use crate as burn;
use crate::config::Config;
use crate::module::Module;
use crate::tensor::backend::Backend;
use crate::tensor::{Distribution, Tensor};
#[derive(Config)]
pub struct DropoutConfig {
pub prob: f64,
}
#[derive(Module, Clone, Debug)]
pub struct Dropout {
prob: f64,
}
impl DropoutConfig {
pub fn init(&self) -> Dropout {
Dropout { prob: self.prob }
}
}
impl Dropout {
pub fn forward<B: Backend, const D: usize>(&self, input: Tensor<B, D>) -> Tensor<B, D> {
if !B::ad_enabled() || self.prob == 0.0 {
return input;
}
let prob_keep = 1.0 - self.prob;
let random = input.random_like(Distribution::Bernoulli(prob_keep));
let x = input * random;
x * (1.0 / prob_keep)
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::tensor::Shape;
#[cfg(feature = "std")]
use crate::{TestADBackend, TestBackend};
#[cfg(not(feature = "std"))]
use crate::TestBackend;
#[cfg(feature = "std")]
#[test]
fn with_ad_backend_should_mark_input() {
let tensor = Tensor::<TestADBackend, 2>::ones(Shape::new([100, 100]));
let dropout = DropoutConfig::new(0.5).init();
let output = dropout.forward(tensor.clone());
assert_ne!(tensor.to_data(), output.to_data());
}
#[test]
fn without_ad_backend_should_not_change_input() {
let tensor = Tensor::<TestBackend, 2>::ones(Shape::new([100, 100]));
let dropout = DropoutConfig::new(0.5).init();
let output = dropout.forward(tensor.clone());
assert_eq!(tensor.to_data(), output.to_data());
}
}