPrimitive, rhs: <B as Backend>::IntElem, ) -> TensorPrimitive<B>
Element-wise power with an int scalar. Read more
Source§fn q_powf_scalar(
tensor: <B as Backend>::QuantizedTensorPrimitive,
value: f32,
) -> TensorPrimitive<B>
fn q_powf_scalar( tensor: <B as Backend>::QuantizedTensorPrimitive, value: f32, ) -> TensorPrimitive<B>
Element-wise power with a float scalar. Read more
Source§fn q_sqrt(
tensor: <B as Backend>::QuantizedTensorPrimitive,
) -> TensorPrimitive<B>
fn q_sqrt( tensor: <B as Backend>::QuantizedTensorPrimitive, ) -> TensorPrimitive<B>
Returns a new tensor with square root values. Read more
Source§fn q_abs(
tensor: <B as Backend>::QuantizedTensorPrimitive,
) -> <B as Backend>::QuantizedTensorPrimitive
fn q_abs( tensor: <B as Backend>::QuantizedTensorPrimitive, ) -> <B as Backend>::QuantizedTensorPrimitive
Returns a new tensor with absolute values. Read more
Source§fn q_cos(tensor: <B as Backend>::QuantizedTensorPrimitive) -> TensorPrimitive<B>
fn q_cos(tensor: <B as Backend>::QuantizedTensorPrimitive) -> TensorPrimitive<B>
Returns a new tensor with cosine values. Read more
Source§fn q_sin(tensor: <B as Backend>::QuantizedTensorPrimitive) -> TensorPrimitive<B>
fn q_sin(tensor: <B as Backend>::QuantizedTensorPrimitive) -> TensorPrimitive<B>
Returns a new tensor with sine values. Read more
Source§fn q_tan(tensor: <B as Backend>::QuantizedTensorPrimitive) -> TensorPrimitive<B>
fn q_tan(tensor: <B as Backend>::QuantizedTensorPrimitive) -> TensorPrimitive<B>
Returns a new tensor with tangent values. Read more
Source§fn q_cosh(
tensor: <B as Backend>::QuantizedTensorPrimitive,
) -> TensorPrimitive<B>
fn q_cosh( tensor: <B as Backend>::QuantizedTensorPrimitive, ) -> TensorPrimitive<B>
Returns a new tensor with hyperbolic cosine values. Read more
Source§fn q_sinh(
tensor: <B as Backend>::QuantizedTensorPrimitive,
) -> TensorPrimitive<B>
fn q_sinh( tensor: <B as Backend>::QuantizedTensorPrimitive, ) -> TensorPrimitive<B>
Returns a new tensor with hyperbolic sine values. Read more
Source§fn q_tanh(
tensor: <B as Backend>::QuantizedTensorPrimitive,
) -> TensorPrimitive<B>
fn q_tanh( tensor: <B as Backend>::QuantizedTensorPrimitive, ) -> TensorPrimitive<B>
Returns a new tensor with hyperbolic tangent values. Read more
Source§fn q_erf(tensor: <B as Backend>::QuantizedTensorPrimitive) -> TensorPrimitive<B>
fn q_erf(tensor: <B as Backend>::QuantizedTensorPrimitive) -> TensorPrimitive<B>
Returns a new tensor with the error function values. Read more
Source§fn q_cat(
tensors: Vec<<B as Backend>::QuantizedTensorPrimitive>,
dim: usize,
) -> <B as Backend>::QuantizedTensorPrimitive
fn q_cat( tensors: Vec<<B as Backend>::QuantizedTensorPrimitive>, dim: usize, ) -> <B as Backend>::QuantizedTensorPrimitive
Concatenates tensors along a dimension. Read more
Source§fn q_max(
tensor: <B as Backend>::QuantizedTensorPrimitive,
) -> <B as Backend>::QuantizedTensorPrimitive
fn q_max( tensor: <B as Backend>::QuantizedTensorPrimitive, ) -> <B as Backend>::QuantizedTensorPrimitive
Gets the maximum element of a tensor. Read more
Source§fn q_max_dim(
tensor: <B as Backend>::QuantizedTensorPrimitive,
dim: usize,
) -> <B as Backend>::QuantizedTensorPrimitive
fn q_max_dim( tensor: <B as Backend>::QuantizedTensorPrimitive, dim: usize, ) -> <B as Backend>::QuantizedTensorPrimitive
Gets the maximum elements of a tensor along an axis. Read more
Source§fn q_max_dim_with_indices(
tensor: <B as Backend>::QuantizedTensorPrimitive,
dim: usize,
) -> (<B as Backend>::QuantizedTensorPrimitive, <B as Backend>::IntTensorPrimitive)
fn q_max_dim_with_indices( tensor: <B as Backend>::QuantizedTensorPrimitive, dim: usize, ) -> (<B as Backend>::QuantizedTensorPrimitive, <B as Backend>::IntTensorPrimitive)
Gets the maximum elements of a tensor along an axis and their indices. Read more
Source§fn q_min(
tensor: <B as Backend>::QuantizedTensorPrimitive,
) -> <B as Backend>::QuantizedTensorPrimitive
fn q_min( tensor: <B as Backend>::QuantizedTensorPrimitive, ) -> <B as Backend>::QuantizedTensorPrimitive
Gets the minimum element of a tensor. Read more
Source§fn q_min_dim(
tensor: <B as Backend>::QuantizedTensorPrimitive,
dim: usize,
) -> <B as Backend>::QuantizedTensorPrimitive
fn q_min_dim( tensor: <B as Backend>::QuantizedTensorPrimitive, dim: usize, ) -> <B as Backend>::QuantizedTensorPrimitive
Gets the minimum elements of a tensor along an axis. Read more
Source§fn q_min_dim_with_indices(
tensor: <B as Backend>::QuantizedTensorPrimitive,
dim: usize,
) -> (<B as Backend>::QuantizedTensorPrimitive, <B as Backend>::IntTensorPrimitive)
fn q_min_dim_with_indices( tensor: <B as Backend>::QuantizedTensorPrimitive, dim: usize, ) -> (<B as Backend>::QuantizedTensorPrimitive, <B as Backend>::IntTensorPrimitive)
Gets the minimum elements of a tensor along an axis and their indices. Read more
Source§fn q_max_abs(
tensor: <B as Backend>::QuantizedTensorPrimitive,
) -> <B as Backend>::QuantizedTensorPrimitive
fn q_max_abs( tensor: <B as Backend>::QuantizedTensorPrimitive, ) -> <B as Backend>::QuantizedTensorPrimitive
Gets the maximum element of a tensor. Read more
Source§fn q_max_abs_dim(
tensor: <B as Backend>::QuantizedTensorPrimitive,
dim: usize,
) -> <B as Backend>::QuantizedTensorPrimitive
fn q_max_abs_dim( tensor: <B as Backend>::QuantizedTensorPrimitive, dim: usize, ) -> <B as Backend>::QuantizedTensorPrimitive
Gets the maximum elements of a tensor along an axis. Read more
Source§fn q_any(
tensor: <B as Backend>::QuantizedTensorPrimitive,
) -> <B as Backend>::BoolTensorPrimitive
fn q_any( tensor: <B as Backend>::QuantizedTensorPrimitive, ) -> <B as Backend>::BoolTensorPrimitive
Tests if any element in the
tensor evaluates to True. Read moreSource§fn q_any_dim(
tensor: <B as Backend>::QuantizedTensorPrimitive,
dim: usize,
) -> <B as Backend>::BoolTensorPrimitive
fn q_any_dim( tensor: <B as Backend>::QuantizedTensorPrimitive, dim: usize, ) -> <B as Backend>::BoolTensorPrimitive
Source§fn q_all(
tensor: <B as Backend>::QuantizedTensorPrimitive,
) -> <B as Backend>::BoolTensorPrimitive
fn q_all( tensor: <B as Backend>::QuantizedTensorPrimitive, ) -> <B as Backend>::BoolTensorPrimitive
Tests if all elements in the
tensor evaluate to True. Read moreSource§fn q_all_dim(
tensor: <B as Backend>::QuantizedTensorPrimitive,
dim: usize,
) -> <B as Backend>::BoolTensorPrimitive
fn q_all_dim( tensor: <B as Backend>::QuantizedTensorPrimitive, dim: usize, ) -> <B as Backend>::BoolTensorPrimitive
Source§fn q_sort(
tensor: <B as Backend>::QuantizedTensorPrimitive,
dim: usize,
descending: bool,
) -> <B as Backend>::QuantizedTensorPrimitive
fn q_sort( tensor: <B as Backend>::QuantizedTensorPrimitive, dim: usize, descending: bool, ) -> <B as Backend>::QuantizedTensorPrimitive
Sort the elements of the input
tensor by value in along a given dimension. Read moreSource§fn q_sort_with_indices(
tensor: <B as Backend>::QuantizedTensorPrimitive,
dim: usize,
descending: bool,
) -> (<B as Backend>::QuantizedTensorPrimitive, <B as Backend>::IntTensorPrimitive)
fn q_sort_with_indices( tensor: <B as Backend>::QuantizedTensorPrimitive, dim: usize, descending: bool, ) -> (<B as Backend>::QuantizedTensorPrimitive, <B as Backend>::IntTensorPrimitive)
Sort the elements of the input
tensor by value in along a given dimension. Read moreSource§fn q_argsort(
tensor: <B as Backend>::QuantizedTensorPrimitive,
dim: usize,
descending: bool,
) -> <B as Backend>::IntTensorPrimitive
fn q_argsort( tensor: <B as Backend>::QuantizedTensorPrimitive, dim: usize, descending: bool, ) -> <B as Backend>::IntTensorPrimitive
Returns the indices that sort the elements of the input
tensor by value along a given dimension. Read moreSource§impl<E: FloatNdArrayElement, I: IntNdArrayElement, Q: QuantElement> TransactionOps<NdArray<E, I, Q>> for NdArray<E, I, Q>
impl<E: FloatNdArrayElement, I: IntNdArrayElement, Q: QuantElement> TransactionOps<NdArray<E, I, Q>> for NdArray<E, I, Q>
Source§fn tr_execute(
transaction: TransactionPrimitive<B>,
) -> impl Future<Output = TransactionPrimitiveResult> + Send
fn tr_execute( transaction: TransactionPrimitive<B>, ) -> impl Future<Output = TransactionPrimitiveResult> + Send
Executes a transaction and return its
result.
impl<E: Copy, I: Copy, Q: Copy> Copy for NdArray<E, I, Q>
Auto Trait Implementations§
impl<E, I, Q> Freeze for NdArray<E, I, Q>where
NdArrayTensor: Sized,
impl<E, I, Q> RefUnwindSafe for NdArray<E, I, Q>
impl<E, I, Q> Send for NdArray<E, I, Q>
impl<E, I, Q> Sync for NdArray<E, I, Q>
impl<E, I, Q> Unpin for NdArray<E, I, Q>
impl<E, I, Q> UnwindSafe for NdArray<E, I, Q>
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read more