use crate as burn;
use crate::config::Config;
use crate::module::Module;
use crate::tensor::backend::Backend;
use crate::tensor::{Distribution, Tensor};
#[derive(Config)]
pub struct DropoutConfig {
    pub prob: f64,
}
#[derive(Module, Clone, Debug)]
pub struct Dropout {
    prob: f64,
}
impl DropoutConfig {
    pub fn init(&self) -> Dropout {
        Dropout { prob: self.prob }
    }
}
impl Dropout {
    pub fn forward<B: Backend, const D: usize>(&self, input: Tensor<B, D>) -> Tensor<B, D> {
        if !B::ad_enabled() || self.prob == 0.0 {
            return input;
        }
        let prob_keep = 1.0 - self.prob;
        let random = input.random_like(Distribution::Bernoulli(prob_keep));
        let x = input * random;
        x * (1.0 / prob_keep)
    }
}
#[cfg(test)]
mod tests {
    use super::*;
    use crate::tensor::Shape;
    #[cfg(feature = "std")]
    use crate::{TestADBackend, TestBackend};
    #[cfg(not(feature = "std"))]
    use crate::TestBackend;
    #[cfg(feature = "std")]
    #[test]
    fn with_ad_backend_should_mark_input() {
        let tensor = Tensor::<TestADBackend, 2>::ones(Shape::new([100, 100]));
        let dropout = DropoutConfig::new(0.5).init();
        let output = dropout.forward(tensor.clone());
        assert_ne!(tensor.to_data(), output.to_data());
    }
    #[test]
    fn without_ad_backend_should_not_change_input() {
        let tensor = Tensor::<TestBackend, 2>::ones(Shape::new([100, 100]));
        let dropout = DropoutConfig::new(0.5).init();
        let output = dropout.forward(tensor.clone());
        assert_eq!(tensor.to_data(), output.to_data());
    }
}