pub struct Mutex<T>where
T: ?Sized,{ /* private fields */ }Expand description
An asynchronous Mutex-like type.
This type acts similarly to std::sync::Mutex, with two major
differences: lock is an async method so does not block, and the lock
guard is designed to be held across .await points.
Tokio’s Mutex operates on a guaranteed FIFO basis.
This means that the order in which tasks call the lock method is
the exact order in which they will acquire the lock.
§Which kind of mutex should you use?
Contrary to popular belief, it is ok and often preferred to use the ordinary
Mutex from the standard library in asynchronous code.
The feature that the async mutex offers over the blocking mutex is the
ability to keep it locked across an .await point. This makes the async
mutex more expensive than the blocking mutex, so the blocking mutex should
be preferred in the cases where it can be used. The primary use case for the
async mutex is to provide shared mutable access to IO resources such as a
database connection. If the value behind the mutex is just data, it’s
usually appropriate to use a blocking mutex such as the one in the standard
library or parking_lot.
Note that, although the compiler will not prevent the std Mutex from holding
its guard across .await points in situations where the task is not movable
between threads, this virtually never leads to correct concurrent code in
practice as it can easily lead to deadlocks.
A common pattern is to wrap the Arc<Mutex<...>> in a struct that provides
non-async methods for performing operations on the data within, and only
lock the mutex inside these methods. The mini-redis example provides an
illustration of this pattern.
Additionally, when you do want shared access to an IO resource, it is often better to spawn a task to manage the IO resource, and to use message passing to communicate with that task.
§Examples:
use tokio::sync::Mutex;
use std::sync::Arc;
#[tokio::main]
async fn main() {
let data1 = Arc::new(Mutex::new(0));
let data2 = Arc::clone(&data1);
tokio::spawn(async move {
let mut lock = data2.lock().await;
*lock += 1;
});
let mut lock = data1.lock().await;
*lock += 1;
}use tokio::sync::Mutex;
use std::sync::Arc;
#[tokio::main]
async fn main() {
let count = Arc::new(Mutex::new(0));
for i in 0..5 {
let my_count = Arc::clone(&count);
tokio::spawn(async move {
for j in 0..10 {
let mut lock = my_count.lock().await;
*lock += 1;
println!("{} {} {}", i, j, lock);
}
});
}
loop {
if *count.lock().await >= 50 {
break;
}
}
println!("Count hit 50.");
}There are a few things of note here to pay attention to in this example.
- The mutex is wrapped in an
Arcto allow it to be shared across threads. - Each spawned task obtains a lock and releases it on every iteration.
- Mutation of the data protected by the Mutex is done by de-referencing the obtained lock as seen on lines 13 and 20.
Tokio’s Mutex works in a simple FIFO (first in, first out) style where all
calls to lock complete in the order they were performed. In that way the
Mutex is “fair” and predictable in how it distributes the locks to inner
data. Locks are released and reacquired after every iteration, so basically,
each thread goes to the back of the line after it increments the value once.
Note that there’s some unpredictability to the timing between when the
threads are started, but once they are going they alternate predictably.
Finally, since there is only a single valid lock at any given time, there is
no possibility of a race condition when mutating the inner value.
Note that in contrast to std::sync::Mutex, this implementation does not
poison the mutex when a thread holding the MutexGuard panics. In such a
case, the mutex will be unlocked. If the panic is caught, this might leave
the data protected by the mutex in an inconsistent state.
Implementations§
Source§impl<T> Mutex<T>where
T: ?Sized,
impl<T> Mutex<T>where
T: ?Sized,
Sourcepub fn new(t: T) -> Mutex<T>
pub fn new(t: T) -> Mutex<T>
Creates a new lock in an unlocked state ready for use.
§Examples
use tokio::sync::Mutex;
let lock = Mutex::new(5);Sourcepub const fn const_new(t: T) -> Mutex<T>
pub const fn const_new(t: T) -> Mutex<T>
Creates a new lock in an unlocked state ready for use.
When using the tracing unstable feature, a Mutex created with
const_new will not be instrumented. As such, it will not be visible
in tokio-console. Instead, Mutex::new should be used to create
an instrumented object if that is needed.
§Examples
use tokio::sync::Mutex;
static LOCK: Mutex<i32> = Mutex::const_new(5);Sourcepub async fn lock(&self) -> MutexGuard<'_, T>
pub async fn lock(&self) -> MutexGuard<'_, T>
Locks this mutex, causing the current task to yield until the lock has
been acquired. When the lock has been acquired, function returns a
MutexGuard.
If the mutex is available to be acquired immediately, then this call will typically not yield to the runtime. However, this is not guaranteed under all circumstances.
§Cancel safety
This method uses a queue to fairly distribute locks in the order they
were requested. Cancelling a call to lock makes you lose your place in
the queue.
§Examples
use tokio::sync::Mutex;
#[tokio::main]
async fn main() {
let mutex = Mutex::new(1);
let mut n = mutex.lock().await;
*n = 2;
}Sourcepub fn blocking_lock(&self) -> MutexGuard<'_, T>
pub fn blocking_lock(&self) -> MutexGuard<'_, T>
Blockingly locks this Mutex. When the lock has been acquired, function returns a
MutexGuard.
This method is intended for use cases where you need to use this mutex in asynchronous code as well as in synchronous code.
§Panics
This function panics if called within an asynchronous execution context.
- If you find yourself in an asynchronous execution context and needing
to call some (synchronous) function which performs one of these
blocking_operations, then consider wrapping that call insidespawn_blocking()(orblock_in_place()).
§Examples
use std::sync::Arc;
use tokio::sync::Mutex;
#[tokio::main]
async fn main() {
let mutex = Arc::new(Mutex::new(1));
let lock = mutex.lock().await;
let mutex1 = Arc::clone(&mutex);
let blocking_task = tokio::task::spawn_blocking(move || {
// This shall block until the `lock` is released.
let mut n = mutex1.blocking_lock();
*n = 2;
});
assert_eq!(*lock, 1);
// Release the lock.
drop(lock);
// Await the completion of the blocking task.
blocking_task.await.unwrap();
// Assert uncontended.
let n = mutex.try_lock().unwrap();
assert_eq!(*n, 2);
}
Sourcepub fn blocking_lock_owned(self: Arc<Mutex<T>>) -> OwnedMutexGuard<T>
pub fn blocking_lock_owned(self: Arc<Mutex<T>>) -> OwnedMutexGuard<T>
Blockingly locks this Mutex. When the lock has been acquired, function returns an
OwnedMutexGuard.
This method is identical to Mutex::blocking_lock, except that the returned
guard references the Mutex with an Arc rather than by borrowing
it. Therefore, the Mutex must be wrapped in an Arc to call this
method, and the guard will live for the 'static lifetime, as it keeps
the Mutex alive by holding an Arc.
§Panics
This function panics if called within an asynchronous execution context.
- If you find yourself in an asynchronous execution context and needing
to call some (synchronous) function which performs one of these
blocking_operations, then consider wrapping that call insidespawn_blocking()(orblock_in_place()).
§Examples
use std::sync::Arc;
use tokio::sync::Mutex;
#[tokio::main]
async fn main() {
let mutex = Arc::new(Mutex::new(1));
let lock = mutex.lock().await;
let mutex1 = Arc::clone(&mutex);
let blocking_task = tokio::task::spawn_blocking(move || {
// This shall block until the `lock` is released.
let mut n = mutex1.blocking_lock_owned();
*n = 2;
});
assert_eq!(*lock, 1);
// Release the lock.
drop(lock);
// Await the completion of the blocking task.
blocking_task.await.unwrap();
// Assert uncontended.
let n = mutex.try_lock().unwrap();
assert_eq!(*n, 2);
}
Sourcepub async fn lock_owned(self: Arc<Mutex<T>>) -> OwnedMutexGuard<T>
pub async fn lock_owned(self: Arc<Mutex<T>>) -> OwnedMutexGuard<T>
Locks this mutex, causing the current task to yield until the lock has
been acquired. When the lock has been acquired, this returns an
OwnedMutexGuard.
If the mutex is available to be acquired immediately, then this call will typically not yield to the runtime. However, this is not guaranteed under all circumstances.
This method is identical to Mutex::lock, except that the returned
guard references the Mutex with an Arc rather than by borrowing
it. Therefore, the Mutex must be wrapped in an Arc to call this
method, and the guard will live for the 'static lifetime, as it keeps
the Mutex alive by holding an Arc.
§Cancel safety
This method uses a queue to fairly distribute locks in the order they
were requested. Cancelling a call to lock_owned makes you lose your
place in the queue.
§Examples
use tokio::sync::Mutex;
use std::sync::Arc;
#[tokio::main]
async fn main() {
let mutex = Arc::new(Mutex::new(1));
let mut n = mutex.clone().lock_owned().await;
*n = 2;
}Sourcepub fn try_lock(&self) -> Result<MutexGuard<'_, T>, TryLockError>
pub fn try_lock(&self) -> Result<MutexGuard<'_, T>, TryLockError>
Attempts to acquire the lock, and returns TryLockError if the
lock is currently held somewhere else.
§Examples
use tokio::sync::Mutex;
let mutex = Mutex::new(1);
let n = mutex.try_lock()?;
assert_eq!(*n, 1);Sourcepub fn get_mut(&mut self) -> &mut T
pub fn get_mut(&mut self) -> &mut T
Returns a mutable reference to the underlying data.
Since this call borrows the Mutex mutably, no actual locking needs to
take place – the mutable borrow statically guarantees no locks exist.
§Examples
use tokio::sync::Mutex;
fn main() {
let mut mutex = Mutex::new(1);
let n = mutex.get_mut();
*n = 2;
}Sourcepub fn try_lock_owned(
self: Arc<Mutex<T>>,
) -> Result<OwnedMutexGuard<T>, TryLockError>
pub fn try_lock_owned( self: Arc<Mutex<T>>, ) -> Result<OwnedMutexGuard<T>, TryLockError>
Attempts to acquire the lock, and returns TryLockError if the lock
is currently held somewhere else.
This method is identical to Mutex::try_lock, except that the
returned guard references the Mutex with an Arc rather than by
borrowing it. Therefore, the Mutex must be wrapped in an Arc to call
this method, and the guard will live for the 'static lifetime, as it
keeps the Mutex alive by holding an Arc.
§Examples
use tokio::sync::Mutex;
use std::sync::Arc;
let mutex = Arc::new(Mutex::new(1));
let n = mutex.clone().try_lock_owned()?;
assert_eq!(*n, 1);Sourcepub fn into_inner(self) -> T
pub fn into_inner(self) -> T
Consumes the mutex, returning the underlying data.
§Examples
use tokio::sync::Mutex;
#[tokio::main]
async fn main() {
let mutex = Mutex::new(1);
let n = mutex.into_inner();
assert_eq!(n, 1);
}Trait Implementations§
Source§impl<T> TokioMutexExt<T> for Mutex<T>where
T: Send,
impl<T> TokioMutexExt<T> for Mutex<T>where
T: Send,
impl<T> Send for Mutex<T>
impl<T> Sync for Mutex<T>
Auto Trait Implementations§
impl<T> !Freeze for Mutex<T>
impl<T> !RefUnwindSafe for Mutex<T>
impl<T> Unpin for Mutex<T>
impl<T> !UnwindSafe for Mutex<T>
Blanket Implementations§
Source§impl<'a, T, E> AsTaggedExplicit<'a, E> for Twhere
T: 'a,
impl<'a, T, E> AsTaggedExplicit<'a, E> for Twhere
T: 'a,
Source§impl<'a, T, E> AsTaggedImplicit<'a, E> for Twhere
T: 'a,
impl<'a, T, E> AsTaggedImplicit<'a, E> for Twhere
T: 'a,
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CheckedConversion for T
impl<T> CheckedConversion for T
Source§impl<T> FmtForward for T
impl<T> FmtForward for T
Source§fn fmt_binary(self) -> FmtBinary<Self>where
Self: Binary,
fn fmt_binary(self) -> FmtBinary<Self>where
Self: Binary,
self to use its Binary implementation when Debug-formatted.Source§fn fmt_display(self) -> FmtDisplay<Self>where
Self: Display,
fn fmt_display(self) -> FmtDisplay<Self>where
Self: Display,
self to use its Display implementation when
Debug-formatted.Source§fn fmt_lower_exp(self) -> FmtLowerExp<Self>where
Self: LowerExp,
fn fmt_lower_exp(self) -> FmtLowerExp<Self>where
Self: LowerExp,
self to use its LowerExp implementation when
Debug-formatted.Source§fn fmt_lower_hex(self) -> FmtLowerHex<Self>where
Self: LowerHex,
fn fmt_lower_hex(self) -> FmtLowerHex<Self>where
Self: LowerHex,
self to use its LowerHex implementation when
Debug-formatted.Source§fn fmt_octal(self) -> FmtOctal<Self>where
Self: Octal,
fn fmt_octal(self) -> FmtOctal<Self>where
Self: Octal,
self to use its Octal implementation when Debug-formatted.Source§fn fmt_pointer(self) -> FmtPointer<Self>where
Self: Pointer,
fn fmt_pointer(self) -> FmtPointer<Self>where
Self: Pointer,
self to use its Pointer implementation when
Debug-formatted.Source§fn fmt_upper_exp(self) -> FmtUpperExp<Self>where
Self: UpperExp,
fn fmt_upper_exp(self) -> FmtUpperExp<Self>where
Self: UpperExp,
self to use its UpperExp implementation when
Debug-formatted.Source§fn fmt_upper_hex(self) -> FmtUpperHex<Self>where
Self: UpperHex,
fn fmt_upper_hex(self) -> FmtUpperHex<Self>where
Self: UpperHex,
self to use its UpperHex implementation when
Debug-formatted.Source§impl<T> FromFd for T
impl<T> FromFd for T
Source§impl<T> FromFilelike for T
impl<T> FromFilelike for T
Source§fn from_filelike(owned: OwnedFd) -> T
fn from_filelike(owned: OwnedFd) -> T
Self from the given filelike object. Read moreSource§fn from_into_filelike<Owned>(owned: Owned) -> Twhere
Owned: IntoFilelike,
fn from_into_filelike<Owned>(owned: Owned) -> Twhere
Owned: IntoFilelike,
Self from the given filelike object
converted from into_owned. Read moreSource§impl<T> FromSocketlike for T
impl<T> FromSocketlike for T
Source§fn from_socketlike(owned: OwnedFd) -> T
fn from_socketlike(owned: OwnedFd) -> T
Self from the given socketlike object.Source§fn from_into_socketlike<Owned>(owned: Owned) -> Twhere
Owned: IntoSocketlike,
fn from_into_socketlike<Owned>(owned: Owned) -> Twhere
Owned: IntoSocketlike,
Self from the given socketlike object
converted from into_owned.Source§impl<T> Instrument for T
impl<T> Instrument for T
Source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
Source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> Instrument for T
impl<T> Instrument for T
Source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
Source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> IntoResult<T> for T
impl<T> IntoResult<T> for T
type Err = Infallible
fn into_result(self) -> Result<T, <T as IntoResult<T>>::Err>
Source§impl<T, Outer> IsWrappedBy<Outer> for T
impl<T, Outer> IsWrappedBy<Outer> for T
Source§impl<D> OwoColorize for D
impl<D> OwoColorize for D
Source§fn fg<C>(&self) -> FgColorDisplay<'_, C, Self>where
C: Color,
fn fg<C>(&self) -> FgColorDisplay<'_, C, Self>where
C: Color,
Source§fn bg<C>(&self) -> BgColorDisplay<'_, C, Self>where
C: Color,
fn bg<C>(&self) -> BgColorDisplay<'_, C, Self>where
C: Color,
Source§fn black<'a>(&'a self) -> FgColorDisplay<'a, Black, Self>
fn black<'a>(&'a self) -> FgColorDisplay<'a, Black, Self>
Source§fn on_black<'a>(&'a self) -> BgColorDisplay<'a, Black, Self>
fn on_black<'a>(&'a self) -> BgColorDisplay<'a, Black, Self>
Source§fn red<'a>(&'a self) -> FgColorDisplay<'a, Red, Self>
fn red<'a>(&'a self) -> FgColorDisplay<'a, Red, Self>
Source§fn on_red<'a>(&'a self) -> BgColorDisplay<'a, Red, Self>
fn on_red<'a>(&'a self) -> BgColorDisplay<'a, Red, Self>
Source§fn green<'a>(&'a self) -> FgColorDisplay<'a, Green, Self>
fn green<'a>(&'a self) -> FgColorDisplay<'a, Green, Self>
Source§fn on_green<'a>(&'a self) -> BgColorDisplay<'a, Green, Self>
fn on_green<'a>(&'a self) -> BgColorDisplay<'a, Green, Self>
Source§fn yellow<'a>(&'a self) -> FgColorDisplay<'a, Yellow, Self>
fn yellow<'a>(&'a self) -> FgColorDisplay<'a, Yellow, Self>
Source§fn on_yellow<'a>(&'a self) -> BgColorDisplay<'a, Yellow, Self>
fn on_yellow<'a>(&'a self) -> BgColorDisplay<'a, Yellow, Self>
Source§fn blue<'a>(&'a self) -> FgColorDisplay<'a, Blue, Self>
fn blue<'a>(&'a self) -> FgColorDisplay<'a, Blue, Self>
Source§fn on_blue<'a>(&'a self) -> BgColorDisplay<'a, Blue, Self>
fn on_blue<'a>(&'a self) -> BgColorDisplay<'a, Blue, Self>
Source§fn magenta<'a>(&'a self) -> FgColorDisplay<'a, Magenta, Self>
fn magenta<'a>(&'a self) -> FgColorDisplay<'a, Magenta, Self>
Source§fn on_magenta<'a>(&'a self) -> BgColorDisplay<'a, Magenta, Self>
fn on_magenta<'a>(&'a self) -> BgColorDisplay<'a, Magenta, Self>
Source§fn purple<'a>(&'a self) -> FgColorDisplay<'a, Magenta, Self>
fn purple<'a>(&'a self) -> FgColorDisplay<'a, Magenta, Self>
Source§fn on_purple<'a>(&'a self) -> BgColorDisplay<'a, Magenta, Self>
fn on_purple<'a>(&'a self) -> BgColorDisplay<'a, Magenta, Self>
Source§fn cyan<'a>(&'a self) -> FgColorDisplay<'a, Cyan, Self>
fn cyan<'a>(&'a self) -> FgColorDisplay<'a, Cyan, Self>
Source§fn on_cyan<'a>(&'a self) -> BgColorDisplay<'a, Cyan, Self>
fn on_cyan<'a>(&'a self) -> BgColorDisplay<'a, Cyan, Self>
Source§fn white<'a>(&'a self) -> FgColorDisplay<'a, White, Self>
fn white<'a>(&'a self) -> FgColorDisplay<'a, White, Self>
Source§fn on_white<'a>(&'a self) -> BgColorDisplay<'a, White, Self>
fn on_white<'a>(&'a self) -> BgColorDisplay<'a, White, Self>
Source§fn default_color<'a>(&'a self) -> FgColorDisplay<'a, Default, Self>
fn default_color<'a>(&'a self) -> FgColorDisplay<'a, Default, Self>
Source§fn on_default_color<'a>(&'a self) -> BgColorDisplay<'a, Default, Self>
fn on_default_color<'a>(&'a self) -> BgColorDisplay<'a, Default, Self>
Source§fn bright_black<'a>(&'a self) -> FgColorDisplay<'a, BrightBlack, Self>
fn bright_black<'a>(&'a self) -> FgColorDisplay<'a, BrightBlack, Self>
Source§fn on_bright_black<'a>(&'a self) -> BgColorDisplay<'a, BrightBlack, Self>
fn on_bright_black<'a>(&'a self) -> BgColorDisplay<'a, BrightBlack, Self>
Source§fn bright_red<'a>(&'a self) -> FgColorDisplay<'a, BrightRed, Self>
fn bright_red<'a>(&'a self) -> FgColorDisplay<'a, BrightRed, Self>
Source§fn on_bright_red<'a>(&'a self) -> BgColorDisplay<'a, BrightRed, Self>
fn on_bright_red<'a>(&'a self) -> BgColorDisplay<'a, BrightRed, Self>
Source§fn bright_green<'a>(&'a self) -> FgColorDisplay<'a, BrightGreen, Self>
fn bright_green<'a>(&'a self) -> FgColorDisplay<'a, BrightGreen, Self>
Source§fn on_bright_green<'a>(&'a self) -> BgColorDisplay<'a, BrightGreen, Self>
fn on_bright_green<'a>(&'a self) -> BgColorDisplay<'a, BrightGreen, Self>
Source§fn bright_yellow<'a>(&'a self) -> FgColorDisplay<'a, BrightYellow, Self>
fn bright_yellow<'a>(&'a self) -> FgColorDisplay<'a, BrightYellow, Self>
Source§fn on_bright_yellow<'a>(&'a self) -> BgColorDisplay<'a, BrightYellow, Self>
fn on_bright_yellow<'a>(&'a self) -> BgColorDisplay<'a, BrightYellow, Self>
Source§fn bright_blue<'a>(&'a self) -> FgColorDisplay<'a, BrightBlue, Self>
fn bright_blue<'a>(&'a self) -> FgColorDisplay<'a, BrightBlue, Self>
Source§fn on_bright_blue<'a>(&'a self) -> BgColorDisplay<'a, BrightBlue, Self>
fn on_bright_blue<'a>(&'a self) -> BgColorDisplay<'a, BrightBlue, Self>
Source§fn bright_magenta<'a>(&'a self) -> FgColorDisplay<'a, BrightMagenta, Self>
fn bright_magenta<'a>(&'a self) -> FgColorDisplay<'a, BrightMagenta, Self>
Source§fn on_bright_magenta<'a>(&'a self) -> BgColorDisplay<'a, BrightMagenta, Self>
fn on_bright_magenta<'a>(&'a self) -> BgColorDisplay<'a, BrightMagenta, Self>
Source§fn bright_purple<'a>(&'a self) -> FgColorDisplay<'a, BrightMagenta, Self>
fn bright_purple<'a>(&'a self) -> FgColorDisplay<'a, BrightMagenta, Self>
Source§fn on_bright_purple<'a>(&'a self) -> BgColorDisplay<'a, BrightMagenta, Self>
fn on_bright_purple<'a>(&'a self) -> BgColorDisplay<'a, BrightMagenta, Self>
Source§fn bright_cyan<'a>(&'a self) -> FgColorDisplay<'a, BrightCyan, Self>
fn bright_cyan<'a>(&'a self) -> FgColorDisplay<'a, BrightCyan, Self>
Source§fn on_bright_cyan<'a>(&'a self) -> BgColorDisplay<'a, BrightCyan, Self>
fn on_bright_cyan<'a>(&'a self) -> BgColorDisplay<'a, BrightCyan, Self>
Source§fn bright_white<'a>(&'a self) -> FgColorDisplay<'a, BrightWhite, Self>
fn bright_white<'a>(&'a self) -> FgColorDisplay<'a, BrightWhite, Self>
Source§fn on_bright_white<'a>(&'a self) -> BgColorDisplay<'a, BrightWhite, Self>
fn on_bright_white<'a>(&'a self) -> BgColorDisplay<'a, BrightWhite, Self>
Source§fn bold<'a>(&'a self) -> BoldDisplay<'a, Self>
fn bold<'a>(&'a self) -> BoldDisplay<'a, Self>
Source§fn dimmed<'a>(&'a self) -> DimDisplay<'a, Self>
fn dimmed<'a>(&'a self) -> DimDisplay<'a, Self>
Source§fn italic<'a>(&'a self) -> ItalicDisplay<'a, Self>
fn italic<'a>(&'a self) -> ItalicDisplay<'a, Self>
Source§fn underline<'a>(&'a self) -> UnderlineDisplay<'a, Self>
fn underline<'a>(&'a self) -> UnderlineDisplay<'a, Self>
Source§fn blink<'a>(&'a self) -> BlinkDisplay<'a, Self>
fn blink<'a>(&'a self) -> BlinkDisplay<'a, Self>
Source§fn blink_fast<'a>(&'a self) -> BlinkFastDisplay<'a, Self>
fn blink_fast<'a>(&'a self) -> BlinkFastDisplay<'a, Self>
Source§fn reversed<'a>(&'a self) -> ReversedDisplay<'a, Self>
fn reversed<'a>(&'a self) -> ReversedDisplay<'a, Self>
Source§fn strikethrough<'a>(&'a self) -> StrikeThroughDisplay<'a, Self>
fn strikethrough<'a>(&'a self) -> StrikeThroughDisplay<'a, Self>
Source§fn color<Color>(&self, color: Color) -> FgDynColorDisplay<'_, Color, Self>where
Color: DynColor,
fn color<Color>(&self, color: Color) -> FgDynColorDisplay<'_, Color, Self>where
Color: DynColor,
OwoColorize::fg or
a color-specific method, such as OwoColorize::green, Read moreSource§fn on_color<Color>(&self, color: Color) -> BgDynColorDisplay<'_, Color, Self>where
Color: DynColor,
fn on_color<Color>(&self, color: Color) -> BgDynColorDisplay<'_, Color, Self>where
Color: DynColor,
OwoColorize::bg or
a color-specific method, such as OwoColorize::on_yellow, Read moreSource§fn fg_rgb<const R: u8, const G: u8, const B: u8>(
&self,
) -> FgColorDisplay<'_, CustomColor<R, G, B>, Self>
fn fg_rgb<const R: u8, const G: u8, const B: u8>( &self, ) -> FgColorDisplay<'_, CustomColor<R, G, B>, Self>
Source§fn bg_rgb<const R: u8, const G: u8, const B: u8>(
&self,
) -> BgColorDisplay<'_, CustomColor<R, G, B>, Self>
fn bg_rgb<const R: u8, const G: u8, const B: u8>( &self, ) -> BgColorDisplay<'_, CustomColor<R, G, B>, Self>
Source§fn truecolor(&self, r: u8, g: u8, b: u8) -> FgDynColorDisplay<'_, Rgb, Self>
fn truecolor(&self, r: u8, g: u8, b: u8) -> FgDynColorDisplay<'_, Rgb, Self>
Source§fn on_truecolor(&self, r: u8, g: u8, b: u8) -> BgDynColorDisplay<'_, Rgb, Self>
fn on_truecolor(&self, r: u8, g: u8, b: u8) -> BgDynColorDisplay<'_, Rgb, Self>
Source§impl<T> Pipe for Twhere
T: ?Sized,
impl<T> Pipe for Twhere
T: ?Sized,
Source§fn pipe<R>(self, func: impl FnOnce(Self) -> R) -> Rwhere
Self: Sized,
fn pipe<R>(self, func: impl FnOnce(Self) -> R) -> Rwhere
Self: Sized,
Source§fn pipe_ref<'a, R>(&'a self, func: impl FnOnce(&'a Self) -> R) -> Rwhere
R: 'a,
fn pipe_ref<'a, R>(&'a self, func: impl FnOnce(&'a Self) -> R) -> Rwhere
R: 'a,
self and passes that borrow into the pipe function. Read moreSource§fn pipe_ref_mut<'a, R>(&'a mut self, func: impl FnOnce(&'a mut Self) -> R) -> Rwhere
R: 'a,
fn pipe_ref_mut<'a, R>(&'a mut self, func: impl FnOnce(&'a mut Self) -> R) -> Rwhere
R: 'a,
self and passes that borrow into the pipe function. Read moreSource§fn pipe_borrow<'a, B, R>(&'a self, func: impl FnOnce(&'a B) -> R) -> R
fn pipe_borrow<'a, B, R>(&'a self, func: impl FnOnce(&'a B) -> R) -> R
Source§fn pipe_borrow_mut<'a, B, R>(
&'a mut self,
func: impl FnOnce(&'a mut B) -> R,
) -> R
fn pipe_borrow_mut<'a, B, R>( &'a mut self, func: impl FnOnce(&'a mut B) -> R, ) -> R
Source§fn pipe_as_ref<'a, U, R>(&'a self, func: impl FnOnce(&'a U) -> R) -> R
fn pipe_as_ref<'a, U, R>(&'a self, func: impl FnOnce(&'a U) -> R) -> R
self, then passes self.as_ref() into the pipe function.Source§fn pipe_as_mut<'a, U, R>(&'a mut self, func: impl FnOnce(&'a mut U) -> R) -> R
fn pipe_as_mut<'a, U, R>(&'a mut self, func: impl FnOnce(&'a mut U) -> R) -> R
self, then passes self.as_mut() into the pipe
function.Source§fn pipe_deref<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R
fn pipe_deref<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R
self, then passes self.deref() into the pipe function.Source§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<T> SaturatedConversion for T
impl<T> SaturatedConversion for T
Source§fn saturated_from<T>(t: T) -> Selfwhere
Self: UniqueSaturatedFrom<T>,
fn saturated_from<T>(t: T) -> Selfwhere
Self: UniqueSaturatedFrom<T>,
Source§fn saturated_into<T>(self) -> Twhere
Self: UniqueSaturatedInto<T>,
fn saturated_into<T>(self) -> Twhere
Self: UniqueSaturatedInto<T>,
T. Read moreSource§impl<T> Tap for T
impl<T> Tap for T
Source§fn tap_borrow<B>(self, func: impl FnOnce(&B)) -> Self
fn tap_borrow<B>(self, func: impl FnOnce(&B)) -> Self
Borrow<B> of a value. Read moreSource§fn tap_borrow_mut<B>(self, func: impl FnOnce(&mut B)) -> Self
fn tap_borrow_mut<B>(self, func: impl FnOnce(&mut B)) -> Self
BorrowMut<B> of a value. Read moreSource§fn tap_ref<R>(self, func: impl FnOnce(&R)) -> Self
fn tap_ref<R>(self, func: impl FnOnce(&R)) -> Self
AsRef<R> view of a value. Read moreSource§fn tap_ref_mut<R>(self, func: impl FnOnce(&mut R)) -> Self
fn tap_ref_mut<R>(self, func: impl FnOnce(&mut R)) -> Self
AsMut<R> view of a value. Read moreSource§fn tap_deref<T>(self, func: impl FnOnce(&T)) -> Self
fn tap_deref<T>(self, func: impl FnOnce(&T)) -> Self
Deref::Target of a value. Read moreSource§fn tap_deref_mut<T>(self, func: impl FnOnce(&mut T)) -> Self
fn tap_deref_mut<T>(self, func: impl FnOnce(&mut T)) -> Self
Deref::Target of a value. Read moreSource§fn tap_dbg(self, func: impl FnOnce(&Self)) -> Self
fn tap_dbg(self, func: impl FnOnce(&Self)) -> Self
.tap() only in debug builds, and is erased in release builds.Source§fn tap_mut_dbg(self, func: impl FnOnce(&mut Self)) -> Self
fn tap_mut_dbg(self, func: impl FnOnce(&mut Self)) -> Self
.tap_mut() only in debug builds, and is erased in release
builds.Source§fn tap_borrow_dbg<B>(self, func: impl FnOnce(&B)) -> Self
fn tap_borrow_dbg<B>(self, func: impl FnOnce(&B)) -> Self
.tap_borrow() only in debug builds, and is erased in release
builds.Source§fn tap_borrow_mut_dbg<B>(self, func: impl FnOnce(&mut B)) -> Self
fn tap_borrow_mut_dbg<B>(self, func: impl FnOnce(&mut B)) -> Self
.tap_borrow_mut() only in debug builds, and is erased in release
builds.Source§fn tap_ref_dbg<R>(self, func: impl FnOnce(&R)) -> Self
fn tap_ref_dbg<R>(self, func: impl FnOnce(&R)) -> Self
.tap_ref() only in debug builds, and is erased in release
builds.Source§fn tap_ref_mut_dbg<R>(self, func: impl FnOnce(&mut R)) -> Self
fn tap_ref_mut_dbg<R>(self, func: impl FnOnce(&mut R)) -> Self
.tap_ref_mut() only in debug builds, and is erased in release
builds.Source§fn tap_deref_dbg<T>(self, func: impl FnOnce(&T)) -> Self
fn tap_deref_dbg<T>(self, func: impl FnOnce(&T)) -> Self
.tap_deref() only in debug builds, and is erased in release
builds.Source§impl<S, T> UncheckedInto<T> for Swhere
T: UncheckedFrom<S>,
impl<S, T> UncheckedInto<T> for Swhere
T: UncheckedFrom<S>,
Source§fn unchecked_into(self) -> T
fn unchecked_into(self) -> T
unchecked_from.Source§impl<T, S> UniqueSaturatedInto<T> for S
impl<T, S> UniqueSaturatedInto<T> for S
Source§fn unique_saturated_into(self) -> T
fn unique_saturated_into(self) -> T
T.