burn_ndarray/ops/
bool_tensor.rs1use alloc::vec;
3use alloc::vec::Vec;
4use burn_tensor::ops::{BoolTensorOps, FloatTensor, IntTensorOps};
5use burn_tensor::{ElementConversion, TensorMetadata};
6use ndarray::IntoDimension;
7
8use crate::element::{FloatNdArrayElement, IntNdArrayElement, QuantElement};
10use crate::{NdArray, execute_with_int_dtype, tensor::NdArrayTensor};
11use crate::{NdArrayDevice, SharedArray};
12
13use burn_tensor::{Shape, TensorData, backend::Backend};
15
16use super::{NdArrayBoolOps, NdArrayOps};
17
18impl<E: FloatNdArrayElement, I: IntNdArrayElement, Q: QuantElement> BoolTensorOps<Self>
19 for NdArray<E, I, Q>
20where
21 NdArrayTensor: From<SharedArray<E>>,
22 NdArrayTensor: From<SharedArray<I>>,
23{
24 fn bool_from_data(data: TensorData, _device: &NdArrayDevice) -> NdArrayTensor {
25 if !data.dtype.is_bool() {
26 unimplemented!("Unsupported dtype for `bool_from_data`")
27 }
28 NdArrayTensor::from_data(data)
29 }
30
31 async fn bool_into_data(tensor: NdArrayTensor) -> TensorData {
32 tensor.into_data()
33 }
34
35 fn bool_to_device(tensor: NdArrayTensor, _device: &NdArrayDevice) -> NdArrayTensor {
36 tensor
37 }
38
39 fn bool_reshape(tensor: NdArrayTensor, shape: Shape) -> NdArrayTensor {
40 NdArrayOps::reshape(tensor.bool(), shape).into()
41 }
42
43 fn bool_slice(tensor: NdArrayTensor, slices: &[burn_tensor::Slice]) -> NdArrayTensor {
44 NdArrayOps::slice(tensor.bool(), slices).into()
45 }
46
47 fn bool_into_int(tensor: NdArrayTensor) -> NdArrayTensor {
48 let shape = tensor.shape();
49 let values = tensor.bool().into_iter().collect();
50 NdArray::<E, I>::int_from_data(
51 TensorData::new(values, shape).convert::<I>(),
52 &NdArrayDevice::Cpu,
53 )
54 }
55
56 fn bool_device(_tensor: &NdArrayTensor) -> <NdArray<E> as Backend>::Device {
57 NdArrayDevice::Cpu
58 }
59
60 fn bool_empty(shape: Shape, _device: &<NdArray<E> as Backend>::Device) -> NdArrayTensor {
61 Self::bool_zeros(shape, _device)
62 }
63
64 fn bool_zeros(shape: Shape, _device: &<NdArray<E> as Backend>::Device) -> NdArrayTensor {
65 let values = vec![false; shape.num_elements()];
66 NdArrayTensor::from_data(TensorData::new(values, shape))
67 }
68
69 fn bool_ones(shape: Shape, _device: &<NdArray<E> as Backend>::Device) -> NdArrayTensor {
70 let values = vec![true; shape.num_elements()];
71 NdArrayTensor::from_data(TensorData::new(values, shape))
72 }
73
74 fn bool_slice_assign(
75 tensor: NdArrayTensor,
76 slices: &[burn_tensor::Slice],
77 value: NdArrayTensor,
78 ) -> NdArrayTensor {
79 NdArrayOps::slice_assign(tensor.bool(), slices, value.bool()).into()
80 }
81
82 fn bool_cat(tensors: Vec<NdArrayTensor>, dim: usize) -> NdArrayTensor {
83 NdArrayOps::cat(tensors.into_iter().map(|it| it.bool()).collect(), dim).into()
84 }
85
86 fn bool_equal(lhs: NdArrayTensor, rhs: NdArrayTensor) -> NdArrayTensor {
87 NdArrayBoolOps::equal(lhs.bool(), rhs.bool()).into()
88 }
89
90 fn bool_not(tensor: NdArrayTensor) -> NdArrayTensor {
91 tensor.bool().mapv(|a| !a).into_shared().into()
92 }
93
94 fn bool_and(lhs: NdArrayTensor, rhs: NdArrayTensor) -> NdArrayTensor {
95 NdArrayBoolOps::and(lhs.bool(), rhs.bool()).into()
96 }
97
98 fn bool_or(lhs: NdArrayTensor, rhs: NdArrayTensor) -> NdArrayTensor {
99 NdArrayBoolOps::or(lhs.bool(), rhs.bool()).into()
100 }
101
102 fn bool_into_float(tensor: NdArrayTensor) -> FloatTensor<Self> {
103 let arr: SharedArray<E> = tensor.bool().mapv(|a| (a as i32).elem()).into_shared();
104 arr.into()
105 }
106
107 fn bool_swap_dims(tensor: NdArrayTensor, dim1: usize, dim2: usize) -> NdArrayTensor {
108 NdArrayOps::swap_dims(tensor.bool(), dim1, dim2).into()
109 }
110
111 fn bool_permute(tensor: NdArrayTensor, axes: &[usize]) -> NdArrayTensor {
112 tensor.bool().permuted_axes(axes.into_dimension()).into()
113 }
114
115 fn bool_expand(tensor: NdArrayTensor, shape: Shape) -> NdArrayTensor {
116 NdArrayOps::expand(tensor.bool(), shape).into()
117 }
118
119 fn bool_select(tensor: NdArrayTensor, dim: usize, indices: NdArrayTensor) -> NdArrayTensor {
120 execute_with_int_dtype!(indices, I, |indices: SharedArray<I>| -> NdArrayTensor {
121 let tensor_bool = tensor.bool();
122 let indices_vec: Vec<usize> = indices
123 .into_iter()
124 .map(|i| i.elem::<i64>() as usize)
125 .collect();
126
127 let selected = tensor_bool.select(ndarray::Axis(dim), &indices_vec);
128 selected.into_shared().into()
129 })
130 }
131
132 fn bool_select_assign(
133 tensor: NdArrayTensor,
134 dim: usize,
135 indices: NdArrayTensor,
136 value: NdArrayTensor,
137 ) -> NdArrayTensor {
138 execute_with_int_dtype!(indices, I, |indices: SharedArray<I>| -> NdArrayTensor {
139 let mut output_array = tensor.bool().into_owned();
140 let value_bool = value.bool();
141
142 for (index_value, index) in indices.into_iter().enumerate() {
143 let index_usize = index.elem::<i64>() as usize;
144 let mut view = output_array.index_axis_mut(ndarray::Axis(dim), index_usize);
145 let value_slice = value_bool.index_axis(ndarray::Axis(dim), index_value);
146 view.zip_mut_with(&value_slice, |a, b| *a = *a || *b);
148 }
149 output_array.into_shared().into()
150 })
151 }
152
153 fn bool_flip(tensor: NdArrayTensor, axes: &[usize]) -> NdArrayTensor {
154 NdArrayOps::flip(tensor.bool(), axes).into()
155 }
156
157 fn bool_unfold(tensor: NdArrayTensor, dim: usize, size: usize, step: usize) -> NdArrayTensor {
158 NdArrayOps::unfold(tensor.bool(), dim, size, step).into()
159 }
160}