Struct BoxShadow

Source
pub struct BoxShadow(pub Vec<ShadowStyle>);
Expand description

List of shadows to draw for a Node.

Draw order is determined implicitly from the vector of ShadowStyles, back-to-front.

Tuple Fields§

§0: Vec<ShadowStyle>

Implementations§

Source§

impl BoxShadow

Source

pub fn new( color: Color, x_offset: Val, y_offset: Val, spread_radius: Val, blur_radius: Val, ) -> BoxShadow

A single drop shadow

Examples found in repository?
examples/ui/box_shadow.rs (lines 259-265)
242fn box_shadow_node_bundle(
243    size: Vec2,
244    offset: Vec2,
245    spread: f32,
246    blur: f32,
247    border_radius: BorderRadius,
248) -> impl Bundle {
249    (
250        Node {
251            width: Val::Px(size.x),
252            height: Val::Px(size.y),
253            border: UiRect::all(Val::Px(4.)),
254            ..default()
255        },
256        BorderColor(LIGHT_SKY_BLUE.into()),
257        border_radius,
258        BackgroundColor(DEEP_SKY_BLUE.into()),
259        BoxShadow::new(
260            Color::BLACK.with_alpha(0.8),
261            Val::Percent(offset.x),
262            Val::Percent(offset.y),
263            Val::Percent(spread),
264            Val::Px(blur),
265        ),
266    )
267}
More examples
Hide additional examples
examples/testbed/ui.rs (lines 329-335)
262    pub fn setup(mut commands: Commands) {
263        commands.spawn((Camera2d, StateScoped(super::Scene::BoxShadow)));
264
265        commands
266            .spawn((
267                Node {
268                    width: Val::Percent(100.0),
269                    height: Val::Percent(100.0),
270                    padding: UiRect::all(Val::Px(30.)),
271                    column_gap: Val::Px(200.),
272                    flex_wrap: FlexWrap::Wrap,
273                    ..default()
274                },
275                BackgroundColor(GREEN.into()),
276                StateScoped(super::Scene::BoxShadow),
277            ))
278            .with_children(|commands| {
279                let example_nodes = [
280                    (
281                        Vec2::splat(100.),
282                        Vec2::ZERO,
283                        10.,
284                        0.,
285                        BorderRadius::bottom_right(Val::Px(10.)),
286                    ),
287                    (Vec2::new(200., 50.), Vec2::ZERO, 10., 0., BorderRadius::MAX),
288                    (
289                        Vec2::new(100., 50.),
290                        Vec2::ZERO,
291                        10.,
292                        10.,
293                        BorderRadius::ZERO,
294                    ),
295                    (
296                        Vec2::splat(100.),
297                        Vec2::splat(20.),
298                        10.,
299                        10.,
300                        BorderRadius::bottom_right(Val::Px(10.)),
301                    ),
302                    (
303                        Vec2::splat(100.),
304                        Vec2::splat(50.),
305                        0.,
306                        10.,
307                        BorderRadius::ZERO,
308                    ),
309                    (
310                        Vec2::new(50., 100.),
311                        Vec2::splat(10.),
312                        0.,
313                        10.,
314                        BorderRadius::MAX,
315                    ),
316                ];
317
318                for (size, offset, spread, blur, border_radius) in example_nodes {
319                    commands.spawn((
320                        Node {
321                            width: Val::Px(size.x),
322                            height: Val::Px(size.y),
323                            border: UiRect::all(Val::Px(2.)),
324                            ..default()
325                        },
326                        BorderColor(WHITE.into()),
327                        border_radius,
328                        BackgroundColor(BLUE.into()),
329                        BoxShadow::new(
330                            Color::BLACK.with_alpha(0.9),
331                            Val::Percent(offset.x),
332                            Val::Percent(offset.y),
333                            Val::Percent(spread),
334                            Val::Px(blur),
335                        ),
336                    ));
337                }
338            });
339    }

Methods from Deref<Target = Vec<ShadowStyle>>§

1.0.0 · Source

pub fn capacity(&self) -> usize

Returns the total number of elements the vector can hold without reallocating.

§Examples
let mut vec: Vec<i32> = Vec::with_capacity(10);
vec.push(42);
assert!(vec.capacity() >= 10);

A vector with zero-sized elements will always have a capacity of usize::MAX:

#[derive(Clone)]
struct ZeroSized;

fn main() {
    assert_eq!(std::mem::size_of::<ZeroSized>(), 0);
    let v = vec![ZeroSized; 0];
    assert_eq!(v.capacity(), usize::MAX);
}
1.0.0 · Source

pub fn reserve(&mut self, additional: usize)

Reserves capacity for at least additional more elements to be inserted in the given Vec<T>. The collection may reserve more space to speculatively avoid frequent reallocations. After calling reserve, capacity will be greater than or equal to self.len() + additional. Does nothing if capacity is already sufficient.

§Panics

Panics if the new capacity exceeds isize::MAX bytes.

§Examples
let mut vec = vec![1];
vec.reserve(10);
assert!(vec.capacity() >= 11);
1.0.0 · Source

pub fn reserve_exact(&mut self, additional: usize)

Reserves the minimum capacity for at least additional more elements to be inserted in the given Vec<T>. Unlike reserve, this will not deliberately over-allocate to speculatively avoid frequent allocations. After calling reserve_exact, capacity will be greater than or equal to self.len() + additional. Does nothing if the capacity is already sufficient.

Note that the allocator may give the collection more space than it requests. Therefore, capacity can not be relied upon to be precisely minimal. Prefer reserve if future insertions are expected.

§Panics

Panics if the new capacity exceeds isize::MAX bytes.

§Examples
let mut vec = vec![1];
vec.reserve_exact(10);
assert!(vec.capacity() >= 11);
1.57.0 · Source

pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError>

Tries to reserve capacity for at least additional more elements to be inserted in the given Vec<T>. The collection may reserve more space to speculatively avoid frequent reallocations. After calling try_reserve, capacity will be greater than or equal to self.len() + additional if it returns Ok(()). Does nothing if capacity is already sufficient. This method preserves the contents even if an error occurs.

§Errors

If the capacity overflows, or the allocator reports a failure, then an error is returned.

§Examples
use std::collections::TryReserveError;

fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
    let mut output = Vec::new();

    // Pre-reserve the memory, exiting if we can't
    output.try_reserve(data.len())?;

    // Now we know this can't OOM in the middle of our complex work
    output.extend(data.iter().map(|&val| {
        val * 2 + 5 // very complicated
    }));

    Ok(output)
}
1.57.0 · Source

pub fn try_reserve_exact( &mut self, additional: usize, ) -> Result<(), TryReserveError>

Tries to reserve the minimum capacity for at least additional elements to be inserted in the given Vec<T>. Unlike try_reserve, this will not deliberately over-allocate to speculatively avoid frequent allocations. After calling try_reserve_exact, capacity will be greater than or equal to self.len() + additional if it returns Ok(()). Does nothing if the capacity is already sufficient.

Note that the allocator may give the collection more space than it requests. Therefore, capacity can not be relied upon to be precisely minimal. Prefer try_reserve if future insertions are expected.

§Errors

If the capacity overflows, or the allocator reports a failure, then an error is returned.

§Examples
use std::collections::TryReserveError;

fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
    let mut output = Vec::new();

    // Pre-reserve the memory, exiting if we can't
    output.try_reserve_exact(data.len())?;

    // Now we know this can't OOM in the middle of our complex work
    output.extend(data.iter().map(|&val| {
        val * 2 + 5 // very complicated
    }));

    Ok(output)
}
1.0.0 · Source

pub fn shrink_to_fit(&mut self)

Shrinks the capacity of the vector as much as possible.

The behavior of this method depends on the allocator, which may either shrink the vector in-place or reallocate. The resulting vector might still have some excess capacity, just as is the case for with_capacity. See Allocator::shrink for more details.

§Examples
let mut vec = Vec::with_capacity(10);
vec.extend([1, 2, 3]);
assert!(vec.capacity() >= 10);
vec.shrink_to_fit();
assert!(vec.capacity() >= 3);
1.56.0 · Source

pub fn shrink_to(&mut self, min_capacity: usize)

Shrinks the capacity of the vector with a lower bound.

The capacity will remain at least as large as both the length and the supplied value.

If the current capacity is less than the lower limit, this is a no-op.

§Examples
let mut vec = Vec::with_capacity(10);
vec.extend([1, 2, 3]);
assert!(vec.capacity() >= 10);
vec.shrink_to(4);
assert!(vec.capacity() >= 4);
vec.shrink_to(0);
assert!(vec.capacity() >= 3);
1.0.0 · Source

pub fn truncate(&mut self, len: usize)

Shortens the vector, keeping the first len elements and dropping the rest.

If len is greater or equal to the vector’s current length, this has no effect.

The drain method can emulate truncate, but causes the excess elements to be returned instead of dropped.

Note that this method has no effect on the allocated capacity of the vector.

§Examples

Truncating a five element vector to two elements:

let mut vec = vec![1, 2, 3, 4, 5];
vec.truncate(2);
assert_eq!(vec, [1, 2]);

No truncation occurs when len is greater than the vector’s current length:

let mut vec = vec![1, 2, 3];
vec.truncate(8);
assert_eq!(vec, [1, 2, 3]);

Truncating when len == 0 is equivalent to calling the clear method.

let mut vec = vec![1, 2, 3];
vec.truncate(0);
assert_eq!(vec, []);
1.7.0 · Source

pub fn as_slice(&self) -> &[T]

Extracts a slice containing the entire vector.

Equivalent to &s[..].

§Examples
use std::io::{self, Write};
let buffer = vec![1, 2, 3, 5, 8];
io::sink().write(buffer.as_slice()).unwrap();
Examples found in repository?
examples/shader/custom_shader_instancing.rs (line 189)
181fn prepare_instance_buffers(
182    mut commands: Commands,
183    query: Query<(Entity, &InstanceMaterialData)>,
184    render_device: Res<RenderDevice>,
185) {
186    for (entity, instance_data) in &query {
187        let buffer = render_device.create_buffer_with_data(&BufferInitDescriptor {
188            label: Some("instance data buffer"),
189            contents: bytemuck::cast_slice(instance_data.as_slice()),
190            usage: BufferUsages::VERTEX | BufferUsages::COPY_DST,
191        });
192        commands.entity(entity).insert(InstanceBuffer {
193            buffer,
194            length: instance_data.len(),
195        });
196    }
197}
More examples
Hide additional examples
examples/shader/storage_buffer.rs (line 91)
70fn update(
71    time: Res<Time>,
72    material_handles: Res<CustomMaterialHandle>,
73    mut materials: ResMut<Assets<CustomMaterial>>,
74    mut buffers: ResMut<Assets<ShaderStorageBuffer>>,
75) {
76    let material = materials.get_mut(&material_handles.0).unwrap();
77
78    let buffer = buffers.get_mut(&material.colors).unwrap();
79    buffer.set_data(
80        (0..5)
81            .map(|i| {
82                let t = time.elapsed_secs() * 5.0;
83                [
84                    ops::sin(t + i as f32) / 2.0 + 0.5,
85                    ops::sin(t + i as f32 + 2.0) / 2.0 + 0.5,
86                    ops::sin(t + i as f32 + 4.0) / 2.0 + 0.5,
87                    1.0,
88                ]
89            })
90            .collect::<Vec<[f32; 4]>>()
91            .as_slice(),
92    );
93}
examples/asset/asset_decompression.rs (line 63)
43    async fn load(
44        &self,
45        reader: &mut dyn Reader,
46        _settings: &(),
47        load_context: &mut LoadContext<'_>,
48    ) -> Result<Self::Asset, Self::Error> {
49        let compressed_path = load_context.path();
50        let file_name = compressed_path
51            .file_name()
52            .ok_or(GzAssetLoaderError::IndeterminateFilePath)?
53            .to_string_lossy();
54        let uncompressed_file_name = file_name
55            .strip_suffix(".gz")
56            .ok_or(GzAssetLoaderError::IndeterminateFilePath)?;
57        let contained_path = compressed_path.join(uncompressed_file_name);
58
59        let mut bytes_compressed = Vec::new();
60
61        reader.read_to_end(&mut bytes_compressed).await?;
62
63        let mut decoder = GzDecoder::new(bytes_compressed.as_slice());
64
65        let mut bytes_uncompressed = Vec::new();
66
67        decoder.read_to_end(&mut bytes_uncompressed)?;
68
69        // Now that we have decompressed the asset, let's pass it back to the
70        // context to continue loading
71
72        let mut reader = VecReader::new(bytes_uncompressed);
73
74        let uncompressed = load_context
75            .loader()
76            .with_unknown_type()
77            .immediate()
78            .with_reader(&mut reader)
79            .load(contained_path)
80            .await?;
81
82        Ok(GzAsset { uncompressed })
83    }
1.7.0 · Source

pub fn as_mut_slice(&mut self) -> &mut [T]

Extracts a mutable slice of the entire vector.

Equivalent to &mut s[..].

§Examples
use std::io::{self, Read};
let mut buffer = vec![0; 3];
io::repeat(0b101).read_exact(buffer.as_mut_slice()).unwrap();
1.37.0 · Source

pub fn as_ptr(&self) -> *const T

Returns a raw pointer to the vector’s buffer, or a dangling raw pointer valid for zero sized reads if the vector didn’t allocate.

The caller must ensure that the vector outlives the pointer this function returns, or else it will end up dangling. Modifying the vector may cause its buffer to be reallocated, which would also make any pointers to it invalid.

The caller must also ensure that the memory the pointer (non-transitively) points to is never written to (except inside an UnsafeCell) using this pointer or any pointer derived from it. If you need to mutate the contents of the slice, use as_mut_ptr.

This method guarantees that for the purpose of the aliasing model, this method does not materialize a reference to the underlying slice, and thus the returned pointer will remain valid when mixed with other calls to as_ptr, as_mut_ptr, and as_non_null. Note that calling other methods that materialize mutable references to the slice, or mutable references to specific elements you are planning on accessing through this pointer, as well as writing to those elements, may still invalidate this pointer. See the second example below for how this guarantee can be used.

§Examples
let x = vec![1, 2, 4];
let x_ptr = x.as_ptr();

unsafe {
    for i in 0..x.len() {
        assert_eq!(*x_ptr.add(i), 1 << i);
    }
}

Due to the aliasing guarantee, the following code is legal:

unsafe {
    let mut v = vec![0, 1, 2];
    let ptr1 = v.as_ptr();
    let _ = ptr1.read();
    let ptr2 = v.as_mut_ptr().offset(2);
    ptr2.write(2);
    // Notably, the write to `ptr2` did *not* invalidate `ptr1`
    // because it mutated a different element:
    let _ = ptr1.read();
}
1.37.0 · Source

pub fn as_mut_ptr(&mut self) -> *mut T

Returns a raw mutable pointer to the vector’s buffer, or a dangling raw pointer valid for zero sized reads if the vector didn’t allocate.

The caller must ensure that the vector outlives the pointer this function returns, or else it will end up dangling. Modifying the vector may cause its buffer to be reallocated, which would also make any pointers to it invalid.

This method guarantees that for the purpose of the aliasing model, this method does not materialize a reference to the underlying slice, and thus the returned pointer will remain valid when mixed with other calls to as_ptr, as_mut_ptr, and as_non_null. Note that calling other methods that materialize references to the slice, or references to specific elements you are planning on accessing through this pointer, may still invalidate this pointer. See the second example below for how this guarantee can be used.

§Examples
// Allocate vector big enough for 4 elements.
let size = 4;
let mut x: Vec<i32> = Vec::with_capacity(size);
let x_ptr = x.as_mut_ptr();

// Initialize elements via raw pointer writes, then set length.
unsafe {
    for i in 0..size {
        *x_ptr.add(i) = i as i32;
    }
    x.set_len(size);
}
assert_eq!(&*x, &[0, 1, 2, 3]);

Due to the aliasing guarantee, the following code is legal:

unsafe {
    let mut v = vec![0];
    let ptr1 = v.as_mut_ptr();
    ptr1.write(1);
    let ptr2 = v.as_mut_ptr();
    ptr2.write(2);
    // Notably, the write to `ptr2` did *not* invalidate `ptr1`:
    ptr1.write(3);
}
Examples found in repository?
examples/ecs/dynamic.rs (line 204)
200fn to_owning_ptrs(components: &mut [Vec<u64>]) -> Vec<OwningPtr<Aligned>> {
201    components
202        .iter_mut()
203        .map(|data| {
204            let ptr = data.as_mut_ptr();
205            // SAFETY:
206            // - Pointers are guaranteed to be non-null
207            // - Memory pointed to won't be dropped until `components` is dropped
208            unsafe {
209                let non_null = NonNull::new_unchecked(ptr.cast());
210                OwningPtr::new(non_null)
211            }
212        })
213        .collect()
214}
Source

pub fn as_non_null(&mut self) -> NonNull<T>

🔬This is a nightly-only experimental API. (box_vec_non_null)

Returns a NonNull pointer to the vector’s buffer, or a dangling NonNull pointer valid for zero sized reads if the vector didn’t allocate.

The caller must ensure that the vector outlives the pointer this function returns, or else it will end up dangling. Modifying the vector may cause its buffer to be reallocated, which would also make any pointers to it invalid.

This method guarantees that for the purpose of the aliasing model, this method does not materialize a reference to the underlying slice, and thus the returned pointer will remain valid when mixed with other calls to as_ptr, as_mut_ptr, and as_non_null. Note that calling other methods that materialize references to the slice, or references to specific elements you are planning on accessing through this pointer, may still invalidate this pointer. See the second example below for how this guarantee can be used.

§Examples
#![feature(box_vec_non_null)]

// Allocate vector big enough for 4 elements.
let size = 4;
let mut x: Vec<i32> = Vec::with_capacity(size);
let x_ptr = x.as_non_null();

// Initialize elements via raw pointer writes, then set length.
unsafe {
    for i in 0..size {
        x_ptr.add(i).write(i as i32);
    }
    x.set_len(size);
}
assert_eq!(&*x, &[0, 1, 2, 3]);

Due to the aliasing guarantee, the following code is legal:

#![feature(box_vec_non_null)]

unsafe {
    let mut v = vec![0];
    let ptr1 = v.as_non_null();
    ptr1.write(1);
    let ptr2 = v.as_non_null();
    ptr2.write(2);
    // Notably, the write to `ptr2` did *not* invalidate `ptr1`:
    ptr1.write(3);
}
Source

pub fn allocator(&self) -> &A

🔬This is a nightly-only experimental API. (allocator_api)

Returns a reference to the underlying allocator.

1.0.0 · Source

pub unsafe fn set_len(&mut self, new_len: usize)

Forces the length of the vector to new_len.

This is a low-level operation that maintains none of the normal invariants of the type. Normally changing the length of a vector is done using one of the safe operations instead, such as truncate, resize, extend, or clear.

§Safety
  • new_len must be less than or equal to capacity().
  • The elements at old_len..new_len must be initialized.
§Examples

See spare_capacity_mut() for an example with safe initialization of capacity elements and use of this method.

set_len() can be useful for situations in which the vector is serving as a buffer for other code, particularly over FFI:

pub fn get_dictionary(&self) -> Option<Vec<u8>> {
    // Per the FFI method's docs, "32768 bytes is always enough".
    let mut dict = Vec::with_capacity(32_768);
    let mut dict_length = 0;
    // SAFETY: When `deflateGetDictionary` returns `Z_OK`, it holds that:
    // 1. `dict_length` elements were initialized.
    // 2. `dict_length` <= the capacity (32_768)
    // which makes `set_len` safe to call.
    unsafe {
        // Make the FFI call...
        let r = deflateGetDictionary(self.strm, dict.as_mut_ptr(), &mut dict_length);
        if r == Z_OK {
            // ...and update the length to what was initialized.
            dict.set_len(dict_length);
            Some(dict)
        } else {
            None
        }
    }
}

While the following example is sound, there is a memory leak since the inner vectors were not freed prior to the set_len call:

let mut vec = vec![vec![1, 0, 0],
                   vec![0, 1, 0],
                   vec![0, 0, 1]];
// SAFETY:
// 1. `old_len..0` is empty so no elements need to be initialized.
// 2. `0 <= capacity` always holds whatever `capacity` is.
unsafe {
    vec.set_len(0);
}

Normally, here, one would use clear instead to correctly drop the contents and thus not leak memory.

1.0.0 · Source

pub fn swap_remove(&mut self, index: usize) -> T

Removes an element from the vector and returns it.

The removed element is replaced by the last element of the vector.

This does not preserve ordering of the remaining elements, but is O(1). If you need to preserve the element order, use remove instead.

§Panics

Panics if index is out of bounds.

§Examples
let mut v = vec!["foo", "bar", "baz", "qux"];

assert_eq!(v.swap_remove(1), "bar");
assert_eq!(v, ["foo", "qux", "baz"]);

assert_eq!(v.swap_remove(0), "foo");
assert_eq!(v, ["baz", "qux"]);
1.0.0 · Source

pub fn insert(&mut self, index: usize, element: T)

Inserts an element at position index within the vector, shifting all elements after it to the right.

§Panics

Panics if index > len.

§Examples
let mut vec = vec!['a', 'b', 'c'];
vec.insert(1, 'd');
assert_eq!(vec, ['a', 'd', 'b', 'c']);
vec.insert(4, 'e');
assert_eq!(vec, ['a', 'd', 'b', 'c', 'e']);
§Time complexity

Takes O(Vec::len) time. All items after the insertion index must be shifted to the right. In the worst case, all elements are shifted when the insertion index is 0.

1.0.0 · Source

pub fn remove(&mut self, index: usize) -> T

Removes and returns the element at position index within the vector, shifting all elements after it to the left.

Note: Because this shifts over the remaining elements, it has a worst-case performance of O(n). If you don’t need the order of elements to be preserved, use swap_remove instead. If you’d like to remove elements from the beginning of the Vec, consider using VecDeque::pop_front instead.

§Panics

Panics if index is out of bounds.

§Examples
let mut v = vec!['a', 'b', 'c'];
assert_eq!(v.remove(1), 'b');
assert_eq!(v, ['a', 'c']);
1.0.0 · Source

pub fn retain<F>(&mut self, f: F)
where F: FnMut(&T) -> bool,

Retains only the elements specified by the predicate.

In other words, remove all elements e for which f(&e) returns false. This method operates in place, visiting each element exactly once in the original order, and preserves the order of the retained elements.

§Examples
let mut vec = vec![1, 2, 3, 4];
vec.retain(|&x| x % 2 == 0);
assert_eq!(vec, [2, 4]);

Because the elements are visited exactly once in the original order, external state may be used to decide which elements to keep.

let mut vec = vec![1, 2, 3, 4, 5];
let keep = [false, true, true, false, true];
let mut iter = keep.iter();
vec.retain(|_| *iter.next().unwrap());
assert_eq!(vec, [2, 3, 5]);
Examples found in repository?
examples/games/loading_screen.rs (lines 207-211)
196fn update_loading_data(
197    mut loading_data: ResMut<LoadingData>,
198    mut loading_state: ResMut<LoadingState>,
199    asset_server: Res<AssetServer>,
200    pipelines_ready: Res<PipelinesReady>,
201) {
202    if !loading_data.loading_assets.is_empty() || !pipelines_ready.0 {
203        // If we are still loading assets / pipelines are not fully compiled,
204        // we reset the confirmation frame count.
205        loading_data.confirmation_frames_count = 0;
206
207        loading_data.loading_assets.retain(|asset| {
208            asset_server
209                .get_recursive_dependency_load_state(asset)
210                .is_none_or(|state| !state.is_loaded())
211        });
212
213        // If there are no more assets being monitored, and pipelines
214        // are compiled, then start counting confirmation frames.
215        // Once enough confirmations have passed, everything will be
216        // considered to be fully loaded.
217    } else {
218        loading_data.confirmation_frames_count += 1;
219        if loading_data.confirmation_frames_count == loading_data.confirmation_frames_target {
220            *loading_state = LoadingState::LevelReady;
221        }
222    }
223}
1.61.0 · Source

pub fn retain_mut<F>(&mut self, f: F)
where F: FnMut(&mut T) -> bool,

Retains only the elements specified by the predicate, passing a mutable reference to it.

In other words, remove all elements e such that f(&mut e) returns false. This method operates in place, visiting each element exactly once in the original order, and preserves the order of the retained elements.

§Examples
let mut vec = vec![1, 2, 3, 4];
vec.retain_mut(|x| if *x <= 3 {
    *x += 1;
    true
} else {
    false
});
assert_eq!(vec, [2, 3, 4]);
1.16.0 · Source

pub fn dedup_by_key<F, K>(&mut self, key: F)
where F: FnMut(&mut T) -> K, K: PartialEq,

Removes all but the first of consecutive elements in the vector that resolve to the same key.

If the vector is sorted, this removes all duplicates.

§Examples
let mut vec = vec![10, 20, 21, 30, 20];

vec.dedup_by_key(|i| *i / 10);

assert_eq!(vec, [10, 20, 30, 20]);
1.16.0 · Source

pub fn dedup_by<F>(&mut self, same_bucket: F)
where F: FnMut(&mut T, &mut T) -> bool,

Removes all but the first of consecutive elements in the vector satisfying a given equality relation.

The same_bucket function is passed references to two elements from the vector and must determine if the elements compare equal. The elements are passed in opposite order from their order in the slice, so if same_bucket(a, b) returns true, a is removed.

If the vector is sorted, this removes all duplicates.

§Examples
let mut vec = vec!["foo", "bar", "Bar", "baz", "bar"];

vec.dedup_by(|a, b| a.eq_ignore_ascii_case(b));

assert_eq!(vec, ["foo", "bar", "baz", "bar"]);
1.0.0 · Source

pub fn push(&mut self, value: T)

Appends an element to the back of a collection.

§Panics

Panics if the new capacity exceeds isize::MAX bytes.

§Examples
let mut vec = vec![1, 2];
vec.push(3);
assert_eq!(vec, [1, 2, 3]);
§Time complexity

Takes amortized O(1) time. If the vector’s length would exceed its capacity after the push, O(capacity) time is taken to copy the vector’s elements to a larger allocation. This expensive operation is offset by the capacity O(1) insertions it allows.

Examples found in repository?
examples/games/stepping.rs (line 23)
22    pub fn add_schedule(mut self, label: impl ScheduleLabel) -> SteppingPlugin {
23        self.schedule_labels.push(label.intern());
24        self
25    }
26
27    /// Set the location of the stepping UI when activated
28    pub fn at(self, left: Val, top: Val) -> SteppingPlugin {
29        SteppingPlugin { top, left, ..self }
30    }
31}
32
33impl Plugin for SteppingPlugin {
34    fn build(&self, app: &mut App) {
35        app.add_systems(Startup, build_stepping_hint);
36        if cfg!(not(feature = "bevy_debug_stepping")) {
37            return;
38        }
39
40        // create and insert our debug schedule into the main schedule order.
41        // We need an independent schedule so we have access to all other
42        // schedules through the `Stepping` resource
43        app.init_schedule(DebugSchedule);
44        let mut order = app.world_mut().resource_mut::<MainScheduleOrder>();
45        order.insert_after(Update, DebugSchedule);
46
47        // create our stepping resource
48        let mut stepping = Stepping::new();
49        for label in &self.schedule_labels {
50            stepping.add_schedule(*label);
51        }
52        app.insert_resource(stepping);
53
54        // add our startup & stepping systems
55        app.insert_resource(State {
56            ui_top: self.top,
57            ui_left: self.left,
58            systems: Vec::new(),
59        })
60        .add_systems(
61            DebugSchedule,
62            (
63                build_ui.run_if(not(initialized)),
64                handle_input,
65                update_ui.run_if(initialized),
66            )
67                .chain(),
68        );
69    }
70}
71
72/// Struct for maintaining stepping state
73#[derive(Resource, Debug)]
74struct State {
75    // vector of schedule/node id -> text index offset
76    systems: Vec<(InternedScheduleLabel, NodeId, usize)>,
77
78    // ui positioning
79    ui_top: Val,
80    ui_left: Val,
81}
82
83/// condition to check if the stepping UI has been constructed
84fn initialized(state: Res<State>) -> bool {
85    !state.systems.is_empty()
86}
87
88const FONT_COLOR: Color = Color::srgb(0.2, 0.2, 0.2);
89const FONT_BOLD: &str = "fonts/FiraSans-Bold.ttf";
90
91#[derive(Component)]
92struct SteppingUi;
93
94/// Construct the stepping UI elements from the [`Schedules`] resource.
95///
96/// This system may run multiple times before constructing the UI as all of the
97/// data may not be available on the first run of the system.  This happens if
98/// one of the stepping schedules has not yet been run.
99fn build_ui(
100    mut commands: Commands,
101    asset_server: Res<AssetServer>,
102    schedules: Res<Schedules>,
103    mut stepping: ResMut<Stepping>,
104    mut state: ResMut<State>,
105) {
106    let mut text_spans = Vec::new();
107    let mut always_run = Vec::new();
108
109    let Ok(schedule_order) = stepping.schedules() else {
110        return;
111    };
112
113    // go through the stepping schedules and construct a list of systems for
114    // each label
115    for label in schedule_order {
116        let schedule = schedules.get(*label).unwrap();
117        text_spans.push((
118            TextSpan(format!("{label:?}\n")),
119            TextFont {
120                font: asset_server.load(FONT_BOLD),
121                ..default()
122            },
123            TextColor(FONT_COLOR),
124        ));
125
126        // grab the list of systems in the schedule, in the order the
127        // single-threaded executor would run them.
128        let Ok(systems) = schedule.systems() else {
129            return;
130        };
131
132        for (node_id, system) in systems {
133            // skip bevy default systems; we don't want to step those
134            if system.name().starts_with("bevy") {
135                always_run.push((*label, node_id));
136                continue;
137            }
138
139            // Add an entry to our systems list so we can find where to draw
140            // the cursor when the stepping cursor is at this system
141            // we add plus 1 to account for the empty root span
142            state.systems.push((*label, node_id, text_spans.len() + 1));
143
144            // Add a text section for displaying the cursor for this system
145            text_spans.push((
146                TextSpan::new("   "),
147                TextFont::default(),
148                TextColor(FONT_COLOR),
149            ));
150
151            // add the name of the system to the ui
152            text_spans.push((
153                TextSpan(format!("{}\n", system.name())),
154                TextFont::default(),
155                TextColor(FONT_COLOR),
156            ));
157        }
158    }
159
160    for (label, node) in always_run.drain(..) {
161        stepping.always_run_node(label, node);
162    }
163
164    commands.spawn((
165        Text::default(),
166        SteppingUi,
167        Node {
168            position_type: PositionType::Absolute,
169            top: state.ui_top,
170            left: state.ui_left,
171            padding: UiRect::all(Val::Px(10.0)),
172            ..default()
173        },
174        BackgroundColor(Color::srgba(1.0, 1.0, 1.0, 0.33)),
175        Visibility::Hidden,
176        Children::spawn(text_spans),
177    ));
178}
More examples
Hide additional examples
examples/shader/shader_defs.rs (line 71)
63    fn specialize(
64        _pipeline: &MaterialPipeline<Self>,
65        descriptor: &mut RenderPipelineDescriptor,
66        _layout: &MeshVertexBufferLayoutRef,
67        key: MaterialPipelineKey<Self>,
68    ) -> Result<(), SpecializedMeshPipelineError> {
69        if key.bind_group_data.is_red {
70            let fragment = descriptor.fragment.as_mut().unwrap();
71            fragment.shader_defs.push("IS_RED".into());
72        }
73        Ok(())
74    }
examples/shader/shader_material_wesl.rs (lines 129-132)
122    fn specialize(
123        _pipeline: &MaterialPipeline<Self>,
124        descriptor: &mut RenderPipelineDescriptor,
125        _layout: &MeshVertexBufferLayoutRef,
126        key: MaterialPipelineKey<Self>,
127    ) -> Result<(), SpecializedMeshPipelineError> {
128        let fragment = descriptor.fragment.as_mut().unwrap();
129        fragment.shader_defs.push(ShaderDefVal::Bool(
130            "PARTY_MODE".to_string(),
131            key.bind_group_data.party_mode,
132        ));
133        Ok(())
134    }
examples/ecs/send_and_receive_events.rs (line 123)
108fn send_and_receive_param_set(
109    mut param_set: ParamSet<(EventReader<DebugEvent>, EventWriter<DebugEvent>)>,
110    frame_count: Res<FrameCount>,
111) {
112    println!(
113        "Sending and receiving events for frame {} with a `ParamSet`",
114        frame_count.0
115    );
116
117    // We must collect the events to resend, because we can't access the writer while we're iterating over the reader.
118    let mut events_to_resend = Vec::new();
119
120    // This is p0, as the first parameter in the `ParamSet` is the reader.
121    for event in param_set.p0().read() {
122        if event.resend_from_param_set {
123            events_to_resend.push(event.clone());
124        }
125    }
126
127    // This is p1, as the second parameter in the `ParamSet` is the writer.
128    for mut event in events_to_resend {
129        event.times_sent += 1;
130        param_set.p1().write(event);
131    }
132}
133
134/// A system that both sends and receives events using a [`Local`] [`EventCursor`].
135fn send_and_receive_manual_event_reader(
136    // The `Local` `SystemParam` stores state inside the system itself, rather than in the world.
137    // `EventCursor<T>` is the internal state of `EventReader<T>`, which tracks which events have been seen.
138    mut local_event_reader: Local<EventCursor<DebugEvent>>,
139    // We can access the `Events` resource mutably, allowing us to both read and write its contents.
140    mut events: ResMut<Events<DebugEvent>>,
141    frame_count: Res<FrameCount>,
142) {
143    println!(
144        "Sending and receiving events for frame {} with a `Local<EventCursor>",
145        frame_count.0
146    );
147
148    // We must collect the events to resend, because we can't mutate events while we're iterating over the events.
149    let mut events_to_resend = Vec::new();
150
151    for event in local_event_reader.read(&events) {
152        if event.resend_from_local_event_reader {
153            // For simplicity, we're cloning the event.
154            // In this case, since we have mutable access to the `Events` resource,
155            // we could also just mutate the event in-place,
156            // or drain the event queue into our `events_to_resend` vector.
157            events_to_resend.push(event.clone());
158        }
159    }
160
161    for mut event in events_to_resend {
162        event.times_sent += 1;
163        events.send(event);
164    }
165}
examples/games/loading_screen.rs (line 145)
131fn load_level_1(
132    mut commands: Commands,
133    mut loading_data: ResMut<LoadingData>,
134    asset_server: Res<AssetServer>,
135) {
136    // Spawn the camera.
137    commands.spawn((
138        Camera3d::default(),
139        Transform::from_xyz(155.0, 155.0, 155.0).looking_at(Vec3::new(0.0, 40.0, 0.0), Vec3::Y),
140        LevelComponents,
141    ));
142
143    // Save the asset into the `loading_assets` vector.
144    let fox = asset_server.load(GltfAssetLabel::Scene(0).from_asset("models/animated/Fox.glb"));
145    loading_data.loading_assets.push(fox.clone().into());
146    // Spawn the fox.
147    commands.spawn((
148        SceneRoot(fox.clone()),
149        Transform::from_xyz(0.0, 0.0, 0.0),
150        LevelComponents,
151    ));
152
153    // Spawn the light.
154    commands.spawn((
155        DirectionalLight {
156            shadows_enabled: true,
157            ..default()
158        },
159        Transform::from_xyz(3.0, 3.0, 2.0).looking_at(Vec3::ZERO, Vec3::Y),
160        LevelComponents,
161    ));
162}
163
164fn load_level_2(
165    mut commands: Commands,
166    mut loading_data: ResMut<LoadingData>,
167    asset_server: Res<AssetServer>,
168) {
169    // Spawn the camera.
170    commands.spawn((
171        Camera3d::default(),
172        Transform::from_xyz(1.0, 1.0, 1.0).looking_at(Vec3::new(0.0, 0.2, 0.0), Vec3::Y),
173        LevelComponents,
174    ));
175
176    // Spawn the helmet.
177    let helmet_scene = asset_server
178        .load(GltfAssetLabel::Scene(0).from_asset("models/FlightHelmet/FlightHelmet.gltf"));
179    loading_data
180        .loading_assets
181        .push(helmet_scene.clone().into());
182    commands.spawn((SceneRoot(helmet_scene.clone()), LevelComponents));
183
184    // Spawn the light.
185    commands.spawn((
186        DirectionalLight {
187            shadows_enabled: true,
188            ..default()
189        },
190        Transform::from_xyz(3.0, 3.0, 2.0).looking_at(Vec3::ZERO, Vec3::Y),
191        LevelComponents,
192    ));
193}
examples/3d/mesh_ray_cast.rs (line 50)
48fn bounce_ray(mut ray: Ray3d, ray_cast: &mut MeshRayCast, gizmos: &mut Gizmos, color: Color) {
49    let mut intersections = Vec::with_capacity(MAX_BOUNCES + 1);
50    intersections.push((ray.origin, Color::srgb(30.0, 0.0, 0.0)));
51
52    for i in 0..MAX_BOUNCES {
53        // Cast the ray and get the first hit
54        let Some((_, hit)) = ray_cast
55            .cast_ray(ray, &MeshRayCastSettings::default())
56            .first()
57        else {
58            break;
59        };
60
61        // Draw the point of intersection and add it to the list
62        let brightness = 1.0 + 10.0 * (1.0 - i as f32 / MAX_BOUNCES as f32);
63        intersections.push((hit.point, Color::BLACK.mix(&color, brightness)));
64        gizmos.sphere(hit.point, 0.005, Color::BLACK.mix(&color, brightness * 2.0));
65
66        // Reflect the ray off of the surface
67        ray.direction = Dir3::new(ray.direction.reflect(hit.normal)).unwrap();
68        ray.origin = hit.point + ray.direction * 1e-6;
69    }
70    gizmos.linestrip_gradient(intersections);
71}
Source

pub fn push_within_capacity(&mut self, value: T) -> Result<(), T>

🔬This is a nightly-only experimental API. (vec_push_within_capacity)

Appends an element if there is sufficient spare capacity, otherwise an error is returned with the element.

Unlike push this method will not reallocate when there’s insufficient capacity. The caller should use reserve or try_reserve to ensure that there is enough capacity.

§Examples

A manual, panic-free alternative to FromIterator:

#![feature(vec_push_within_capacity)]

use std::collections::TryReserveError;
fn from_iter_fallible<T>(iter: impl Iterator<Item=T>) -> Result<Vec<T>, TryReserveError> {
    let mut vec = Vec::new();
    for value in iter {
        if let Err(value) = vec.push_within_capacity(value) {
            vec.try_reserve(1)?;
            // this cannot fail, the previous line either returned or added at least 1 free slot
            let _ = vec.push_within_capacity(value);
        }
    }
    Ok(vec)
}
assert_eq!(from_iter_fallible(0..100), Ok(Vec::from_iter(0..100)));
§Time complexity

Takes O(1) time.

1.0.0 · Source

pub fn pop(&mut self) -> Option<T>

Removes the last element from a vector and returns it, or None if it is empty.

If you’d like to pop the first element, consider using VecDeque::pop_front instead.

§Examples
let mut vec = vec![1, 2, 3];
assert_eq!(vec.pop(), Some(3));
assert_eq!(vec, [1, 2]);
§Time complexity

Takes O(1) time.

Examples found in repository?
examples/math/cubic_splines.rs (line 417)
392fn handle_keypress(
393    keyboard: Res<ButtonInput<KeyCode>>,
394    mut spline_mode: ResMut<SplineMode>,
395    mut cycling_mode: ResMut<CyclingMode>,
396    mut control_points: ResMut<ControlPoints>,
397) {
398    // S => change spline mode
399    if keyboard.just_pressed(KeyCode::KeyS) {
400        *spline_mode = match *spline_mode {
401            SplineMode::Hermite => SplineMode::Cardinal,
402            SplineMode::Cardinal => SplineMode::B,
403            SplineMode::B => SplineMode::Hermite,
404        }
405    }
406
407    // C => change cycling mode
408    if keyboard.just_pressed(KeyCode::KeyC) {
409        *cycling_mode = match *cycling_mode {
410            CyclingMode::NotCyclic => CyclingMode::Cyclic,
411            CyclingMode::Cyclic => CyclingMode::NotCyclic,
412        }
413    }
414
415    // R => remove last control point
416    if keyboard.just_pressed(KeyCode::KeyR) {
417        control_points.points_and_tangents.pop();
418    }
419}
More examples
Hide additional examples
examples/ui/display_and_visibility.rs (line 305)
263fn spawn_right_panel(
264    parent: &mut ChildSpawnerCommands,
265    text_font: TextFont,
266    palette: &[Color; 4],
267    mut target_ids: Vec<Entity>,
268) {
269    let spawn_buttons = |parent: &mut ChildSpawnerCommands, target_id| {
270        spawn_button::<Display>(parent, text_font.clone(), target_id);
271        spawn_button::<Visibility>(parent, text_font.clone(), target_id);
272    };
273    parent
274        .spawn((
275            Node {
276                padding: UiRect::all(Val::Px(10.)),
277                ..default()
278            },
279            BackgroundColor(Color::WHITE),
280        ))
281        .with_children(|parent| {
282            parent
283                .spawn((
284                    Node {
285                        width: Val::Px(500.),
286                        height: Val::Px(500.),
287                        flex_direction: FlexDirection::Column,
288                        align_items: AlignItems::FlexEnd,
289                        justify_content: JustifyContent::SpaceBetween,
290                        padding: UiRect {
291                            left: Val::Px(5.),
292                            top: Val::Px(5.),
293                            ..default()
294                        },
295                        ..default()
296                    },
297                    BackgroundColor(palette[0]),
298                    Outline {
299                        width: Val::Px(4.),
300                        color: DARK_CYAN.into(),
301                        offset: Val::Px(10.),
302                    },
303                ))
304                .with_children(|parent| {
305                    spawn_buttons(parent, target_ids.pop().unwrap());
306
307                    parent
308                        .spawn((
309                            Node {
310                                width: Val::Px(400.),
311                                height: Val::Px(400.),
312                                flex_direction: FlexDirection::Column,
313                                align_items: AlignItems::FlexEnd,
314                                justify_content: JustifyContent::SpaceBetween,
315                                padding: UiRect {
316                                    left: Val::Px(5.),
317                                    top: Val::Px(5.),
318                                    ..default()
319                                },
320                                ..default()
321                            },
322                            BackgroundColor(palette[1]),
323                        ))
324                        .with_children(|parent| {
325                            spawn_buttons(parent, target_ids.pop().unwrap());
326
327                            parent
328                                .spawn((
329                                    Node {
330                                        width: Val::Px(300.),
331                                        height: Val::Px(300.),
332                                        flex_direction: FlexDirection::Column,
333                                        align_items: AlignItems::FlexEnd,
334                                        justify_content: JustifyContent::SpaceBetween,
335                                        padding: UiRect {
336                                            left: Val::Px(5.),
337                                            top: Val::Px(5.),
338                                            ..default()
339                                        },
340                                        ..default()
341                                    },
342                                    BackgroundColor(palette[2]),
343                                ))
344                                .with_children(|parent| {
345                                    spawn_buttons(parent, target_ids.pop().unwrap());
346
347                                    parent
348                                        .spawn((
349                                            Node {
350                                                width: Val::Px(200.),
351                                                height: Val::Px(200.),
352                                                align_items: AlignItems::FlexStart,
353                                                justify_content: JustifyContent::SpaceBetween,
354                                                flex_direction: FlexDirection::Column,
355                                                padding: UiRect {
356                                                    left: Val::Px(5.),
357                                                    top: Val::Px(5.),
358                                                    ..default()
359                                                },
360                                                ..default()
361                                            },
362                                            BackgroundColor(palette[3]),
363                                        ))
364                                        .with_children(|parent| {
365                                            spawn_buttons(parent, target_ids.pop().unwrap());
366
367                                            parent.spawn(Node {
368                                                width: Val::Px(100.),
369                                                height: Val::Px(100.),
370                                                ..default()
371                                            });
372                                        });
373                                });
374                        });
375                });
376        });
377}
1.86.0 · Source

pub fn pop_if(&mut self, predicate: impl FnOnce(&mut T) -> bool) -> Option<T>

Removes and returns the last element from a vector if the predicate returns true, or None if the predicate returns false or the vector is empty (the predicate will not be called in that case).

§Examples
let mut vec = vec![1, 2, 3, 4];
let pred = |x: &mut i32| *x % 2 == 0;

assert_eq!(vec.pop_if(pred), Some(4));
assert_eq!(vec, [1, 2, 3]);
assert_eq!(vec.pop_if(pred), None);
1.4.0 · Source

pub fn append(&mut self, other: &mut Vec<T, A>)

Moves all the elements of other into self, leaving other empty.

§Panics

Panics if the new capacity exceeds isize::MAX bytes.

§Examples
let mut vec = vec![1, 2, 3];
let mut vec2 = vec![4, 5, 6];
vec.append(&mut vec2);
assert_eq!(vec, [1, 2, 3, 4, 5, 6]);
assert_eq!(vec2, []);
1.6.0 · Source

pub fn drain<R>(&mut self, range: R) -> Drain<'_, T, A>
where R: RangeBounds<usize>,

Removes the subslice indicated by the given range from the vector, returning a double-ended iterator over the removed subslice.

If the iterator is dropped before being fully consumed, it drops the remaining removed elements.

The returned iterator keeps a mutable borrow on the vector to optimize its implementation.

§Panics

Panics if the starting point is greater than the end point or if the end point is greater than the length of the vector.

§Leaking

If the returned iterator goes out of scope without being dropped (due to mem::forget, for example), the vector may have lost and leaked elements arbitrarily, including elements outside the range.

§Examples
let mut v = vec![1, 2, 3];
let u: Vec<_> = v.drain(1..).collect();
assert_eq!(v, &[1]);
assert_eq!(u, &[2, 3]);

// A full range clears the vector, like `clear()` does
v.drain(..);
assert_eq!(v, &[]);
Examples found in repository?
examples/games/stepping.rs (line 160)
99fn build_ui(
100    mut commands: Commands,
101    asset_server: Res<AssetServer>,
102    schedules: Res<Schedules>,
103    mut stepping: ResMut<Stepping>,
104    mut state: ResMut<State>,
105) {
106    let mut text_spans = Vec::new();
107    let mut always_run = Vec::new();
108
109    let Ok(schedule_order) = stepping.schedules() else {
110        return;
111    };
112
113    // go through the stepping schedules and construct a list of systems for
114    // each label
115    for label in schedule_order {
116        let schedule = schedules.get(*label).unwrap();
117        text_spans.push((
118            TextSpan(format!("{label:?}\n")),
119            TextFont {
120                font: asset_server.load(FONT_BOLD),
121                ..default()
122            },
123            TextColor(FONT_COLOR),
124        ));
125
126        // grab the list of systems in the schedule, in the order the
127        // single-threaded executor would run them.
128        let Ok(systems) = schedule.systems() else {
129            return;
130        };
131
132        for (node_id, system) in systems {
133            // skip bevy default systems; we don't want to step those
134            if system.name().starts_with("bevy") {
135                always_run.push((*label, node_id));
136                continue;
137            }
138
139            // Add an entry to our systems list so we can find where to draw
140            // the cursor when the stepping cursor is at this system
141            // we add plus 1 to account for the empty root span
142            state.systems.push((*label, node_id, text_spans.len() + 1));
143
144            // Add a text section for displaying the cursor for this system
145            text_spans.push((
146                TextSpan::new("   "),
147                TextFont::default(),
148                TextColor(FONT_COLOR),
149            ));
150
151            // add the name of the system to the ui
152            text_spans.push((
153                TextSpan(format!("{}\n", system.name())),
154                TextFont::default(),
155                TextColor(FONT_COLOR),
156            ));
157        }
158    }
159
160    for (label, node) in always_run.drain(..) {
161        stepping.always_run_node(label, node);
162    }
163
164    commands.spawn((
165        Text::default(),
166        SteppingUi,
167        Node {
168            position_type: PositionType::Absolute,
169            top: state.ui_top,
170            left: state.ui_left,
171            padding: UiRect::all(Val::Px(10.0)),
172            ..default()
173        },
174        BackgroundColor(Color::srgba(1.0, 1.0, 1.0, 0.33)),
175        Visibility::Hidden,
176        Children::spawn(text_spans),
177    ));
178}
1.0.0 · Source

pub fn clear(&mut self)

Clears the vector, removing all values.

Note that this method has no effect on the allocated capacity of the vector.

§Examples
let mut v = vec![1, 2, 3];

v.clear();

assert!(v.is_empty());
1.0.0 · Source

pub fn len(&self) -> usize

Returns the number of elements in the vector, also referred to as its ‘length’.

§Examples
let a = vec![1, 2, 3];
assert_eq!(a.len(), 3);
Examples found in repository?
examples/math/sampling_primitives.rs (line 137)
134    fn new() -> Self {
135        let shapes = Shape::list_all_shapes();
136
137        let n_shapes = shapes.len();
138
139        let translations =
140            (0..n_shapes).map(|i| (i as f32 - n_shapes as f32 / 2.0) * DISTANCE_BETWEEN_SHAPES);
141
142        SampledShapes(shapes.into_iter().zip(translations).collect())
143    }
144}
145
146/// Enum listing the shapes that can be sampled
147#[derive(Clone, Copy)]
148enum Shape {
149    Cuboid,
150    Sphere,
151    Capsule,
152    Cylinder,
153    Tetrahedron,
154    Triangle,
155}
156struct ShapeMeshBuilder {
157    shape: Shape,
158}
159
160impl Shape {
161    /// Return a vector containing all implemented shapes
162    fn list_all_shapes() -> Vec<Shape> {
163        vec![
164            Shape::Cuboid,
165            Shape::Sphere,
166            Shape::Capsule,
167            Shape::Cylinder,
168            Shape::Tetrahedron,
169            Shape::Triangle,
170        ]
171    }
172}
173
174impl ShapeSample for Shape {
175    type Output = Vec3;
176    fn sample_interior<R: Rng + ?Sized>(&self, rng: &mut R) -> Vec3 {
177        match self {
178            Shape::Cuboid => CUBOID.sample_interior(rng),
179            Shape::Sphere => SPHERE.sample_interior(rng),
180            Shape::Capsule => CAPSULE_3D.sample_interior(rng),
181            Shape::Cylinder => CYLINDER.sample_interior(rng),
182            Shape::Tetrahedron => TETRAHEDRON.sample_interior(rng),
183            Shape::Triangle => TRIANGLE_3D.sample_interior(rng),
184        }
185    }
186
187    fn sample_boundary<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::Output {
188        match self {
189            Shape::Cuboid => CUBOID.sample_boundary(rng),
190            Shape::Sphere => SPHERE.sample_boundary(rng),
191            Shape::Capsule => CAPSULE_3D.sample_boundary(rng),
192            Shape::Cylinder => CYLINDER.sample_boundary(rng),
193            Shape::Tetrahedron => TETRAHEDRON.sample_boundary(rng),
194            Shape::Triangle => TRIANGLE_3D.sample_boundary(rng),
195        }
196    }
197}
198
199impl Meshable for Shape {
200    type Output = ShapeMeshBuilder;
201
202    fn mesh(&self) -> Self::Output {
203        ShapeMeshBuilder { shape: *self }
204    }
205}
206
207impl MeshBuilder for ShapeMeshBuilder {
208    fn build(&self) -> Mesh {
209        match self.shape {
210            Shape::Cuboid => CUBOID.mesh().into(),
211            Shape::Sphere => SPHERE.mesh().into(),
212            Shape::Capsule => CAPSULE_3D.mesh().into(),
213            Shape::Cylinder => CYLINDER.mesh().into(),
214            Shape::Tetrahedron => TETRAHEDRON.mesh().into(),
215            Shape::Triangle => TRIANGLE_3D.mesh().into(),
216        }
217    }
218}
219
220/// The source of randomness used by this example.
221#[derive(Resource)]
222struct RandomSource(ChaCha8Rng);
223
224/// A container for the handle storing the mesh used to display sampled points as spheres.
225#[derive(Resource)]
226struct PointMesh(Handle<Mesh>);
227
228/// A container for the handle storing the material used to display sampled points.
229#[derive(Resource)]
230struct PointMaterial {
231    interior: Handle<StandardMaterial>,
232    boundary: Handle<StandardMaterial>,
233}
234
235/// Marker component for sampled points.
236#[derive(Component)]
237struct SamplePoint;
238
239/// Component for animating the spawn animation of lights.
240#[derive(Component)]
241struct SpawningPoint {
242    progress: f32,
243}
244
245/// Marker component for lights which should change intensity.
246#[derive(Component)]
247struct DespawningPoint {
248    progress: f32,
249}
250
251/// Marker component for lights which should change intensity.
252#[derive(Component)]
253struct FireflyLights;
254
255/// The pressed state of the mouse, used for camera motion.
256#[derive(Resource)]
257struct MousePressed(bool);
258
259/// Camera movement component.
260#[derive(Component)]
261struct CameraRig {
262    /// Rotation around the vertical axis of the camera (radians).
263    /// Positive changes makes the camera look more from the right.
264    pub yaw: f32,
265    /// Rotation around the horizontal axis of the camera (radians) (-pi/2; pi/2).
266    /// Positive looks down from above.
267    pub pitch: f32,
268    /// Distance from the center, smaller distance causes more zoom.
269    pub distance: f32,
270    /// Location in 3D space at which the camera is looking and around which it is orbiting.
271    pub target: Vec3,
272}
273
274fn setup(
275    mut commands: Commands,
276    mut meshes: ResMut<Assets<Mesh>>,
277    mut materials: ResMut<Assets<StandardMaterial>>,
278    shapes: Res<SampledShapes>,
279) {
280    // Use seeded rng and store it in a resource; this makes the random output reproducible.
281    let seeded_rng = ChaCha8Rng::seed_from_u64(4); // Chosen by a fair die roll, guaranteed to be random.
282    commands.insert_resource(RandomSource(seeded_rng));
283
284    // Make a plane for establishing space.
285    commands.spawn((
286        Mesh3d(meshes.add(Plane3d::default().mesh().size(20.0, 20.0))),
287        MeshMaterial3d(materials.add(StandardMaterial {
288            base_color: Color::srgb(0.3, 0.5, 0.3),
289            perceptual_roughness: 0.95,
290            metallic: 0.0,
291            ..default()
292        })),
293        Transform::from_xyz(0.0, -2.5, 0.0),
294    ));
295
296    let shape_material = materials.add(StandardMaterial {
297        base_color: Color::srgba(0.2, 0.1, 0.6, 0.3),
298        reflectance: 0.0,
299        alpha_mode: AlphaMode::Blend,
300        cull_mode: None,
301        ..default()
302    });
303
304    // Spawn shapes to be sampled
305    for (shape, translation) in shapes.0.iter() {
306        // The sampled shape shown transparently:
307        commands.spawn((
308            Mesh3d(meshes.add(shape.mesh())),
309            MeshMaterial3d(shape_material.clone()),
310            Transform::from_translation(*translation),
311        ));
312
313        // Lights which work as the bulk lighting of the fireflies:
314        commands.spawn((
315            PointLight {
316                range: 4.0,
317                radius: 0.6,
318                intensity: 1.0,
319                shadows_enabled: false,
320                color: Color::LinearRgba(INSIDE_POINT_COLOR),
321                ..default()
322            },
323            Transform::from_translation(*translation),
324            FireflyLights,
325        ));
326    }
327
328    // Global light:
329    commands.spawn((
330        PointLight {
331            color: SKY_COLOR,
332            intensity: 2_000.0,
333            shadows_enabled: false,
334            ..default()
335        },
336        Transform::from_xyz(4.0, 8.0, 4.0),
337    ));
338
339    // A camera:
340    commands.spawn((
341        Camera3d::default(),
342        Camera {
343            hdr: true, // HDR is required for bloom
344            clear_color: ClearColorConfig::Custom(SKY_COLOR),
345            ..default()
346        },
347        Tonemapping::TonyMcMapface,
348        Transform::from_xyz(-2.0, 3.0, 5.0).looking_at(Vec3::ZERO, Vec3::Y),
349        Bloom::NATURAL,
350        CameraRig {
351            yaw: 0.56,
352            pitch: 0.45,
353            distance: 8.0,
354            target: Vec3::ZERO,
355        },
356    ));
357
358    // Store the mesh and material for sample points in resources:
359    commands.insert_resource(PointMesh(
360        meshes.add(Sphere::new(0.03).mesh().ico(1).unwrap()),
361    ));
362    commands.insert_resource(PointMaterial {
363        interior: materials.add(StandardMaterial {
364            base_color: Color::BLACK,
365            reflectance: 0.05,
366            emissive: 2.5 * INSIDE_POINT_COLOR,
367            ..default()
368        }),
369        boundary: materials.add(StandardMaterial {
370            base_color: Color::BLACK,
371            reflectance: 0.05,
372            emissive: 1.5 * BOUNDARY_POINT_COLOR,
373            ..default()
374        }),
375    });
376
377    // Instructions for the example:
378    commands.spawn((
379        Text::new(
380            "Controls:\n\
381            M: Toggle between sampling boundary and interior.\n\
382            A: Toggle automatic spawning & despawning of points.\n\
383            R: Restart (erase all samples).\n\
384            S: Add one random sample.\n\
385            D: Add 100 random samples.\n\
386            Rotate camera by holding left mouse and panning.\n\
387            Zoom camera by scrolling via mouse or +/-.\n\
388            Move camera by L/R arrow keys.\n\
389            Tab: Toggle this text",
390        ),
391        Node {
392            position_type: PositionType::Absolute,
393            top: Val::Px(12.0),
394            left: Val::Px(12.0),
395            ..default()
396        },
397    ));
398
399    // No points are scheduled to spawn initially.
400    commands.insert_resource(SpawnQueue(0));
401
402    // No points have been spawned initially.
403    commands.insert_resource(PointCounter(0));
404
405    // The mode starts with interior points.
406    commands.insert_resource(SamplingMode::Interior);
407
408    // Points spawn automatically by default.
409    commands.insert_resource(SpawningMode::Automatic);
410
411    // Starting mouse-pressed state is false.
412    commands.insert_resource(MousePressed(false));
413}
414
415// Handle user inputs from the keyboard:
416fn handle_keypress(
417    mut commands: Commands,
418    keyboard: Res<ButtonInput<KeyCode>>,
419    mut mode: ResMut<SamplingMode>,
420    mut spawn_mode: ResMut<SpawningMode>,
421    samples: Query<Entity, With<SamplePoint>>,
422    shapes: Res<SampledShapes>,
423    mut spawn_queue: ResMut<SpawnQueue>,
424    mut counter: ResMut<PointCounter>,
425    mut text_menus: Query<&mut Visibility, With<Text>>,
426    mut camera_rig: Single<&mut CameraRig>,
427) {
428    // R => restart, deleting all samples
429    if keyboard.just_pressed(KeyCode::KeyR) {
430        // Don't forget to zero out the counter!
431        counter.0 = 0;
432        for entity in &samples {
433            commands.entity(entity).despawn();
434        }
435    }
436
437    // S => sample once
438    if keyboard.just_pressed(KeyCode::KeyS) {
439        spawn_queue.0 += 1;
440    }
441
442    // D => sample a hundred
443    if keyboard.just_pressed(KeyCode::KeyD) {
444        spawn_queue.0 += 100;
445    }
446
447    // M => toggle mode between interior and boundary.
448    if keyboard.just_pressed(KeyCode::KeyM) {
449        match *mode {
450            SamplingMode::Interior => *mode = SamplingMode::Boundary,
451            SamplingMode::Boundary => *mode = SamplingMode::Interior,
452        }
453    }
454
455    // A => toggle spawning mode between automatic and manual.
456    if keyboard.just_pressed(KeyCode::KeyA) {
457        match *spawn_mode {
458            SpawningMode::Manual => *spawn_mode = SpawningMode::Automatic,
459            SpawningMode::Automatic => *spawn_mode = SpawningMode::Manual,
460        }
461    }
462
463    // Tab => toggle help menu.
464    if keyboard.just_pressed(KeyCode::Tab) {
465        for mut visibility in text_menus.iter_mut() {
466            *visibility = match *visibility {
467                Visibility::Hidden => Visibility::Visible,
468                _ => Visibility::Hidden,
469            };
470        }
471    }
472
473    // +/- => zoom camera.
474    if keyboard.just_pressed(KeyCode::NumpadSubtract) || keyboard.just_pressed(KeyCode::Minus) {
475        camera_rig.distance += MAX_CAMERA_DISTANCE / 15.0;
476        camera_rig.distance = camera_rig
477            .distance
478            .clamp(MIN_CAMERA_DISTANCE, MAX_CAMERA_DISTANCE);
479    }
480
481    if keyboard.just_pressed(KeyCode::NumpadAdd) {
482        camera_rig.distance -= MAX_CAMERA_DISTANCE / 15.0;
483        camera_rig.distance = camera_rig
484            .distance
485            .clamp(MIN_CAMERA_DISTANCE, MAX_CAMERA_DISTANCE);
486    }
487
488    // Arrows => Move camera focus
489    let left = keyboard.just_pressed(KeyCode::ArrowLeft);
490    let right = keyboard.just_pressed(KeyCode::ArrowRight);
491
492    if left || right {
493        let mut closest = 0;
494        let mut closest_distance = f32::MAX;
495        for (i, (_, position)) in shapes.0.iter().enumerate() {
496            let distance = camera_rig.target.distance(*position);
497            if distance < closest_distance {
498                closest = i;
499                closest_distance = distance;
500            }
501        }
502        if closest > 0 && left {
503            camera_rig.target = shapes.0[closest - 1].1;
504        }
505        if closest < shapes.0.len() - 1 && right {
506            camera_rig.target = shapes.0[closest + 1].1;
507        }
508    }
509}
More examples
Hide additional examples
examples/ecs/dynamic.rs (line 268)
260fn parse_query<Q: QueryData>(
261    str: &str,
262    builder: &mut QueryBuilder<Q>,
263    components: &HashMap<String, ComponentId>,
264) {
265    let str = str.split(',');
266    str.for_each(|term| {
267        let sub_terms: Vec<_> = term.split("||").collect();
268        if sub_terms.len() == 1 {
269            parse_term(sub_terms[0], builder, components);
270        } else {
271            builder.or(|b| {
272                sub_terms
273                    .iter()
274                    .for_each(|term| parse_term(term, b, components));
275            });
276        }
277    });
278}
examples/stress_tests/many_animated_sprites.rs (line 124)
112fn animate_sprite(
113    time: Res<Time>,
114    texture_atlases: Res<Assets<TextureAtlasLayout>>,
115    mut query: Query<(&mut AnimationTimer, &mut Sprite)>,
116) {
117    for (mut timer, mut sprite) in query.iter_mut() {
118        timer.tick(time.delta());
119        if timer.just_finished() {
120            let Some(atlas) = &mut sprite.texture_atlas else {
121                continue;
122            };
123            let texture_atlas = texture_atlases.get(&atlas.layout).unwrap();
124            atlas.index = (atlas.index + 1) % texture_atlas.textures.len();
125        }
126    }
127}
examples/shader/custom_shader_instancing.rs (line 194)
181fn prepare_instance_buffers(
182    mut commands: Commands,
183    query: Query<(Entity, &InstanceMaterialData)>,
184    render_device: Res<RenderDevice>,
185) {
186    for (entity, instance_data) in &query {
187        let buffer = render_device.create_buffer_with_data(&BufferInitDescriptor {
188            label: Some("instance data buffer"),
189            contents: bytemuck::cast_slice(instance_data.as_slice()),
190            usage: BufferUsages::VERTEX | BufferUsages::COPY_DST,
191        });
192        commands.entity(entity).insert(InstanceBuffer {
193            buffer,
194            length: instance_data.len(),
195        });
196    }
197}
examples/stress_tests/many_text2d.rs (line 181)
167fn print_counts(
168    time: Res<Time>,
169    mut timer: Local<PrintingTimer>,
170    texts: Query<&ViewVisibility, With<Text2d>>,
171    atlases: Res<FontAtlasSets>,
172    font: Res<FontHandle>,
173) {
174    timer.tick(time.delta());
175    if !timer.just_finished() {
176        return;
177    }
178
179    let num_atlases = atlases
180        .get(font.0.id())
181        .map(|set| set.iter().map(|atlas| atlas.1.len()).sum())
182        .unwrap_or(0);
183
184    let visible_texts = texts.iter().filter(|visibility| visibility.get()).count();
185
186    info!(
187        "Texts: {} Visible: {} Atlases: {}",
188        texts.iter().count(),
189        visible_texts,
190        num_atlases
191    );
192}
examples/window/window_settings.rs (line 184)
176fn cycle_cursor_icon(
177    mut commands: Commands,
178    window: Single<Entity, With<Window>>,
179    input: Res<ButtonInput<MouseButton>>,
180    mut index: Local<usize>,
181    cursor_icons: Res<CursorIcons>,
182) {
183    if input.just_pressed(MouseButton::Left) {
184        *index = (*index + 1) % cursor_icons.0.len();
185        commands
186            .entity(*window)
187            .insert(cursor_icons.0[*index].clone());
188    } else if input.just_pressed(MouseButton::Right) {
189        *index = if *index == 0 {
190            cursor_icons.0.len() - 1
191        } else {
192            *index - 1
193        };
194        commands
195            .entity(*window)
196            .insert(cursor_icons.0[*index].clone());
197    }
198}
1.0.0 · Source

pub fn is_empty(&self) -> bool

Returns true if the vector contains no elements.

§Examples
let mut v = Vec::new();
assert!(v.is_empty());

v.push(1);
assert!(!v.is_empty());
Examples found in repository?
examples/games/stepping.rs (line 85)
84fn initialized(state: Res<State>) -> bool {
85    !state.systems.is_empty()
86}
More examples
Hide additional examples
examples/games/loading_screen.rs (line 202)
196fn update_loading_data(
197    mut loading_data: ResMut<LoadingData>,
198    mut loading_state: ResMut<LoadingState>,
199    asset_server: Res<AssetServer>,
200    pipelines_ready: Res<PipelinesReady>,
201) {
202    if !loading_data.loading_assets.is_empty() || !pipelines_ready.0 {
203        // If we are still loading assets / pipelines are not fully compiled,
204        // we reset the confirmation frame count.
205        loading_data.confirmation_frames_count = 0;
206
207        loading_data.loading_assets.retain(|asset| {
208            asset_server
209                .get_recursive_dependency_load_state(asset)
210                .is_none_or(|state| !state.is_loaded())
211        });
212
213        // If there are no more assets being monitored, and pipelines
214        // are compiled, then start counting confirmation frames.
215        // Once enough confirmations have passed, everything will be
216        // considered to be fully loaded.
217    } else {
218        loading_data.confirmation_frames_count += 1;
219        if loading_data.confirmation_frames_count == loading_data.confirmation_frames_target {
220            *loading_state = LoadingState::LevelReady;
221        }
222    }
223}
examples/app/headless_renderer.rs (line 490)
472fn update(
473    images_to_save: Query<&ImageToSave>,
474    receiver: Res<MainWorldReceiver>,
475    mut images: ResMut<Assets<Image>>,
476    mut scene_controller: ResMut<SceneController>,
477    mut app_exit_writer: EventWriter<AppExit>,
478    mut file_number: Local<u32>,
479) {
480    if let SceneState::Render(n) = scene_controller.state {
481        if n < 1 {
482            // We don't want to block the main world on this,
483            // so we use try_recv which attempts to receive without blocking
484            let mut image_data = Vec::new();
485            while let Ok(data) = receiver.try_recv() {
486                // image generation could be faster than saving to fs,
487                // that's why use only last of them
488                image_data = data;
489            }
490            if !image_data.is_empty() {
491                for image in images_to_save.iter() {
492                    // Fill correct data from channel to image
493                    let img_bytes = images.get_mut(image.id()).unwrap();
494
495                    // We need to ensure that this works regardless of the image dimensions
496                    // If the image became wider when copying from the texture to the buffer,
497                    // then the data is reduced to its original size when copying from the buffer to the image.
498                    let row_bytes = img_bytes.width() as usize
499                        * img_bytes.texture_descriptor.format.pixel_size();
500                    let aligned_row_bytes = RenderDevice::align_copy_bytes_per_row(row_bytes);
501                    if row_bytes == aligned_row_bytes {
502                        img_bytes.data.as_mut().unwrap().clone_from(&image_data);
503                    } else {
504                        // shrink data to original image size
505                        img_bytes.data = Some(
506                            image_data
507                                .chunks(aligned_row_bytes)
508                                .take(img_bytes.height() as usize)
509                                .flat_map(|row| &row[..row_bytes.min(row.len())])
510                                .cloned()
511                                .collect(),
512                        );
513                    }
514
515                    // Create RGBA Image Buffer
516                    let img = match img_bytes.clone().try_into_dynamic() {
517                        Ok(img) => img.to_rgba8(),
518                        Err(e) => panic!("Failed to create image buffer {e:?}"),
519                    };
520
521                    // Prepare directory for images, test_images in bevy folder is used here for example
522                    // You should choose the path depending on your needs
523                    let images_dir = PathBuf::from(env!("CARGO_MANIFEST_DIR")).join("test_images");
524                    info!("Saving image to: {images_dir:?}");
525                    std::fs::create_dir_all(&images_dir).unwrap();
526
527                    // Choose filename starting from 000.png
528                    let image_path = images_dir.join(format!("{:03}.png", file_number.deref()));
529                    *file_number.deref_mut() += 1;
530
531                    // Finally saving image to file, this heavy blocking operation is kept here
532                    // for example simplicity, but in real app you should move it to a separate task
533                    if let Err(e) = img.save(image_path) {
534                        panic!("Failed to save image: {e}");
535                    };
536                }
537                if scene_controller.single_image {
538                    app_exit_writer.write(AppExit::Success);
539                }
540            }
541        } else {
542            // clears channel for skipped frames
543            while receiver.try_recv().is_ok() {}
544            scene_controller.state = SceneState::Render(n - 1);
545        }
546    }
547}
1.4.0 · Source

pub fn split_off(&mut self, at: usize) -> Vec<T, A>
where A: Clone,

Splits the collection into two at the given index.

Returns a newly allocated vector containing the elements in the range [at, len). After the call, the original vector will be left containing the elements [0, at) with its previous capacity unchanged.

  • If you want to take ownership of the entire contents and capacity of the vector, see mem::take or mem::replace.
  • If you don’t need the returned vector at all, see Vec::truncate.
  • If you want to take ownership of an arbitrary subslice, or you don’t necessarily want to store the removed items in a vector, see Vec::drain.
§Panics

Panics if at > len.

§Examples
let mut vec = vec!['a', 'b', 'c'];
let vec2 = vec.split_off(1);
assert_eq!(vec, ['a']);
assert_eq!(vec2, ['b', 'c']);
1.33.0 · Source

pub fn resize_with<F>(&mut self, new_len: usize, f: F)
where F: FnMut() -> T,

Resizes the Vec in-place so that len is equal to new_len.

If new_len is greater than len, the Vec is extended by the difference, with each additional slot filled with the result of calling the closure f. The return values from f will end up in the Vec in the order they have been generated.

If new_len is less than len, the Vec is simply truncated.

This method uses a closure to create new values on every push. If you’d rather Clone a given value, use Vec::resize. If you want to use the Default trait to generate values, you can pass Default::default as the second argument.

§Panics

Panics if the new capacity exceeds isize::MAX bytes.

§Examples
let mut vec = vec![1, 2, 3];
vec.resize_with(5, Default::default);
assert_eq!(vec, [1, 2, 3, 0, 0]);

let mut vec = vec![];
let mut p = 1;
vec.resize_with(4, || { p *= 2; p });
assert_eq!(vec, [2, 4, 8, 16]);
1.60.0 · Source

pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>]

Returns the remaining spare capacity of the vector as a slice of MaybeUninit<T>.

The returned slice can be used to fill the vector with data (e.g. by reading from a file) before marking the data as initialized using the set_len method.

§Examples
// Allocate vector big enough for 10 elements.
let mut v = Vec::with_capacity(10);

// Fill in the first 3 elements.
let uninit = v.spare_capacity_mut();
uninit[0].write(0);
uninit[1].write(1);
uninit[2].write(2);

// Mark the first 3 elements of the vector as being initialized.
unsafe {
    v.set_len(3);
}

assert_eq!(&v, &[0, 1, 2]);
Source

pub fn split_at_spare_mut(&mut self) -> (&mut [T], &mut [MaybeUninit<T>])

🔬This is a nightly-only experimental API. (vec_split_at_spare)

Returns vector content as a slice of T, along with the remaining spare capacity of the vector as a slice of MaybeUninit<T>.

The returned spare capacity slice can be used to fill the vector with data (e.g. by reading from a file) before marking the data as initialized using the set_len method.

Note that this is a low-level API, which should be used with care for optimization purposes. If you need to append data to a Vec you can use push, extend, extend_from_slice, extend_from_within, insert, append, resize or resize_with, depending on your exact needs.

§Examples
#![feature(vec_split_at_spare)]

let mut v = vec![1, 1, 2];

// Reserve additional space big enough for 10 elements.
v.reserve(10);

let (init, uninit) = v.split_at_spare_mut();
let sum = init.iter().copied().sum::<u32>();

// Fill in the next 4 elements.
uninit[0].write(sum);
uninit[1].write(sum * 2);
uninit[2].write(sum * 3);
uninit[3].write(sum * 4);

// Mark the 4 elements of the vector as being initialized.
unsafe {
    let len = v.len();
    v.set_len(len + 4);
}

assert_eq!(&v, &[1, 1, 2, 4, 8, 12, 16]);
1.5.0 · Source

pub fn resize(&mut self, new_len: usize, value: T)

Resizes the Vec in-place so that len is equal to new_len.

If new_len is greater than len, the Vec is extended by the difference, with each additional slot filled with value. If new_len is less than len, the Vec is simply truncated.

This method requires T to implement Clone, in order to be able to clone the passed value. If you need more flexibility (or want to rely on Default instead of Clone), use Vec::resize_with. If you only need to resize to a smaller size, use Vec::truncate.

§Panics

Panics if the new capacity exceeds isize::MAX bytes.

§Examples
let mut vec = vec!["hello"];
vec.resize(3, "world");
assert_eq!(vec, ["hello", "world", "world"]);

let mut vec = vec!['a', 'b', 'c', 'd'];
vec.resize(2, '_');
assert_eq!(vec, ['a', 'b']);
Examples found in repository?
examples/ecs/dynamic.rs (line 132)
51fn main() {
52    let mut world = World::new();
53    let mut lines = std::io::stdin().lines();
54    let mut component_names = HashMap::<String, ComponentId>::new();
55    let mut component_info = HashMap::<ComponentId, ComponentInfo>::new();
56
57    println!("{PROMPT}");
58    loop {
59        print!("\n> ");
60        let _ = std::io::stdout().flush();
61        let Some(Ok(line)) = lines.next() else {
62            return;
63        };
64
65        if line.is_empty() {
66            return;
67        };
68
69        let Some((first, rest)) = line.trim().split_once(|c: char| c.is_whitespace()) else {
70            match &line.chars().next() {
71                Some('c') => println!("{COMPONENT_PROMPT}"),
72                Some('s') => println!("{ENTITY_PROMPT}"),
73                Some('q') => println!("{QUERY_PROMPT}"),
74                _ => println!("{PROMPT}"),
75            }
76            continue;
77        };
78
79        match &first[0..1] {
80            "c" => {
81                rest.split(',').for_each(|component| {
82                    let mut component = component.split_whitespace();
83                    let Some(name) = component.next() else {
84                        return;
85                    };
86                    let size = match component.next().map(str::parse) {
87                        Some(Ok(size)) => size,
88                        _ => 0,
89                    };
90                    // Register our new component to the world with a layout specified by it's size
91                    // SAFETY: [u64] is Send + Sync
92                    let id = world.register_component_with_descriptor(unsafe {
93                        ComponentDescriptor::new_with_layout(
94                            name.to_string(),
95                            StorageType::Table,
96                            Layout::array::<u64>(size).unwrap(),
97                            None,
98                            true,
99                            ComponentCloneBehavior::Default,
100                        )
101                    });
102                    let Some(info) = world.components().get_info(id) else {
103                        return;
104                    };
105                    component_names.insert(name.to_string(), id);
106                    component_info.insert(id, info.clone());
107                    println!("Component {} created with id: {}", name, id.index());
108                });
109            }
110            "s" => {
111                let mut to_insert_ids = Vec::new();
112                let mut to_insert_data = Vec::new();
113                rest.split(',').for_each(|component| {
114                    let mut component = component.split_whitespace();
115                    let Some(name) = component.next() else {
116                        return;
117                    };
118
119                    // Get the id for the component with the given name
120                    let Some(&id) = component_names.get(name) else {
121                        println!("Component {name} does not exist");
122                        return;
123                    };
124
125                    // Calculate the length for the array based on the layout created for this component id
126                    let info = world.components().get_info(id).unwrap();
127                    let len = info.layout().size() / size_of::<u64>();
128                    let mut values: Vec<u64> = component
129                        .take(len)
130                        .filter_map(|value| value.parse::<u64>().ok())
131                        .collect();
132                    values.resize(len, 0);
133
134                    // Collect the id and array to be inserted onto our entity
135                    to_insert_ids.push(id);
136                    to_insert_data.push(values);
137                });
138
139                let mut entity = world.spawn_empty();
140
141                // Construct an `OwningPtr` for each component in `to_insert_data`
142                let to_insert_ptr = to_owning_ptrs(&mut to_insert_data);
143
144                // SAFETY:
145                // - Component ids have been taken from the same world
146                // - Each array is created to the layout specified in the world
147                unsafe {
148                    entity.insert_by_ids(&to_insert_ids, to_insert_ptr.into_iter());
149                }
150
151                println!("Entity spawned with id: {}", entity.id());
152            }
153            "q" => {
154                let mut builder = QueryBuilder::<FilteredEntityMut>::new(&mut world);
155                parse_query(rest, &mut builder, &component_names);
156                let mut query = builder.build();
157                query.iter_mut(&mut world).for_each(|filtered_entity| {
158                    let terms = filtered_entity
159                        .access()
160                        .try_iter_component_access()
161                        .unwrap()
162                        .map(|component_access| {
163                            let id = *component_access.index();
164                            let ptr = filtered_entity.get_by_id(id).unwrap();
165                            let info = component_info.get(&id).unwrap();
166                            let len = info.layout().size() / size_of::<u64>();
167
168                            // SAFETY:
169                            // - All components are created with layout [u64]
170                            // - len is calculated from the component descriptor
171                            let data = unsafe {
172                                std::slice::from_raw_parts_mut(
173                                    ptr.assert_unique().as_ptr().cast::<u64>(),
174                                    len,
175                                )
176                            };
177
178                            // If we have write access, increment each value once
179                            if matches!(component_access, ComponentAccessKind::Exclusive(_)) {
180                                data.iter_mut().for_each(|data| {
181                                    *data += 1;
182                                });
183                            }
184
185                            format!("{}: {:?}", info.name(), data[0..len].to_vec())
186                        })
187                        .collect::<Vec<_>>()
188                        .join(", ");
189
190                    println!("{}: {}", filtered_entity.id(), terms);
191                });
192            }
193            _ => continue,
194        }
195    }
196}
1.6.0 · Source

pub fn extend_from_slice(&mut self, other: &[T])

Clones and appends all elements in a slice to the Vec.

Iterates over the slice other, clones each element, and then appends it to this Vec. The other slice is traversed in-order.

Note that this function is the same as extend, except that it also works with slice elements that are Clone but not Copy. If Rust gets specialization this function may be deprecated.

§Examples
let mut vec = vec![1];
vec.extend_from_slice(&[2, 3, 4]);
assert_eq!(vec, [1, 2, 3, 4]);
Examples found in repository?
examples/math/custom_primitives.rs (line 441)
402    fn build(&self) -> Mesh {
403        let radius = self.heart.radius;
404        // The curved parts of each wing (half) of the heart have an angle of `PI * 1.25` or 225°
405        let wing_angle = PI * 1.25;
406
407        // We create buffers for the vertices, their normals and UVs, as well as the indices used to connect the vertices.
408        let mut vertices = Vec::with_capacity(2 * self.resolution);
409        let mut uvs = Vec::with_capacity(2 * self.resolution);
410        let mut indices = Vec::with_capacity(6 * self.resolution - 9);
411        // Since the heart is flat, we know all the normals are identical already.
412        let normals = vec![[0f32, 0f32, 1f32]; 2 * self.resolution];
413
414        // The point in the middle of the two curved parts of the heart
415        vertices.push([0.0; 3]);
416        uvs.push([0.5, 0.5]);
417
418        // The left wing of the heart, starting from the point in the middle.
419        for i in 1..self.resolution {
420            let angle = (i as f32 / self.resolution as f32) * wing_angle;
421            let (sin, cos) = ops::sin_cos(angle);
422            vertices.push([radius * (cos - 1.0), radius * sin, 0.0]);
423            uvs.push([0.5 - (cos - 1.0) / 4., 0.5 - sin / 2.]);
424        }
425
426        // The bottom tip of the heart
427        vertices.push([0.0, radius * (-1. - SQRT_2), 0.0]);
428        uvs.push([0.5, 1.]);
429
430        // The right wing of the heart, starting from the bottom most point and going towards the middle point.
431        for i in 0..self.resolution - 1 {
432            let angle = (i as f32 / self.resolution as f32) * wing_angle - PI / 4.;
433            let (sin, cos) = ops::sin_cos(angle);
434            vertices.push([radius * (cos + 1.0), radius * sin, 0.0]);
435            uvs.push([0.5 - (cos + 1.0) / 4., 0.5 - sin / 2.]);
436        }
437
438        // This is where we build all the triangles from the points created above.
439        // Each triangle has one corner on the middle point with the other two being adjacent points on the perimeter of the heart.
440        for i in 2..2 * self.resolution as u32 {
441            indices.extend_from_slice(&[i - 1, i, 0]);
442        }
443
444        // Here, the actual `Mesh` is created. We set the indices, vertices, normals and UVs created above and specify the topology of the mesh.
445        Mesh::new(
446            bevy::render::mesh::PrimitiveTopology::TriangleList,
447            RenderAssetUsages::default(),
448        )
449        .with_inserted_indices(bevy::render::mesh::Indices::U32(indices))
450        .with_inserted_attribute(Mesh::ATTRIBUTE_POSITION, vertices)
451        .with_inserted_attribute(Mesh::ATTRIBUTE_NORMAL, normals)
452        .with_inserted_attribute(Mesh::ATTRIBUTE_UV_0, uvs)
453    }
More examples
Hide additional examples
examples/2d/mesh2d_manual.rs (line 91)
48fn star(
49    mut commands: Commands,
50    // We will add a new Mesh for the star being created
51    mut meshes: ResMut<Assets<Mesh>>,
52) {
53    // Let's define the mesh for the object we want to draw: a nice star.
54    // We will specify here what kind of topology is used to define the mesh,
55    // that is, how triangles are built from the vertices. We will use a
56    // triangle list, meaning that each vertex of the triangle has to be
57    // specified. We set `RenderAssetUsages::RENDER_WORLD`, meaning this mesh
58    // will not be accessible in future frames from the `meshes` resource, in
59    // order to save on memory once it has been uploaded to the GPU.
60    let mut star = Mesh::new(
61        PrimitiveTopology::TriangleList,
62        RenderAssetUsages::RENDER_WORLD,
63    );
64
65    // Vertices need to have a position attribute. We will use the following
66    // vertices (I hope you can spot the star in the schema).
67    //
68    //        1
69    //
70    //     10   2
71    // 9      0      3
72    //     8     4
73    //        6
74    //   7        5
75    //
76    // These vertices are specified in 3D space.
77    let mut v_pos = vec![[0.0, 0.0, 0.0]];
78    for i in 0..10 {
79        // The angle between each vertex is 1/10 of a full rotation.
80        let a = i as f32 * PI / 5.0;
81        // The radius of inner vertices (even indices) is 100. For outer vertices (odd indices) it's 200.
82        let r = (1 - i % 2) as f32 * 100.0 + 100.0;
83        // Add the vertex position.
84        v_pos.push([r * ops::sin(a), r * ops::cos(a), 0.0]);
85    }
86    // Set the position attribute
87    star.insert_attribute(Mesh::ATTRIBUTE_POSITION, v_pos);
88    // And a RGB color attribute as well. A built-in `Mesh::ATTRIBUTE_COLOR` exists, but we
89    // use a custom vertex attribute here for demonstration purposes.
90    let mut v_color: Vec<u32> = vec![LinearRgba::BLACK.as_u32()];
91    v_color.extend_from_slice(&[LinearRgba::from(YELLOW).as_u32(); 10]);
92    star.insert_attribute(
93        MeshVertexAttribute::new("Vertex_Color", 1, VertexFormat::Uint32),
94        v_color,
95    );
96
97    // Now, we specify the indices of the vertex that are going to compose the
98    // triangles in our star. Vertices in triangles have to be specified in CCW
99    // winding (that will be the front face, colored). Since we are using
100    // triangle list, we will specify each triangle as 3 vertices
101    //   First triangle: 0, 2, 1
102    //   Second triangle: 0, 3, 2
103    //   Third triangle: 0, 4, 3
104    //   etc
105    //   Last triangle: 0, 1, 10
106    let mut indices = vec![0, 1, 10];
107    for i in 2..=10 {
108        indices.extend_from_slice(&[0, i, i - 1]);
109    }
110    star.insert_indices(Indices::U32(indices));
111
112    // We can now spawn the entities for the star and the camera
113    commands.spawn((
114        // We use a marker component to identify the custom colored meshes
115        ColoredMesh2d,
116        // The `Handle<Mesh>` needs to be wrapped in a `Mesh2d` for 2D rendering
117        Mesh2d(meshes.add(star)),
118    ));
119
120    commands.spawn(Camera2d);
121}
1.53.0 · Source

pub fn extend_from_within<R>(&mut self, src: R)
where R: RangeBounds<usize>,

Given a range src, clones a slice of elements in that range and appends it to the end.

src must be a range that can form a valid subslice of the Vec.

§Panics

Panics if starting index is greater than the end index or if the index is greater than the length of the vector.

§Examples
let mut characters = vec!['a', 'b', 'c', 'd', 'e'];
characters.extend_from_within(2..);
assert_eq!(characters, ['a', 'b', 'c', 'd', 'e', 'c', 'd', 'e']);

let mut numbers = vec![0, 1, 2, 3, 4];
numbers.extend_from_within(..2);
assert_eq!(numbers, [0, 1, 2, 3, 4, 0, 1]);

let mut strings = vec![String::from("hello"), String::from("world"), String::from("!")];
strings.extend_from_within(1..=2);
assert_eq!(strings, ["hello", "world", "!", "world", "!"]);
1.0.0 · Source

pub fn dedup(&mut self)

Removes consecutive repeated elements in the vector according to the PartialEq trait implementation.

If the vector is sorted, this removes all duplicates.

§Examples
let mut vec = vec![1, 2, 2, 3, 2];

vec.dedup();

assert_eq!(vec, [1, 2, 3, 2]);
1.21.0 · Source

pub fn splice<R, I>( &mut self, range: R, replace_with: I, ) -> Splice<'_, <I as IntoIterator>::IntoIter, A>
where R: RangeBounds<usize>, I: IntoIterator<Item = T>,

Creates a splicing iterator that replaces the specified range in the vector with the given replace_with iterator and yields the removed items. replace_with does not need to be the same length as range.

range is removed even if the Splice iterator is not consumed before it is dropped.

It is unspecified how many elements are removed from the vector if the Splice value is leaked.

The input iterator replace_with is only consumed when the Splice value is dropped.

This is optimal if:

  • The tail (elements in the vector after range) is empty,
  • or replace_with yields fewer or equal elements than range’s length
  • or the lower bound of its size_hint() is exact.

Otherwise, a temporary vector is allocated and the tail is moved twice.

§Panics

Panics if the starting point is greater than the end point or if the end point is greater than the length of the vector.

§Examples
let mut v = vec![1, 2, 3, 4];
let new = [7, 8, 9];
let u: Vec<_> = v.splice(1..3, new).collect();
assert_eq!(v, [1, 7, 8, 9, 4]);
assert_eq!(u, [2, 3]);

Using splice to insert new items into a vector efficiently at a specific position indicated by an empty range:

let mut v = vec![1, 5];
let new = [2, 3, 4];
v.splice(1..1, new);
assert_eq!(v, [1, 2, 3, 4, 5]);
1.87.0 · Source

pub fn extract_if<F, R>( &mut self, range: R, filter: F, ) -> ExtractIf<'_, T, F, A>
where F: FnMut(&mut T) -> bool, R: RangeBounds<usize>,

Creates an iterator which uses a closure to determine if element in the range should be removed.

If the closure returns true, then the element is removed and yielded. If the closure returns false, the element will remain in the vector and will not be yielded by the iterator.

Only elements that fall in the provided range are considered for extraction, but any elements after the range will still have to be moved if any element has been extracted.

If the returned ExtractIf is not exhausted, e.g. because it is dropped without iterating or the iteration short-circuits, then the remaining elements will be retained. Use retain with a negated predicate if you do not need the returned iterator.

Using this method is equivalent to the following code:

let mut i = range.start;
while i < min(vec.len(), range.end) {
    if some_predicate(&mut vec[i]) {
        let val = vec.remove(i);
        // your code here
    } else {
        i += 1;
    }
}

But extract_if is easier to use. extract_if is also more efficient, because it can backshift the elements of the array in bulk.

Note that extract_if also lets you mutate the elements passed to the filter closure, regardless of whether you choose to keep or remove them.

§Panics

If range is out of bounds.

§Examples

Splitting an array into evens and odds, reusing the original allocation:

let mut numbers = vec![1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15];

let evens = numbers.extract_if(.., |x| *x % 2 == 0).collect::<Vec<_>>();
let odds = numbers;

assert_eq!(evens, vec![2, 4, 6, 8, 14]);
assert_eq!(odds, vec![1, 3, 5, 9, 11, 13, 15]);

Using the range argument to only process a part of the vector:

let mut items = vec![0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 2, 1, 2];
let ones = items.extract_if(7.., |x| *x == 1).collect::<Vec<_>>();
assert_eq!(items, vec![0, 0, 0, 0, 0, 0, 0, 2, 2, 2]);
assert_eq!(ones.len(), 3);

Methods from Deref<Target = [T]>§

1.0.0 · Source

pub fn len(&self) -> usize

Returns the number of elements in the slice.

§Examples
let a = [1, 2, 3];
assert_eq!(a.len(), 3);
1.0.0 · Source

pub fn is_empty(&self) -> bool

Returns true if the slice has a length of 0.

§Examples
let a = [1, 2, 3];
assert!(!a.is_empty());

let b: &[i32] = &[];
assert!(b.is_empty());
1.0.0 · Source

pub fn first(&self) -> Option<&T>

Returns the first element of the slice, or None if it is empty.

§Examples
let v = [10, 40, 30];
assert_eq!(Some(&10), v.first());

let w: &[i32] = &[];
assert_eq!(None, w.first());
1.0.0 · Source

pub fn first_mut(&mut self) -> Option<&mut T>

Returns a mutable reference to the first element of the slice, or None if it is empty.

§Examples
let x = &mut [0, 1, 2];

if let Some(first) = x.first_mut() {
    *first = 5;
}
assert_eq!(x, &[5, 1, 2]);

let y: &mut [i32] = &mut [];
assert_eq!(None, y.first_mut());
1.5.0 · Source

pub fn split_first(&self) -> Option<(&T, &[T])>

Returns the first and all the rest of the elements of the slice, or None if it is empty.

§Examples
let x = &[0, 1, 2];

if let Some((first, elements)) = x.split_first() {
    assert_eq!(first, &0);
    assert_eq!(elements, &[1, 2]);
}
1.5.0 · Source

pub fn split_first_mut(&mut self) -> Option<(&mut T, &mut [T])>

Returns the first and all the rest of the elements of the slice, or None if it is empty.

§Examples
let x = &mut [0, 1, 2];

if let Some((first, elements)) = x.split_first_mut() {
    *first = 3;
    elements[0] = 4;
    elements[1] = 5;
}
assert_eq!(x, &[3, 4, 5]);
1.5.0 · Source

pub fn split_last(&self) -> Option<(&T, &[T])>

Returns the last and all the rest of the elements of the slice, or None if it is empty.

§Examples
let x = &[0, 1, 2];

if let Some((last, elements)) = x.split_last() {
    assert_eq!(last, &2);
    assert_eq!(elements, &[0, 1]);
}
1.5.0 · Source

pub fn split_last_mut(&mut self) -> Option<(&mut T, &mut [T])>

Returns the last and all the rest of the elements of the slice, or None if it is empty.

§Examples
let x = &mut [0, 1, 2];

if let Some((last, elements)) = x.split_last_mut() {
    *last = 3;
    elements[0] = 4;
    elements[1] = 5;
}
assert_eq!(x, &[4, 5, 3]);
1.0.0 · Source

pub fn last(&self) -> Option<&T>

Returns the last element of the slice, or None if it is empty.

§Examples
let v = [10, 40, 30];
assert_eq!(Some(&30), v.last());

let w: &[i32] = &[];
assert_eq!(None, w.last());
1.0.0 · Source

pub fn last_mut(&mut self) -> Option<&mut T>

Returns a mutable reference to the last item in the slice, or None if it is empty.

§Examples
let x = &mut [0, 1, 2];

if let Some(last) = x.last_mut() {
    *last = 10;
}
assert_eq!(x, &[0, 1, 10]);

let y: &mut [i32] = &mut [];
assert_eq!(None, y.last_mut());
1.77.0 · Source

pub fn first_chunk<const N: usize>(&self) -> Option<&[T; N]>

Returns an array reference to the first N items in the slice.

If the slice is not at least N in length, this will return None.

§Examples
let u = [10, 40, 30];
assert_eq!(Some(&[10, 40]), u.first_chunk::<2>());

let v: &[i32] = &[10];
assert_eq!(None, v.first_chunk::<2>());

let w: &[i32] = &[];
assert_eq!(Some(&[]), w.first_chunk::<0>());
1.77.0 · Source

pub fn first_chunk_mut<const N: usize>(&mut self) -> Option<&mut [T; N]>

Returns a mutable array reference to the first N items in the slice.

If the slice is not at least N in length, this will return None.

§Examples
let x = &mut [0, 1, 2];

if let Some(first) = x.first_chunk_mut::<2>() {
    first[0] = 5;
    first[1] = 4;
}
assert_eq!(x, &[5, 4, 2]);

assert_eq!(None, x.first_chunk_mut::<4>());
1.77.0 · Source

pub fn split_first_chunk<const N: usize>(&self) -> Option<(&[T; N], &[T])>

Returns an array reference to the first N items in the slice and the remaining slice.

If the slice is not at least N in length, this will return None.

§Examples
let x = &[0, 1, 2];

if let Some((first, elements)) = x.split_first_chunk::<2>() {
    assert_eq!(first, &[0, 1]);
    assert_eq!(elements, &[2]);
}

assert_eq!(None, x.split_first_chunk::<4>());
1.77.0 · Source

pub fn split_first_chunk_mut<const N: usize>( &mut self, ) -> Option<(&mut [T; N], &mut [T])>

Returns a mutable array reference to the first N items in the slice and the remaining slice.

If the slice is not at least N in length, this will return None.

§Examples
let x = &mut [0, 1, 2];

if let Some((first, elements)) = x.split_first_chunk_mut::<2>() {
    first[0] = 3;
    first[1] = 4;
    elements[0] = 5;
}
assert_eq!(x, &[3, 4, 5]);

assert_eq!(None, x.split_first_chunk_mut::<4>());
1.77.0 · Source

pub fn split_last_chunk<const N: usize>(&self) -> Option<(&[T], &[T; N])>

Returns an array reference to the last N items in the slice and the remaining slice.

If the slice is not at least N in length, this will return None.

§Examples
let x = &[0, 1, 2];

if let Some((elements, last)) = x.split_last_chunk::<2>() {
    assert_eq!(elements, &[0]);
    assert_eq!(last, &[1, 2]);
}

assert_eq!(None, x.split_last_chunk::<4>());
1.77.0 · Source

pub fn split_last_chunk_mut<const N: usize>( &mut self, ) -> Option<(&mut [T], &mut [T; N])>

Returns a mutable array reference to the last N items in the slice and the remaining slice.

If the slice is not at least N in length, this will return None.

§Examples
let x = &mut [0, 1, 2];

if let Some((elements, last)) = x.split_last_chunk_mut::<2>() {
    last[0] = 3;
    last[1] = 4;
    elements[0] = 5;
}
assert_eq!(x, &[5, 3, 4]);

assert_eq!(None, x.split_last_chunk_mut::<4>());
1.77.0 · Source

pub fn last_chunk<const N: usize>(&self) -> Option<&[T; N]>

Returns an array reference to the last N items in the slice.

If the slice is not at least N in length, this will return None.

§Examples
let u = [10, 40, 30];
assert_eq!(Some(&[40, 30]), u.last_chunk::<2>());

let v: &[i32] = &[10];
assert_eq!(None, v.last_chunk::<2>());

let w: &[i32] = &[];
assert_eq!(Some(&[]), w.last_chunk::<0>());
1.77.0 · Source

pub fn last_chunk_mut<const N: usize>(&mut self) -> Option<&mut [T; N]>

Returns a mutable array reference to the last N items in the slice.

If the slice is not at least N in length, this will return None.

§Examples
let x = &mut [0, 1, 2];

if let Some(last) = x.last_chunk_mut::<2>() {
    last[0] = 10;
    last[1] = 20;
}
assert_eq!(x, &[0, 10, 20]);

assert_eq!(None, x.last_chunk_mut::<4>());
1.0.0 · Source

pub fn get<I>(&self, index: I) -> Option<&<I as SliceIndex<[T]>>::Output>
where I: SliceIndex<[T]>,

Returns a reference to an element or subslice depending on the type of index.

  • If given a position, returns a reference to the element at that position or None if out of bounds.
  • If given a range, returns the subslice corresponding to that range, or None if out of bounds.
§Examples
let v = [10, 40, 30];
assert_eq!(Some(&40), v.get(1));
assert_eq!(Some(&[10, 40][..]), v.get(0..2));
assert_eq!(None, v.get(3));
assert_eq!(None, v.get(0..4));
1.0.0 · Source

pub fn get_mut<I>( &mut self, index: I, ) -> Option<&mut <I as SliceIndex<[T]>>::Output>
where I: SliceIndex<[T]>,

Returns a mutable reference to an element or subslice depending on the type of index (see get) or None if the index is out of bounds.

§Examples
let x = &mut [0, 1, 2];

if let Some(elem) = x.get_mut(1) {
    *elem = 42;
}
assert_eq!(x, &[0, 42, 2]);
1.0.0 · Source

pub unsafe fn get_unchecked<I>( &self, index: I, ) -> &<I as SliceIndex<[T]>>::Output
where I: SliceIndex<[T]>,

Returns a reference to an element or subslice, without doing bounds checking.

For a safe alternative see get.

§Safety

Calling this method with an out-of-bounds index is undefined behavior even if the resulting reference is not used.

You can think of this like .get(index).unwrap_unchecked(). It’s UB to call .get_unchecked(len), even if you immediately convert to a pointer. And it’s UB to call .get_unchecked(..len + 1), .get_unchecked(..=len), or similar.

§Examples
let x = &[1, 2, 4];

unsafe {
    assert_eq!(x.get_unchecked(1), &2);
}
1.0.0 · Source

pub unsafe fn get_unchecked_mut<I>( &mut self, index: I, ) -> &mut <I as SliceIndex<[T]>>::Output
where I: SliceIndex<[T]>,

Returns a mutable reference to an element or subslice, without doing bounds checking.

For a safe alternative see get_mut.

§Safety

Calling this method with an out-of-bounds index is undefined behavior even if the resulting reference is not used.

You can think of this like .get_mut(index).unwrap_unchecked(). It’s UB to call .get_unchecked_mut(len), even if you immediately convert to a pointer. And it’s UB to call .get_unchecked_mut(..len + 1), .get_unchecked_mut(..=len), or similar.

§Examples
let x = &mut [1, 2, 4];

unsafe {
    let elem = x.get_unchecked_mut(1);
    *elem = 13;
}
assert_eq!(x, &[1, 13, 4]);
1.0.0 · Source

pub fn as_ptr(&self) -> *const T

Returns a raw pointer to the slice’s buffer.

The caller must ensure that the slice outlives the pointer this function returns, or else it will end up dangling.

The caller must also ensure that the memory the pointer (non-transitively) points to is never written to (except inside an UnsafeCell) using this pointer or any pointer derived from it. If you need to mutate the contents of the slice, use as_mut_ptr.

Modifying the container referenced by this slice may cause its buffer to be reallocated, which would also make any pointers to it invalid.

§Examples
let x = &[1, 2, 4];
let x_ptr = x.as_ptr();

unsafe {
    for i in 0..x.len() {
        assert_eq!(x.get_unchecked(i), &*x_ptr.add(i));
    }
}
1.0.0 · Source

pub fn as_mut_ptr(&mut self) -> *mut T

Returns an unsafe mutable pointer to the slice’s buffer.

The caller must ensure that the slice outlives the pointer this function returns, or else it will end up dangling.

Modifying the container referenced by this slice may cause its buffer to be reallocated, which would also make any pointers to it invalid.

§Examples
let x = &mut [1, 2, 4];
let x_ptr = x.as_mut_ptr();

unsafe {
    for i in 0..x.len() {
        *x_ptr.add(i) += 2;
    }
}
assert_eq!(x, &[3, 4, 6]);
1.48.0 · Source

pub fn as_ptr_range(&self) -> Range<*const T>

Returns the two raw pointers spanning the slice.

The returned range is half-open, which means that the end pointer points one past the last element of the slice. This way, an empty slice is represented by two equal pointers, and the difference between the two pointers represents the size of the slice.

See as_ptr for warnings on using these pointers. The end pointer requires extra caution, as it does not point to a valid element in the slice.

This function is useful for interacting with foreign interfaces which use two pointers to refer to a range of elements in memory, as is common in C++.

It can also be useful to check if a pointer to an element refers to an element of this slice:

let a = [1, 2, 3];
let x = &a[1] as *const _;
let y = &5 as *const _;

assert!(a.as_ptr_range().contains(&x));
assert!(!a.as_ptr_range().contains(&y));
1.48.0 · Source

pub fn as_mut_ptr_range(&mut self) -> Range<*mut T>

Returns the two unsafe mutable pointers spanning the slice.

The returned range is half-open, which means that the end pointer points one past the last element of the slice. This way, an empty slice is represented by two equal pointers, and the difference between the two pointers represents the size of the slice.

See as_mut_ptr for warnings on using these pointers. The end pointer requires extra caution, as it does not point to a valid element in the slice.

This function is useful for interacting with foreign interfaces which use two pointers to refer to a range of elements in memory, as is common in C++.

Source

pub fn as_array<const N: usize>(&self) -> Option<&[T; N]>

🔬This is a nightly-only experimental API. (slice_as_array)

Gets a reference to the underlying array.

If N is not exactly equal to the length of self, then this method returns None.

Source

pub fn as_mut_array<const N: usize>(&mut self) -> Option<&mut [T; N]>

🔬This is a nightly-only experimental API. (slice_as_array)

Gets a mutable reference to the slice’s underlying array.

If N is not exactly equal to the length of self, then this method returns None.

1.0.0 · Source

pub fn swap(&mut self, a: usize, b: usize)

Swaps two elements in the slice.

If a equals to b, it’s guaranteed that elements won’t change value.

§Arguments
  • a - The index of the first element
  • b - The index of the second element
§Panics

Panics if a or b are out of bounds.

§Examples
let mut v = ["a", "b", "c", "d", "e"];
v.swap(2, 4);
assert!(v == ["a", "b", "e", "d", "c"]);
Source

pub unsafe fn swap_unchecked(&mut self, a: usize, b: usize)

🔬This is a nightly-only experimental API. (slice_swap_unchecked)

Swaps two elements in the slice, without doing bounds checking.

For a safe alternative see swap.

§Arguments
  • a - The index of the first element
  • b - The index of the second element
§Safety

Calling this method with an out-of-bounds index is undefined behavior. The caller has to ensure that a < self.len() and b < self.len().

§Examples
#![feature(slice_swap_unchecked)]

let mut v = ["a", "b", "c", "d"];
// SAFETY: we know that 1 and 3 are both indices of the slice
unsafe { v.swap_unchecked(1, 3) };
assert!(v == ["a", "d", "c", "b"]);
1.0.0 · Source

pub fn reverse(&mut self)

Reverses the order of elements in the slice, in place.

§Examples
let mut v = [1, 2, 3];
v.reverse();
assert!(v == [3, 2, 1]);
1.0.0 · Source

pub fn iter(&self) -> Iter<'_, T>

Returns an iterator over the slice.

The iterator yields all items from start to end.

§Examples
let x = &[1, 2, 4];
let mut iterator = x.iter();

assert_eq!(iterator.next(), Some(&1));
assert_eq!(iterator.next(), Some(&2));
assert_eq!(iterator.next(), Some(&4));
assert_eq!(iterator.next(), None);
1.0.0 · Source

pub fn iter_mut(&mut self) -> IterMut<'_, T>

Returns an iterator that allows modifying each value.

The iterator yields all items from start to end.

§Examples
let x = &mut [1, 2, 4];
for elem in x.iter_mut() {
    *elem += 2;
}
assert_eq!(x, &[3, 4, 6]);
1.0.0 · Source

pub fn windows(&self, size: usize) -> Windows<'_, T>

Returns an iterator over all contiguous windows of length size. The windows overlap. If the slice is shorter than size, the iterator returns no values.

§Panics

Panics if size is zero.

§Examples
let slice = ['l', 'o', 'r', 'e', 'm'];
let mut iter = slice.windows(3);
assert_eq!(iter.next().unwrap(), &['l', 'o', 'r']);
assert_eq!(iter.next().unwrap(), &['o', 'r', 'e']);
assert_eq!(iter.next().unwrap(), &['r', 'e', 'm']);
assert!(iter.next().is_none());

If the slice is shorter than size:

let slice = ['f', 'o', 'o'];
let mut iter = slice.windows(4);
assert!(iter.next().is_none());

Because the Iterator trait cannot represent the required lifetimes, there is no windows_mut analog to windows; [0,1,2].windows_mut(2).collect() would violate the rules of references (though a LendingIterator analog is possible). You can sometimes use Cell::as_slice_of_cells in conjunction with windows instead:

use std::cell::Cell;

let mut array = ['R', 'u', 's', 't', ' ', '2', '0', '1', '5'];
let slice = &mut array[..];
let slice_of_cells: &[Cell<char>] = Cell::from_mut(slice).as_slice_of_cells();
for w in slice_of_cells.windows(3) {
    Cell::swap(&w[0], &w[2]);
}
assert_eq!(array, ['s', 't', ' ', '2', '0', '1', '5', 'u', 'R']);
1.0.0 · Source

pub fn chunks(&self, chunk_size: usize) -> Chunks<'_, T>

Returns an iterator over chunk_size elements of the slice at a time, starting at the beginning of the slice.

The chunks are slices and do not overlap. If chunk_size does not divide the length of the slice, then the last chunk will not have length chunk_size.

See chunks_exact for a variant of this iterator that returns chunks of always exactly chunk_size elements, and rchunks for the same iterator but starting at the end of the slice.

§Panics

Panics if chunk_size is zero.

§Examples
let slice = ['l', 'o', 'r', 'e', 'm'];
let mut iter = slice.chunks(2);
assert_eq!(iter.next().unwrap(), &['l', 'o']);
assert_eq!(iter.next().unwrap(), &['r', 'e']);
assert_eq!(iter.next().unwrap(), &['m']);
assert!(iter.next().is_none());
1.0.0 · Source

pub fn chunks_mut(&mut self, chunk_size: usize) -> ChunksMut<'_, T>

Returns an iterator over chunk_size elements of the slice at a time, starting at the beginning of the slice.

The chunks are mutable slices, and do not overlap. If chunk_size does not divide the length of the slice, then the last chunk will not have length chunk_size.

See chunks_exact_mut for a variant of this iterator that returns chunks of always exactly chunk_size elements, and rchunks_mut for the same iterator but starting at the end of the slice.

§Panics

Panics if chunk_size is zero.

§Examples
let v = &mut [0, 0, 0, 0, 0];
let mut count = 1;

for chunk in v.chunks_mut(2) {
    for elem in chunk.iter_mut() {
        *elem += count;
    }
    count += 1;
}
assert_eq!(v, &[1, 1, 2, 2, 3]);
1.31.0 · Source

pub fn chunks_exact(&self, chunk_size: usize) -> ChunksExact<'_, T>

Returns an iterator over chunk_size elements of the slice at a time, starting at the beginning of the slice.

The chunks are slices and do not overlap. If chunk_size does not divide the length of the slice, then the last up to chunk_size-1 elements will be omitted and can be retrieved from the remainder function of the iterator.

Due to each chunk having exactly chunk_size elements, the compiler can often optimize the resulting code better than in the case of chunks.

See chunks for a variant of this iterator that also returns the remainder as a smaller chunk, and rchunks_exact for the same iterator but starting at the end of the slice.

§Panics

Panics if chunk_size is zero.

§Examples
let slice = ['l', 'o', 'r', 'e', 'm'];
let mut iter = slice.chunks_exact(2);
assert_eq!(iter.next().unwrap(), &['l', 'o']);
assert_eq!(iter.next().unwrap(), &['r', 'e']);
assert!(iter.next().is_none());
assert_eq!(iter.remainder(), &['m']);
1.31.0 · Source

pub fn chunks_exact_mut(&mut self, chunk_size: usize) -> ChunksExactMut<'_, T>

Returns an iterator over chunk_size elements of the slice at a time, starting at the beginning of the slice.

The chunks are mutable slices, and do not overlap. If chunk_size does not divide the length of the slice, then the last up to chunk_size-1 elements will be omitted and can be retrieved from the into_remainder function of the iterator.

Due to each chunk having exactly chunk_size elements, the compiler can often optimize the resulting code better than in the case of chunks_mut.

See chunks_mut for a variant of this iterator that also returns the remainder as a smaller chunk, and rchunks_exact_mut for the same iterator but starting at the end of the slice.

§Panics

Panics if chunk_size is zero.

§Examples
let v = &mut [0, 0, 0, 0, 0];
let mut count = 1;

for chunk in v.chunks_exact_mut(2) {
    for elem in chunk.iter_mut() {
        *elem += count;
    }
    count += 1;
}
assert_eq!(v, &[1, 1, 2, 2, 0]);
Source

pub unsafe fn as_chunks_unchecked<const N: usize>(&self) -> &[[T; N]]

🔬This is a nightly-only experimental API. (slice_as_chunks)

Splits the slice into a slice of N-element arrays, assuming that there’s no remainder.

§Safety

This may only be called when

  • The slice splits exactly into N-element chunks (aka self.len() % N == 0).
  • N != 0.
§Examples
#![feature(slice_as_chunks)]
let slice: &[char] = &['l', 'o', 'r', 'e', 'm', '!'];
let chunks: &[[char; 1]] =
    // SAFETY: 1-element chunks never have remainder
    unsafe { slice.as_chunks_unchecked() };
assert_eq!(chunks, &[['l'], ['o'], ['r'], ['e'], ['m'], ['!']]);
let chunks: &[[char; 3]] =
    // SAFETY: The slice length (6) is a multiple of 3
    unsafe { slice.as_chunks_unchecked() };
assert_eq!(chunks, &[['l', 'o', 'r'], ['e', 'm', '!']]);

// These would be unsound:
// let chunks: &[[_; 5]] = slice.as_chunks_unchecked() // The slice length is not a multiple of 5
// let chunks: &[[_; 0]] = slice.as_chunks_unchecked() // Zero-length chunks are never allowed
Source

pub fn as_chunks<const N: usize>(&self) -> (&[[T; N]], &[T])

🔬This is a nightly-only experimental API. (slice_as_chunks)

Splits the slice into a slice of N-element arrays, starting at the beginning of the slice, and a remainder slice with length strictly less than N.

§Panics

Panics if N is zero. This check will most probably get changed to a compile time error before this method gets stabilized.

§Examples
#![feature(slice_as_chunks)]
let slice = ['l', 'o', 'r', 'e', 'm'];
let (chunks, remainder) = slice.as_chunks();
assert_eq!(chunks, &[['l', 'o'], ['r', 'e']]);
assert_eq!(remainder, &['m']);

If you expect the slice to be an exact multiple, you can combine let-else with an empty slice pattern:

#![feature(slice_as_chunks)]
let slice = ['R', 'u', 's', 't'];
let (chunks, []) = slice.as_chunks::<2>() else {
    panic!("slice didn't have even length")
};
assert_eq!(chunks, &[['R', 'u'], ['s', 't']]);
Source

pub fn as_rchunks<const N: usize>(&self) -> (&[T], &[[T; N]])

🔬This is a nightly-only experimental API. (slice_as_chunks)

Splits the slice into a slice of N-element arrays, starting at the end of the slice, and a remainder slice with length strictly less than N.

§Panics

Panics if N is zero. This check will most probably get changed to a compile time error before this method gets stabilized.

§Examples
#![feature(slice_as_chunks)]
let slice = ['l', 'o', 'r', 'e', 'm'];
let (remainder, chunks) = slice.as_rchunks();
assert_eq!(remainder, &['l']);
assert_eq!(chunks, &[['o', 'r'], ['e', 'm']]);
Source

pub fn array_chunks<const N: usize>(&self) -> ArrayChunks<'_, T, N>

🔬This is a nightly-only experimental API. (array_chunks)

Returns an iterator over N elements of the slice at a time, starting at the beginning of the slice.

The chunks are array references and do not overlap. If N does not divide the length of the slice, then the last up to N-1 elements will be omitted and can be retrieved from the remainder function of the iterator.

This method is the const generic equivalent of chunks_exact.

§Panics

Panics if N is zero. This check will most probably get changed to a compile time error before this method gets stabilized.

§Examples
#![feature(array_chunks)]
let slice = ['l', 'o', 'r', 'e', 'm'];
let mut iter = slice.array_chunks();
assert_eq!(iter.next().unwrap(), &['l', 'o']);
assert_eq!(iter.next().unwrap(), &['r', 'e']);
assert!(iter.next().is_none());
assert_eq!(iter.remainder(), &['m']);
Source

pub unsafe fn as_chunks_unchecked_mut<const N: usize>( &mut self, ) -> &mut [[T; N]]

🔬This is a nightly-only experimental API. (slice_as_chunks)

Splits the slice into a slice of N-element arrays, assuming that there’s no remainder.

§Safety

This may only be called when

  • The slice splits exactly into N-element chunks (aka self.len() % N == 0).
  • N != 0.
§Examples
#![feature(slice_as_chunks)]
let slice: &mut [char] = &mut ['l', 'o', 'r', 'e', 'm', '!'];
let chunks: &mut [[char; 1]] =
    // SAFETY: 1-element chunks never have remainder
    unsafe { slice.as_chunks_unchecked_mut() };
chunks[0] = ['L'];
assert_eq!(chunks, &[['L'], ['o'], ['r'], ['e'], ['m'], ['!']]);
let chunks: &mut [[char; 3]] =
    // SAFETY: The slice length (6) is a multiple of 3
    unsafe { slice.as_chunks_unchecked_mut() };
chunks[1] = ['a', 'x', '?'];
assert_eq!(slice, &['L', 'o', 'r', 'a', 'x', '?']);

// These would be unsound:
// let chunks: &[[_; 5]] = slice.as_chunks_unchecked_mut() // The slice length is not a multiple of 5
// let chunks: &[[_; 0]] = slice.as_chunks_unchecked_mut() // Zero-length chunks are never allowed
Source

pub fn as_chunks_mut<const N: usize>(&mut self) -> (&mut [[T; N]], &mut [T])

🔬This is a nightly-only experimental API. (slice_as_chunks)

Splits the slice into a slice of N-element arrays, starting at the beginning of the slice, and a remainder slice with length strictly less than N.

§Panics

Panics if N is zero. This check will most probably get changed to a compile time error before this method gets stabilized.

§Examples
#![feature(slice_as_chunks)]
let v = &mut [0, 0, 0, 0, 0];
let mut count = 1;

let (chunks, remainder) = v.as_chunks_mut();
remainder[0] = 9;
for chunk in chunks {
    *chunk = [count; 2];
    count += 1;
}
assert_eq!(v, &[1, 1, 2, 2, 9]);
Source

pub fn as_rchunks_mut<const N: usize>(&mut self) -> (&mut [T], &mut [[T; N]])

🔬This is a nightly-only experimental API. (slice_as_chunks)

Splits the slice into a slice of N-element arrays, starting at the end of the slice, and a remainder slice with length strictly less than N.

§Panics

Panics if N is zero. This check will most probably get changed to a compile time error before this method gets stabilized.

§Examples
#![feature(slice_as_chunks)]
let v = &mut [0, 0, 0, 0, 0];
let mut count = 1;

let (remainder, chunks) = v.as_rchunks_mut();
remainder[0] = 9;
for chunk in chunks {
    *chunk = [count; 2];
    count += 1;
}
assert_eq!(v, &[9, 1, 1, 2, 2]);
Source

pub fn array_chunks_mut<const N: usize>(&mut self) -> ArrayChunksMut<'_, T, N>

🔬This is a nightly-only experimental API. (array_chunks)

Returns an iterator over N elements of the slice at a time, starting at the beginning of the slice.

The chunks are mutable array references and do not overlap. If N does not divide the length of the slice, then the last up to N-1 elements will be omitted and can be retrieved from the into_remainder function of the iterator.

This method is the const generic equivalent of chunks_exact_mut.

§Panics

Panics if N is zero. This check will most probably get changed to a compile time error before this method gets stabilized.

§Examples
#![feature(array_chunks)]
let v = &mut [0, 0, 0, 0, 0];
let mut count = 1;

for chunk in v.array_chunks_mut() {
    *chunk = [count; 2];
    count += 1;
}
assert_eq!(v, &[1, 1, 2, 2, 0]);
Source

pub fn array_windows<const N: usize>(&self) -> ArrayWindows<'_, T, N>

🔬This is a nightly-only experimental API. (array_windows)

Returns an iterator over overlapping windows of N elements of a slice, starting at the beginning of the slice.

This is the const generic equivalent of windows.

If N is greater than the size of the slice, it will return no windows.

§Panics

Panics if N is zero. This check will most probably get changed to a compile time error before this method gets stabilized.

§Examples
#![feature(array_windows)]
let slice = [0, 1, 2, 3];
let mut iter = slice.array_windows();
assert_eq!(iter.next().unwrap(), &[0, 1]);
assert_eq!(iter.next().unwrap(), &[1, 2]);
assert_eq!(iter.next().unwrap(), &[2, 3]);
assert!(iter.next().is_none());
1.31.0 · Source

pub fn rchunks(&self, chunk_size: usize) -> RChunks<'_, T>

Returns an iterator over chunk_size elements of the slice at a time, starting at the end of the slice.

The chunks are slices and do not overlap. If chunk_size does not divide the length of the slice, then the last chunk will not have length chunk_size.

See rchunks_exact for a variant of this iterator that returns chunks of always exactly chunk_size elements, and chunks for the same iterator but starting at the beginning of the slice.

§Panics

Panics if chunk_size is zero.

§Examples
let slice = ['l', 'o', 'r', 'e', 'm'];
let mut iter = slice.rchunks(2);
assert_eq!(iter.next().unwrap(), &['e', 'm']);
assert_eq!(iter.next().unwrap(), &['o', 'r']);
assert_eq!(iter.next().unwrap(), &['l']);
assert!(iter.next().is_none());
1.31.0 · Source

pub fn rchunks_mut(&mut self, chunk_size: usize) -> RChunksMut<'_, T>

Returns an iterator over chunk_size elements of the slice at a time, starting at the end of the slice.

The chunks are mutable slices, and do not overlap. If chunk_size does not divide the length of the slice, then the last chunk will not have length chunk_size.

See rchunks_exact_mut for a variant of this iterator that returns chunks of always exactly chunk_size elements, and chunks_mut for the same iterator but starting at the beginning of the slice.

§Panics

Panics if chunk_size is zero.

§Examples
let v = &mut [0, 0, 0, 0, 0];
let mut count = 1;

for chunk in v.rchunks_mut(2) {
    for elem in chunk.iter_mut() {
        *elem += count;
    }
    count += 1;
}
assert_eq!(v, &[3, 2, 2, 1, 1]);
1.31.0 · Source

pub fn rchunks_exact(&self, chunk_size: usize) -> RChunksExact<'_, T>

Returns an iterator over chunk_size elements of the slice at a time, starting at the end of the slice.

The chunks are slices and do not overlap. If chunk_size does not divide the length of the slice, then the last up to chunk_size-1 elements will be omitted and can be retrieved from the remainder function of the iterator.

Due to each chunk having exactly chunk_size elements, the compiler can often optimize the resulting code better than in the case of rchunks.

See rchunks for a variant of this iterator that also returns the remainder as a smaller chunk, and chunks_exact for the same iterator but starting at the beginning of the slice.

§Panics

Panics if chunk_size is zero.

§Examples
let slice = ['l', 'o', 'r', 'e', 'm'];
let mut iter = slice.rchunks_exact(2);
assert_eq!(iter.next().unwrap(), &['e', 'm']);
assert_eq!(iter.next().unwrap(), &['o', 'r']);
assert!(iter.next().is_none());
assert_eq!(iter.remainder(), &['l']);
1.31.0 · Source

pub fn rchunks_exact_mut(&mut self, chunk_size: usize) -> RChunksExactMut<'_, T>

Returns an iterator over chunk_size elements of the slice at a time, starting at the end of the slice.

The chunks are mutable slices, and do not overlap. If chunk_size does not divide the length of the slice, then the last up to chunk_size-1 elements will be omitted and can be retrieved from the into_remainder function of the iterator.

Due to each chunk having exactly chunk_size elements, the compiler can often optimize the resulting code better than in the case of chunks_mut.

See rchunks_mut for a variant of this iterator that also returns the remainder as a smaller chunk, and chunks_exact_mut for the same iterator but starting at the beginning of the slice.

§Panics

Panics if chunk_size is zero.

§Examples
let v = &mut [0, 0, 0, 0, 0];
let mut count = 1;

for chunk in v.rchunks_exact_mut(2) {
    for elem in chunk.iter_mut() {
        *elem += count;
    }
    count += 1;
}
assert_eq!(v, &[0, 2, 2, 1, 1]);
1.77.0 · Source

pub fn chunk_by<F>(&self, pred: F) -> ChunkBy<'_, T, F>
where F: FnMut(&T, &T) -> bool,

Returns an iterator over the slice producing non-overlapping runs of elements using the predicate to separate them.

The predicate is called for every pair of consecutive elements, meaning that it is called on slice[0] and slice[1], followed by slice[1] and slice[2], and so on.

§Examples
let slice = &[1, 1, 1, 3, 3, 2, 2, 2];

let mut iter = slice.chunk_by(|a, b| a == b);

assert_eq!(iter.next(), Some(&[1, 1, 1][..]));
assert_eq!(iter.next(), Some(&[3, 3][..]));
assert_eq!(iter.next(), Some(&[2, 2, 2][..]));
assert_eq!(iter.next(), None);

This method can be used to extract the sorted subslices:

let slice = &[1, 1, 2, 3, 2, 3, 2, 3, 4];

let mut iter = slice.chunk_by(|a, b| a <= b);

assert_eq!(iter.next(), Some(&[1, 1, 2, 3][..]));
assert_eq!(iter.next(), Some(&[2, 3][..]));
assert_eq!(iter.next(), Some(&[2, 3, 4][..]));
assert_eq!(iter.next(), None);
1.77.0 · Source

pub fn chunk_by_mut<F>(&mut self, pred: F) -> ChunkByMut<'_, T, F>
where F: FnMut(&T, &T) -> bool,

Returns an iterator over the slice producing non-overlapping mutable runs of elements using the predicate to separate them.

The predicate is called for every pair of consecutive elements, meaning that it is called on slice[0] and slice[1], followed by slice[1] and slice[2], and so on.

§Examples
let slice = &mut [1, 1, 1, 3, 3, 2, 2, 2];

let mut iter = slice.chunk_by_mut(|a, b| a == b);

assert_eq!(iter.next(), Some(&mut [1, 1, 1][..]));
assert_eq!(iter.next(), Some(&mut [3, 3][..]));
assert_eq!(iter.next(), Some(&mut [2, 2, 2][..]));
assert_eq!(iter.next(), None);

This method can be used to extract the sorted subslices:

let slice = &mut [1, 1, 2, 3, 2, 3, 2, 3, 4];

let mut iter = slice.chunk_by_mut(|a, b| a <= b);

assert_eq!(iter.next(), Some(&mut [1, 1, 2, 3][..]));
assert_eq!(iter.next(), Some(&mut [2, 3][..]));
assert_eq!(iter.next(), Some(&mut [2, 3, 4][..]));
assert_eq!(iter.next(), None);
1.0.0 · Source

pub fn split_at(&self, mid: usize) -> (&[T], &[T])

Divides one slice into two at an index.

The first will contain all indices from [0, mid) (excluding the index mid itself) and the second will contain all indices from [mid, len) (excluding the index len itself).

§Panics

Panics if mid > len. For a non-panicking alternative see split_at_checked.

§Examples
let v = ['a', 'b', 'c'];

{
   let (left, right) = v.split_at(0);
   assert_eq!(left, []);
   assert_eq!(right, ['a', 'b', 'c']);
}

{
    let (left, right) = v.split_at(2);
    assert_eq!(left, ['a', 'b']);
    assert_eq!(right, ['c']);
}

{
    let (left, right) = v.split_at(3);
    assert_eq!(left, ['a', 'b', 'c']);
    assert_eq!(right, []);
}
1.0.0 · Source

pub fn split_at_mut(&mut self, mid: usize) -> (&mut [T], &mut [T])

Divides one mutable slice into two at an index.

The first will contain all indices from [0, mid) (excluding the index mid itself) and the second will contain all indices from [mid, len) (excluding the index len itself).

§Panics

Panics if mid > len. For a non-panicking alternative see split_at_mut_checked.

§Examples
let mut v = [1, 0, 3, 0, 5, 6];
let (left, right) = v.split_at_mut(2);
assert_eq!(left, [1, 0]);
assert_eq!(right, [3, 0, 5, 6]);
left[1] = 2;
right[1] = 4;
assert_eq!(v, [1, 2, 3, 4, 5, 6]);
1.79.0 · Source

pub unsafe fn split_at_unchecked(&self, mid: usize) -> (&[T], &[T])

Divides one slice into two at an index, without doing bounds checking.

The first will contain all indices from [0, mid) (excluding the index mid itself) and the second will contain all indices from [mid, len) (excluding the index len itself).

For a safe alternative see split_at.

§Safety

Calling this method with an out-of-bounds index is undefined behavior even if the resulting reference is not used. The caller has to ensure that 0 <= mid <= self.len().

§Examples
let v = ['a', 'b', 'c'];

unsafe {
   let (left, right) = v.split_at_unchecked(0);
   assert_eq!(left, []);
   assert_eq!(right, ['a', 'b', 'c']);
}

unsafe {
    let (left, right) = v.split_at_unchecked(2);
    assert_eq!(left, ['a', 'b']);
    assert_eq!(right, ['c']);
}

unsafe {
    let (left, right) = v.split_at_unchecked(3);
    assert_eq!(left, ['a', 'b', 'c']);
    assert_eq!(right, []);
}
1.79.0 · Source

pub unsafe fn split_at_mut_unchecked( &mut self, mid: usize, ) -> (&mut [T], &mut [T])

Divides one mutable slice into two at an index, without doing bounds checking.

The first will contain all indices from [0, mid) (excluding the index mid itself) and the second will contain all indices from [mid, len) (excluding the index len itself).

For a safe alternative see split_at_mut.

§Safety

Calling this method with an out-of-bounds index is undefined behavior even if the resulting reference is not used. The caller has to ensure that 0 <= mid <= self.len().

§Examples
let mut v = [1, 0, 3, 0, 5, 6];
// scoped to restrict the lifetime of the borrows
unsafe {
    let (left, right) = v.split_at_mut_unchecked(2);
    assert_eq!(left, [1, 0]);
    assert_eq!(right, [3, 0, 5, 6]);
    left[1] = 2;
    right[1] = 4;
}
assert_eq!(v, [1, 2, 3, 4, 5, 6]);
1.80.0 · Source

pub fn split_at_checked(&self, mid: usize) -> Option<(&[T], &[T])>

Divides one slice into two at an index, returning None if the slice is too short.

If mid ≤ len returns a pair of slices where the first will contain all indices from [0, mid) (excluding the index mid itself) and the second will contain all indices from [mid, len) (excluding the index len itself).

Otherwise, if mid > len, returns None.

§Examples
let v = [1, -2, 3, -4, 5, -6];

{
   let (left, right) = v.split_at_checked(0).unwrap();
   assert_eq!(left, []);
   assert_eq!(right, [1, -2, 3, -4, 5, -6]);
}

{
    let (left, right) = v.split_at_checked(2).unwrap();
    assert_eq!(left, [1, -2]);
    assert_eq!(right, [3, -4, 5, -6]);
}

{
    let (left, right) = v.split_at_checked(6).unwrap();
    assert_eq!(left, [1, -2, 3, -4, 5, -6]);
    assert_eq!(right, []);
}

assert_eq!(None, v.split_at_checked(7));
1.80.0 · Source

pub fn split_at_mut_checked( &mut self, mid: usize, ) -> Option<(&mut [T], &mut [T])>

Divides one mutable slice into two at an index, returning None if the slice is too short.

If mid ≤ len returns a pair of slices where the first will contain all indices from [0, mid) (excluding the index mid itself) and the second will contain all indices from [mid, len) (excluding the index len itself).

Otherwise, if mid > len, returns None.

§Examples
let mut v = [1, 0, 3, 0, 5, 6];

if let Some((left, right)) = v.split_at_mut_checked(2) {
    assert_eq!(left, [1, 0]);
    assert_eq!(right, [3, 0, 5, 6]);
    left[1] = 2;
    right[1] = 4;
}
assert_eq!(v, [1, 2, 3, 4, 5, 6]);

assert_eq!(None, v.split_at_mut_checked(7));
1.0.0 · Source

pub fn split<F>(&self, pred: F) -> Split<'_, T, F>
where F: FnMut(&T) -> bool,

Returns an iterator over subslices separated by elements that match pred. The matched element is not contained in the subslices.

§Examples
let slice = [10, 40, 33, 20];
let mut iter = slice.split(|num| num % 3 == 0);

assert_eq!(iter.next().unwrap(), &[10, 40]);
assert_eq!(iter.next().unwrap(), &[20]);
assert!(iter.next().is_none());

If the first element is matched, an empty slice will be the first item returned by the iterator. Similarly, if the last element in the slice is matched, an empty slice will be the last item returned by the iterator:

let slice = [10, 40, 33];
let mut iter = slice.split(|num| num % 3 == 0);

assert_eq!(iter.next().unwrap(), &[10, 40]);
assert_eq!(iter.next().unwrap(), &[]);
assert!(iter.next().is_none());

If two matched elements are directly adjacent, an empty slice will be present between them:

let slice = [10, 6, 33, 20];
let mut iter = slice.split(|num| num % 3 == 0);

assert_eq!(iter.next().unwrap(), &[10]);
assert_eq!(iter.next().unwrap(), &[]);
assert_eq!(iter.next().unwrap(), &[20]);
assert!(iter.next().is_none());
1.0.0 · Source

pub fn split_mut<F>(&mut self, pred: F) -> SplitMut<'_, T, F>
where F: FnMut(&T) -> bool,

Returns an iterator over mutable subslices separated by elements that match pred. The matched element is not contained in the subslices.

§Examples
let mut v = [10, 40, 30, 20, 60, 50];

for group in v.split_mut(|num| *num % 3 == 0) {
    group[0] = 1;
}
assert_eq!(v, [1, 40, 30, 1, 60, 1]);
1.51.0 · Source

pub fn split_inclusive<F>(&self, pred: F) -> SplitInclusive<'_, T, F>
where F: FnMut(&T) -> bool,

Returns an iterator over subslices separated by elements that match pred. The matched element is contained in the end of the previous subslice as a terminator.

§Examples
let slice = [10, 40, 33, 20];
let mut iter = slice.split_inclusive(|num| num % 3 == 0);

assert_eq!(iter.next().unwrap(), &[10, 40, 33]);
assert_eq!(iter.next().unwrap(), &[20]);
assert!(iter.next().is_none());

If the last element of the slice is matched, that element will be considered the terminator of the preceding slice. That slice will be the last item returned by the iterator.

let slice = [3, 10, 40, 33];
let mut iter = slice.split_inclusive(|num| num % 3 == 0);

assert_eq!(iter.next().unwrap(), &[3]);
assert_eq!(iter.next().unwrap(), &[10, 40, 33]);
assert!(iter.next().is_none());
1.51.0 · Source

pub fn split_inclusive_mut<F>(&mut self, pred: F) -> SplitInclusiveMut<'_, T, F>
where F: FnMut(&T) -> bool,

Returns an iterator over mutable subslices separated by elements that match pred. The matched element is contained in the previous subslice as a terminator.

§Examples
let mut v = [10, 40, 30, 20, 60, 50];

for group in v.split_inclusive_mut(|num| *num % 3 == 0) {
    let terminator_idx = group.len()-1;
    group[terminator_idx] = 1;
}
assert_eq!(v, [10, 40, 1, 20, 1, 1]);
1.27.0 · Source

pub fn rsplit<F>(&self, pred: F) -> RSplit<'_, T, F>
where F: FnMut(&T) -> bool,

Returns an iterator over subslices separated by elements that match pred, starting at the end of the slice and working backwards. The matched element is not contained in the subslices.

§Examples
let slice = [11, 22, 33, 0, 44, 55];
let mut iter = slice.rsplit(|num| *num == 0);

assert_eq!(iter.next().unwrap(), &[44, 55]);
assert_eq!(iter.next().unwrap(), &[11, 22, 33]);
assert_eq!(iter.next(), None);

As with split(), if the first or last element is matched, an empty slice will be the first (or last) item returned by the iterator.

let v = &[0, 1, 1, 2, 3, 5, 8];
let mut it = v.rsplit(|n| *n % 2 == 0);
assert_eq!(it.next().unwrap(), &[]);
assert_eq!(it.next().unwrap(), &[3, 5]);
assert_eq!(it.next().unwrap(), &[1, 1]);
assert_eq!(it.next().unwrap(), &[]);
assert_eq!(it.next(), None);
1.27.0 · Source

pub fn rsplit_mut<F>(&mut self, pred: F) -> RSplitMut<'_, T, F>
where F: FnMut(&T) -> bool,

Returns an iterator over mutable subslices separated by elements that match pred, starting at the end of the slice and working backwards. The matched element is not contained in the subslices.

§Examples
let mut v = [100, 400, 300, 200, 600, 500];

let mut count = 0;
for group in v.rsplit_mut(|num| *num % 3 == 0) {
    count += 1;
    group[0] = count;
}
assert_eq!(v, [3, 400, 300, 2, 600, 1]);
1.0.0 · Source

pub fn splitn<F>(&self, n: usize, pred: F) -> SplitN<'_, T, F>
where F: FnMut(&T) -> bool,

Returns an iterator over subslices separated by elements that match pred, limited to returning at most n items. The matched element is not contained in the subslices.

The last element returned, if any, will contain the remainder of the slice.

§Examples

Print the slice split once by numbers divisible by 3 (i.e., [10, 40], [20, 60, 50]):

let v = [10, 40, 30, 20, 60, 50];

for group in v.splitn(2, |num| *num % 3 == 0) {
    println!("{group:?}");
}
1.0.0 · Source

pub fn splitn_mut<F>(&mut self, n: usize, pred: F) -> SplitNMut<'_, T, F>
where F: FnMut(&T) -> bool,

Returns an iterator over mutable subslices separated by elements that match pred, limited to returning at most n items. The matched element is not contained in the subslices.

The last element returned, if any, will contain the remainder of the slice.

§Examples
let mut v = [10, 40, 30, 20, 60, 50];

for group in v.splitn_mut(2, |num| *num % 3 == 0) {
    group[0] = 1;
}
assert_eq!(v, [1, 40, 30, 1, 60, 50]);
1.0.0 · Source

pub fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<'_, T, F>
where F: FnMut(&T) -> bool,

Returns an iterator over subslices separated by elements that match pred limited to returning at most n items. This starts at the end of the slice and works backwards. The matched element is not contained in the subslices.

The last element returned, if any, will contain the remainder of the slice.

§Examples

Print the slice split once, starting from the end, by numbers divisible by 3 (i.e., [50], [10, 40, 30, 20]):

let v = [10, 40, 30, 20, 60, 50];

for group in v.rsplitn(2, |num| *num % 3 == 0) {
    println!("{group:?}");
}
1.0.0 · Source

pub fn rsplitn_mut<F>(&mut self, n: usize, pred: F) -> RSplitNMut<'_, T, F>
where F: FnMut(&T) -> bool,

Returns an iterator over subslices separated by elements that match pred limited to returning at most n items. This starts at the end of the slice and works backwards. The matched element is not contained in the subslices.

The last element returned, if any, will contain the remainder of the slice.

§Examples
let mut s = [10, 40, 30, 20, 60, 50];

for group in s.rsplitn_mut(2, |num| *num % 3 == 0) {
    group[0] = 1;
}
assert_eq!(s, [1, 40, 30, 20, 60, 1]);
Source

pub fn split_once<F>(&self, pred: F) -> Option<(&[T], &[T])>
where F: FnMut(&T) -> bool,

🔬This is a nightly-only experimental API. (slice_split_once)

Splits the slice on the first element that matches the specified predicate.

If any matching elements are present in the slice, returns the prefix before the match and suffix after. The matching element itself is not included. If no elements match, returns None.

§Examples
#![feature(slice_split_once)]
let s = [1, 2, 3, 2, 4];
assert_eq!(s.split_once(|&x| x == 2), Some((
    &[1][..],
    &[3, 2, 4][..]
)));
assert_eq!(s.split_once(|&x| x == 0), None);
Source

pub fn rsplit_once<F>(&self, pred: F) -> Option<(&[T], &[T])>
where F: FnMut(&T) -> bool,

🔬This is a nightly-only experimental API. (slice_split_once)

Splits the slice on the last element that matches the specified predicate.

If any matching elements are present in the slice, returns the prefix before the match and suffix after. The matching element itself is not included. If no elements match, returns None.

§Examples
#![feature(slice_split_once)]
let s = [1, 2, 3, 2, 4];
assert_eq!(s.rsplit_once(|&x| x == 2), Some((
    &[1, 2, 3][..],
    &[4][..]
)));
assert_eq!(s.rsplit_once(|&x| x == 0), None);
1.0.0 · Source

pub fn contains(&self, x: &T) -> bool
where T: PartialEq,

Returns true if the slice contains an element with the given value.

This operation is O(n).

Note that if you have a sorted slice, binary_search may be faster.

§Examples
let v = [10, 40, 30];
assert!(v.contains(&30));
assert!(!v.contains(&50));

If you do not have a &T, but some other value that you can compare with one (for example, String implements PartialEq<str>), you can use iter().any:

let v = [String::from("hello"), String::from("world")]; // slice of `String`
assert!(v.iter().any(|e| e == "hello")); // search with `&str`
assert!(!v.iter().any(|e| e == "hi"));
1.0.0 · Source

pub fn starts_with(&self, needle: &[T]) -> bool
where T: PartialEq,

Returns true if needle is a prefix of the slice or equal to the slice.

§Examples
let v = [10, 40, 30];
assert!(v.starts_with(&[10]));
assert!(v.starts_with(&[10, 40]));
assert!(v.starts_with(&v));
assert!(!v.starts_with(&[50]));
assert!(!v.starts_with(&[10, 50]));

Always returns true if needle is an empty slice:

let v = &[10, 40, 30];
assert!(v.starts_with(&[]));
let v: &[u8] = &[];
assert!(v.starts_with(&[]));
1.0.0 · Source

pub fn ends_with(&self, needle: &[T]) -> bool
where T: PartialEq,

Returns true if needle is a suffix of the slice or equal to the slice.

§Examples
let v = [10, 40, 30];
assert!(v.ends_with(&[30]));
assert!(v.ends_with(&[40, 30]));
assert!(v.ends_with(&v));
assert!(!v.ends_with(&[50]));
assert!(!v.ends_with(&[50, 30]));

Always returns true if needle is an empty slice:

let v = &[10, 40, 30];
assert!(v.ends_with(&[]));
let v: &[u8] = &[];
assert!(v.ends_with(&[]));
1.51.0 · Source

pub fn strip_prefix<P>(&self, prefix: &P) -> Option<&[T]>
where P: SlicePattern<Item = T> + ?Sized, T: PartialEq,

Returns a subslice with the prefix removed.

If the slice starts with prefix, returns the subslice after the prefix, wrapped in Some. If prefix is empty, simply returns the original slice. If prefix is equal to the original slice, returns an empty slice.

If the slice does not start with prefix, returns None.

§Examples
let v = &[10, 40, 30];
assert_eq!(v.strip_prefix(&[10]), Some(&[40, 30][..]));
assert_eq!(v.strip_prefix(&[10, 40]), Some(&[30][..]));
assert_eq!(v.strip_prefix(&[10, 40, 30]), Some(&[][..]));
assert_eq!(v.strip_prefix(&[50]), None);
assert_eq!(v.strip_prefix(&[10, 50]), None);

let prefix : &str = "he";
assert_eq!(b"hello".strip_prefix(prefix.as_bytes()),
           Some(b"llo".as_ref()));
1.51.0 · Source

pub fn strip_suffix<P>(&self, suffix: &P) -> Option<&[T]>
where P: SlicePattern<Item = T> + ?Sized, T: PartialEq,

Returns a subslice with the suffix removed.

If the slice ends with suffix, returns the subslice before the suffix, wrapped in Some. If suffix is empty, simply returns the original slice. If suffix is equal to the original slice, returns an empty slice.

If the slice does not end with suffix, returns None.

§Examples
let v = &[10, 40, 30];
assert_eq!(v.strip_suffix(&[30]), Some(&[10, 40][..]));
assert_eq!(v.strip_suffix(&[40, 30]), Some(&[10][..]));
assert_eq!(v.strip_suffix(&[10, 40, 30]), Some(&[][..]));
assert_eq!(v.strip_suffix(&[50]), None);
assert_eq!(v.strip_suffix(&[50, 30]), None);

Binary searches this slice for a given element. If the slice is not sorted, the returned result is unspecified and meaningless.

If the value is found then Result::Ok is returned, containing the index of the matching element. If there are multiple matches, then any one of the matches could be returned. The index is chosen deterministically, but is subject to change in future versions of Rust. If the value is not found then Result::Err is returned, containing the index where a matching element could be inserted while maintaining sorted order.

See also binary_search_by, binary_search_by_key, and partition_point.

§Examples

Looks up a series of four elements. The first is found, with a uniquely determined position; the second and third are not found; the fourth could match any position in [1, 4].

let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];

assert_eq!(s.binary_search(&13),  Ok(9));
assert_eq!(s.binary_search(&4),   Err(7));
assert_eq!(s.binary_search(&100), Err(13));
let r = s.binary_search(&1);
assert!(match r { Ok(1..=4) => true, _ => false, });

If you want to find that whole range of matching items, rather than an arbitrary matching one, that can be done using partition_point:

let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];

let low = s.partition_point(|x| x < &1);
assert_eq!(low, 1);
let high = s.partition_point(|x| x <= &1);
assert_eq!(high, 5);
let r = s.binary_search(&1);
assert!((low..high).contains(&r.unwrap()));

assert!(s[..low].iter().all(|&x| x < 1));
assert!(s[low..high].iter().all(|&x| x == 1));
assert!(s[high..].iter().all(|&x| x > 1));

// For something not found, the "range" of equal items is empty
assert_eq!(s.partition_point(|x| x < &11), 9);
assert_eq!(s.partition_point(|x| x <= &11), 9);
assert_eq!(s.binary_search(&11), Err(9));

If you want to insert an item to a sorted vector, while maintaining sort order, consider using partition_point:

let mut s = vec![0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
let num = 42;
let idx = s.partition_point(|&x| x <= num);
// If `num` is unique, `s.partition_point(|&x| x < num)` (with `<`) is equivalent to
// `s.binary_search(&num).unwrap_or_else(|x| x)`, but using `<=` will allow `insert`
// to shift less elements.
s.insert(idx, num);
assert_eq!(s, [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 42, 55]);
1.0.0 · Source

pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize>
where F: FnMut(&'a T) -> Ordering,

Binary searches this slice with a comparator function.

The comparator function should return an order code that indicates whether its argument is Less, Equal or Greater the desired target. If the slice is not sorted or if the comparator function does not implement an order consistent with the sort order of the underlying slice, the returned result is unspecified and meaningless.

If the value is found then Result::Ok is returned, containing the index of the matching element. If there are multiple matches, then any one of the matches could be returned. The index is chosen deterministically, but is subject to change in future versions of Rust. If the value is not found then Result::Err is returned, containing the index where a matching element could be inserted while maintaining sorted order.

See also binary_search, binary_search_by_key, and partition_point.

§Examples

Looks up a series of four elements. The first is found, with a uniquely determined position; the second and third are not found; the fourth could match any position in [1, 4].

let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];

let seek = 13;
assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9));
let seek = 4;
assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7));
let seek = 100;
assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13));
let seek = 1;
let r = s.binary_search_by(|probe| probe.cmp(&seek));
assert!(match r { Ok(1..=4) => true, _ => false, });
1.10.0 · Source

pub fn binary_search_by_key<'a, B, F>( &'a self, b: &B, f: F, ) -> Result<usize, usize>
where F: FnMut(&'a T) -> B, B: Ord,

Binary searches this slice with a key extraction function.

Assumes that the slice is sorted by the key, for instance with sort_by_key using the same key extraction function. If the slice is not sorted by the key, the returned result is unspecified and meaningless.

If the value is found then Result::Ok is returned, containing the index of the matching element. If there are multiple matches, then any one of the matches could be returned. The index is chosen deterministically, but is subject to change in future versions of Rust. If the value is not found then Result::Err is returned, containing the index where a matching element could be inserted while maintaining sorted order.

See also binary_search, binary_search_by, and partition_point.

§Examples

Looks up a series of four elements in a slice of pairs sorted by their second elements. The first is found, with a uniquely determined position; the second and third are not found; the fourth could match any position in [1, 4].

let s = [(0, 0), (2, 1), (4, 1), (5, 1), (3, 1),
         (1, 2), (2, 3), (4, 5), (5, 8), (3, 13),
         (1, 21), (2, 34), (4, 55)];

assert_eq!(s.binary_search_by_key(&13, |&(a, b)| b),  Ok(9));
assert_eq!(s.binary_search_by_key(&4, |&(a, b)| b),   Err(7));
assert_eq!(s.binary_search_by_key(&100, |&(a, b)| b), Err(13));
let r = s.binary_search_by_key(&1, |&(a, b)| b);
assert!(match r { Ok(1..=4) => true, _ => false, });
1.20.0 · Source

pub fn sort_unstable(&mut self)
where T: Ord,

Sorts the slice without preserving the initial order of equal elements.

This sort is unstable (i.e., may reorder equal elements), in-place (i.e., does not allocate), and O(n * log(n)) worst-case.

If the implementation of Ord for T does not implement a total order, the function may panic; even if the function exits normally, the resulting order of elements in the slice is unspecified. See also the note on panicking below.

For example |a, b| (a - b).cmp(a) is a comparison function that is neither transitive nor reflexive nor total, a < b < c < a with a = 1, b = 2, c = 3. For more information and examples see the Ord documentation.

All original elements will remain in the slice and any possible modifications via interior mutability are observed in the input. Same is true if the implementation of Ord for T panics.

Sorting types that only implement PartialOrd such as f32 and f64 require additional precautions. For example, f32::NAN != f32::NAN, which doesn’t fulfill the reflexivity requirement of Ord. By using an alternative comparison function with slice::sort_unstable_by such as f32::total_cmp or f64::total_cmp that defines a total order users can sort slices containing floating-point values. Alternatively, if all values in the slice are guaranteed to be in a subset for which PartialOrd::partial_cmp forms a total order, it’s possible to sort the slice with sort_unstable_by(|a, b| a.partial_cmp(b).unwrap()).

§Current implementation

The current implementation is based on ipnsort by Lukas Bergdoll and Orson Peters, which combines the fast average case of quicksort with the fast worst case of heapsort, achieving linear time on fully sorted and reversed inputs. On inputs with k distinct elements, the expected time to sort the data is O(n * log(k)).

It is typically faster than stable sorting, except in a few special cases, e.g., when the slice is partially sorted.

§Panics

May panic if the implementation of Ord for T does not implement a total order, or if the Ord implementation panics.

§Examples
let mut v = [4, -5, 1, -3, 2];

v.sort_unstable();
assert_eq!(v, [-5, -3, 1, 2, 4]);
1.20.0 · Source

pub fn sort_unstable_by<F>(&mut self, compare: F)
where F: FnMut(&T, &T) -> Ordering,

Sorts the slice with a comparison function, without preserving the initial order of equal elements.

This sort is unstable (i.e., may reorder equal elements), in-place (i.e., does not allocate), and O(n * log(n)) worst-case.

If the comparison function compare does not implement a total order, the function may panic; even if the function exits normally, the resulting order of elements in the slice is unspecified. See also the note on panicking below.

For example |a, b| (a - b).cmp(a) is a comparison function that is neither transitive nor reflexive nor total, a < b < c < a with a = 1, b = 2, c = 3. For more information and examples see the Ord documentation.

All original elements will remain in the slice and any possible modifications via interior mutability are observed in the input. Same is true if compare panics.

§Current implementation

The current implementation is based on ipnsort by Lukas Bergdoll and Orson Peters, which combines the fast average case of quicksort with the fast worst case of heapsort, achieving linear time on fully sorted and reversed inputs. On inputs with k distinct elements, the expected time to sort the data is O(n * log(k)).

It is typically faster than stable sorting, except in a few special cases, e.g., when the slice is partially sorted.

§Panics

May panic if the compare does not implement a total order, or if the compare itself panics.

§Examples
let mut v = [4, -5, 1, -3, 2];
v.sort_unstable_by(|a, b| a.cmp(b));
assert_eq!(v, [-5, -3, 1, 2, 4]);

// reverse sorting
v.sort_unstable_by(|a, b| b.cmp(a));
assert_eq!(v, [4, 2, 1, -3, -5]);
1.20.0 · Source

pub fn sort_unstable_by_key<K, F>(&mut self, f: F)
where F: FnMut(&T) -> K, K: Ord,

Sorts the slice with a key extraction function, without preserving the initial order of equal elements.

This sort is unstable (i.e., may reorder equal elements), in-place (i.e., does not allocate), and O(n * log(n)) worst-case.

If the implementation of Ord for K does not implement a total order, the function may panic; even if the function exits normally, the resulting order of elements in the slice is unspecified. See also the note on panicking below.

For example |a, b| (a - b).cmp(a) is a comparison function that is neither transitive nor reflexive nor total, a < b < c < a with a = 1, b = 2, c = 3. For more information and examples see the Ord documentation.

All original elements will remain in the slice and any possible modifications via interior mutability are observed in the input. Same is true if the implementation of Ord for K panics.

§Current implementation

The current implementation is based on ipnsort by Lukas Bergdoll and Orson Peters, which combines the fast average case of quicksort with the fast worst case of heapsort, achieving linear time on fully sorted and reversed inputs. On inputs with k distinct elements, the expected time to sort the data is O(n * log(k)).

It is typically faster than stable sorting, except in a few special cases, e.g., when the slice is partially sorted.

§Panics

May panic if the implementation of Ord for K does not implement a total order, or if the Ord implementation panics.

§Examples
let mut v = [4i32, -5, 1, -3, 2];

v.sort_unstable_by_key(|k| k.abs());
assert_eq!(v, [1, 2, -3, 4, -5]);
1.49.0 · Source

pub fn select_nth_unstable( &mut self, index: usize, ) -> (&mut [T], &mut T, &mut [T])
where T: Ord,

Reorders the slice such that the element at index is at a sort-order position. All elements before index will be <= to this value, and all elements after will be >= to it.

This reordering is unstable (i.e. any element that compares equal to the nth element may end up at that position), in-place (i.e. does not allocate), and runs in O(n) time. This function is also known as “kth element” in other libraries.

Returns a triple that partitions the reordered slice:

  • The unsorted subslice before index, whose elements all satisfy x <= self[index].

  • The element at index.

  • The unsorted subslice after index, whose elements all satisfy x >= self[index].

§Current implementation

The current algorithm is an introselect implementation based on ipnsort by Lukas Bergdoll and Orson Peters, which is also the basis for sort_unstable. The fallback algorithm is Median of Medians using Tukey’s Ninther for pivot selection, which guarantees linear runtime for all inputs.

§Panics

Panics when index >= len(), and so always panics on empty slices.

May panic if the implementation of Ord for T does not implement a total order.

§Examples
let mut v = [-5i32, 4, 2, -3, 1];

// Find the items `<=` to the median, the median itself, and the items `>=` to it.
let (lesser, median, greater) = v.select_nth_unstable(2);

assert!(lesser == [-3, -5] || lesser == [-5, -3]);
assert_eq!(median, &mut 1);
assert!(greater == [4, 2] || greater == [2, 4]);

// We are only guaranteed the slice will be one of the following, based on the way we sort
// about the specified index.
assert!(v == [-3, -5, 1, 2, 4] ||
        v == [-5, -3, 1, 2, 4] ||
        v == [-3, -5, 1, 4, 2] ||
        v == [-5, -3, 1, 4, 2]);
1.49.0 · Source

pub fn select_nth_unstable_by<F>( &mut self, index: usize, compare: F, ) -> (&mut [T], &mut T, &mut [T])
where F: FnMut(&T, &T) -> Ordering,

Reorders the slice with a comparator function such that the element at index is at a sort-order position. All elements before index will be <= to this value, and all elements after will be >= to it, according to the comparator function.

This reordering is unstable (i.e. any element that compares equal to the nth element may end up at that position), in-place (i.e. does not allocate), and runs in O(n) time. This function is also known as “kth element” in other libraries.

Returns a triple partitioning the reordered slice:

  • The unsorted subslice before index, whose elements all satisfy compare(x, self[index]).is_le().

  • The element at index.

  • The unsorted subslice after index, whose elements all satisfy compare(x, self[index]).is_ge().

§Current implementation

The current algorithm is an introselect implementation based on ipnsort by Lukas Bergdoll and Orson Peters, which is also the basis for sort_unstable. The fallback algorithm is Median of Medians using Tukey’s Ninther for pivot selection, which guarantees linear runtime for all inputs.

§Panics

Panics when index >= len(), and so always panics on empty slices.

May panic if compare does not implement a total order.

§Examples
let mut v = [-5i32, 4, 2, -3, 1];

// Find the items `>=` to the median, the median itself, and the items `<=` to it, by using
// a reversed comparator.
let (before, median, after) = v.select_nth_unstable_by(2, |a, b| b.cmp(a));

assert!(before == [4, 2] || before == [2, 4]);
assert_eq!(median, &mut 1);
assert!(after == [-3, -5] || after == [-5, -3]);

// We are only guaranteed the slice will be one of the following, based on the way we sort
// about the specified index.
assert!(v == [2, 4, 1, -5, -3] ||
        v == [2, 4, 1, -3, -5] ||
        v == [4, 2, 1, -5, -3] ||
        v == [4, 2, 1, -3, -5]);
1.49.0 · Source

pub fn select_nth_unstable_by_key<K, F>( &mut self, index: usize, f: F, ) -> (&mut [T], &mut T, &mut [T])
where F: FnMut(&T) -> K, K: Ord,

Reorders the slice with a key extraction function such that the element at index is at a sort-order position. All elements before index will have keys <= to the key at index, and all elements after will have keys >= to it.

This reordering is unstable (i.e. any element that compares equal to the nth element may end up at that position), in-place (i.e. does not allocate), and runs in O(n) time. This function is also known as “kth element” in other libraries.

Returns a triple partitioning the reordered slice:

  • The unsorted subslice before index, whose elements all satisfy f(x) <= f(self[index]).

  • The element at index.

  • The unsorted subslice after index, whose elements all satisfy f(x) >= f(self[index]).

§Current implementation

The current algorithm is an introselect implementation based on ipnsort by Lukas Bergdoll and Orson Peters, which is also the basis for sort_unstable. The fallback algorithm is Median of Medians using Tukey’s Ninther for pivot selection, which guarantees linear runtime for all inputs.

§Panics

Panics when index >= len(), meaning it always panics on empty slices.

May panic if K: Ord does not implement a total order.

§Examples
let mut v = [-5i32, 4, 1, -3, 2];

// Find the items `<=` to the absolute median, the absolute median itself, and the items
// `>=` to it.
let (lesser, median, greater) = v.select_nth_unstable_by_key(2, |a| a.abs());

assert!(lesser == [1, 2] || lesser == [2, 1]);
assert_eq!(median, &mut -3);
assert!(greater == [4, -5] || greater == [-5, 4]);

// We are only guaranteed the slice will be one of the following, based on the way we sort
// about the specified index.
assert!(v == [1, 2, -3, 4, -5] ||
        v == [1, 2, -3, -5, 4] ||
        v == [2, 1, -3, 4, -5] ||
        v == [2, 1, -3, -5, 4]);
Source

pub fn partition_dedup(&mut self) -> (&mut [T], &mut [T])
where T: PartialEq,

🔬This is a nightly-only experimental API. (slice_partition_dedup)

Moves all consecutive repeated elements to the end of the slice according to the PartialEq trait implementation.

Returns two slices. The first contains no consecutive repeated elements. The second contains all the duplicates in no specified order.

If the slice is sorted, the first returned slice contains no duplicates.

§Examples
#![feature(slice_partition_dedup)]

let mut slice = [1, 2, 2, 3, 3, 2, 1, 1];

let (dedup, duplicates) = slice.partition_dedup();

assert_eq!(dedup, [1, 2, 3, 2, 1]);
assert_eq!(duplicates, [2, 3, 1]);
Source

pub fn partition_dedup_by<F>(&mut self, same_bucket: F) -> (&mut [T], &mut [T])
where F: FnMut(&mut T, &mut T) -> bool,

🔬This is a nightly-only experimental API. (slice_partition_dedup)

Moves all but the first of consecutive elements to the end of the slice satisfying a given equality relation.

Returns two slices. The first contains no consecutive repeated elements. The second contains all the duplicates in no specified order.

The same_bucket function is passed references to two elements from the slice and must determine if the elements compare equal. The elements are passed in opposite order from their order in the slice, so if same_bucket(a, b) returns true, a is moved at the end of the slice.

If the slice is sorted, the first returned slice contains no duplicates.

§Examples
#![feature(slice_partition_dedup)]

let mut slice = ["foo", "Foo", "BAZ", "Bar", "bar", "baz", "BAZ"];

let (dedup, duplicates) = slice.partition_dedup_by(|a, b| a.eq_ignore_ascii_case(b));

assert_eq!(dedup, ["foo", "BAZ", "Bar", "baz"]);
assert_eq!(duplicates, ["bar", "Foo", "BAZ"]);
Source

pub fn partition_dedup_by_key<K, F>(&mut self, key: F) -> (&mut [T], &mut [T])
where F: FnMut(&mut T) -> K, K: PartialEq,

🔬This is a nightly-only experimental API. (slice_partition_dedup)

Moves all but the first of consecutive elements to the end of the slice that resolve to the same key.

Returns two slices. The first contains no consecutive repeated elements. The second contains all the duplicates in no specified order.

If the slice is sorted, the first returned slice contains no duplicates.

§Examples
#![feature(slice_partition_dedup)]

let mut slice = [10, 20, 21, 30, 30, 20, 11, 13];

let (dedup, duplicates) = slice.partition_dedup_by_key(|i| *i / 10);

assert_eq!(dedup, [10, 20, 30, 20, 11]);
assert_eq!(duplicates, [21, 30, 13]);
1.26.0 · Source

pub fn rotate_left(&mut self, mid: usize)

Rotates the slice in-place such that the first mid elements of the slice move to the end while the last self.len() - mid elements move to the front.

After calling rotate_left, the element previously at index mid will become the first element in the slice.

§Panics

This function will panic if mid is greater than the length of the slice. Note that mid == self.len() does not panic and is a no-op rotation.

§Complexity

Takes linear (in self.len()) time.

§Examples
let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
a.rotate_left(2);
assert_eq!(a, ['c', 'd', 'e', 'f', 'a', 'b']);

Rotating a subslice:

let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
a[1..5].rotate_left(1);
assert_eq!(a, ['a', 'c', 'd', 'e', 'b', 'f']);
1.26.0 · Source

pub fn rotate_right(&mut self, k: usize)

Rotates the slice in-place such that the first self.len() - k elements of the slice move to the end while the last k elements move to the front.

After calling rotate_right, the element previously at index self.len() - k will become the first element in the slice.

§Panics

This function will panic if k is greater than the length of the slice. Note that k == self.len() does not panic and is a no-op rotation.

§Complexity

Takes linear (in self.len()) time.

§Examples
let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
a.rotate_right(2);
assert_eq!(a, ['e', 'f', 'a', 'b', 'c', 'd']);

Rotating a subslice:

let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
a[1..5].rotate_right(1);
assert_eq!(a, ['a', 'e', 'b', 'c', 'd', 'f']);
1.50.0 · Source

pub fn fill(&mut self, value: T)
where T: Clone,

Fills self with elements by cloning value.

§Examples
let mut buf = vec![0; 10];
buf.fill(1);
assert_eq!(buf, vec![1; 10]);
1.51.0 · Source

pub fn fill_with<F>(&mut self, f: F)
where F: FnMut() -> T,

Fills self with elements returned by calling a closure repeatedly.

This method uses a closure to create new values. If you’d rather Clone a given value, use fill. If you want to use the Default trait to generate values, you can pass Default::default as the argument.

§Examples
let mut buf = vec![1; 10];
buf.fill_with(Default::default);
assert_eq!(buf, vec![0; 10]);
1.7.0 · Source

pub fn clone_from_slice(&mut self, src: &[T])
where T: Clone,

Copies the elements from src into self.

The length of src must be the same as self.

§Panics

This function will panic if the two slices have different lengths.

§Examples

Cloning two elements from a slice into another:

let src = [1, 2, 3, 4];
let mut dst = [0, 0];

// Because the slices have to be the same length,
// we slice the source slice from four elements
// to two. It will panic if we don't do this.
dst.clone_from_slice(&src[2..]);

assert_eq!(src, [1, 2, 3, 4]);
assert_eq!(dst, [3, 4]);

Rust enforces that there can only be one mutable reference with no immutable references to a particular piece of data in a particular scope. Because of this, attempting to use clone_from_slice on a single slice will result in a compile failure:

let mut slice = [1, 2, 3, 4, 5];

slice[..2].clone_from_slice(&slice[3..]); // compile fail!

To work around this, we can use split_at_mut to create two distinct sub-slices from a slice:

let mut slice = [1, 2, 3, 4, 5];

{
    let (left, right) = slice.split_at_mut(2);
    left.clone_from_slice(&right[1..]);
}

assert_eq!(slice, [4, 5, 3, 4, 5]);
1.9.0 · Source

pub fn copy_from_slice(&mut self, src: &[T])
where T: Copy,

Copies all elements from src into self, using a memcpy.

The length of src must be the same as self.

If T does not implement Copy, use clone_from_slice.

§Panics

This function will panic if the two slices have different lengths.

§Examples

Copying two elements from a slice into another:

let src = [1, 2, 3, 4];
let mut dst = [0, 0];

// Because the slices have to be the same length,
// we slice the source slice from four elements
// to two. It will panic if we don't do this.
dst.copy_from_slice(&src[2..]);

assert_eq!(src, [1, 2, 3, 4]);
assert_eq!(dst, [3, 4]);

Rust enforces that there can only be one mutable reference with no immutable references to a particular piece of data in a particular scope. Because of this, attempting to use copy_from_slice on a single slice will result in a compile failure:

let mut slice = [1, 2, 3, 4, 5];

slice[..2].copy_from_slice(&slice[3..]); // compile fail!

To work around this, we can use split_at_mut to create two distinct sub-slices from a slice:

let mut slice = [1, 2, 3, 4, 5];

{
    let (left, right) = slice.split_at_mut(2);
    left.copy_from_slice(&right[1..]);
}

assert_eq!(slice, [4, 5, 3, 4, 5]);
1.37.0 · Source

pub fn copy_within<R>(&mut self, src: R, dest: usize)
where R: RangeBounds<usize>, T: Copy,

Copies elements from one part of the slice to another part of itself, using a memmove.

src is the range within self to copy from. dest is the starting index of the range within self to copy to, which will have the same length as src. The two ranges may overlap. The ends of the two ranges must be less than or equal to self.len().

§Panics

This function will panic if either range exceeds the end of the slice, or if the end of src is before the start.

§Examples

Copying four bytes within a slice:

let mut bytes = *b"Hello, World!";

bytes.copy_within(1..5, 8);

assert_eq!(&bytes, b"Hello, Wello!");
1.27.0 · Source

pub fn swap_with_slice(&mut self, other: &mut [T])

Swaps all elements in self with those in other.

The length of other must be the same as self.

§Panics

This function will panic if the two slices have different lengths.

§Example

Swapping two elements across slices:

let mut slice1 = [0, 0];
let mut slice2 = [1, 2, 3, 4];

slice1.swap_with_slice(&mut slice2[2..]);

assert_eq!(slice1, [3, 4]);
assert_eq!(slice2, [1, 2, 0, 0]);

Rust enforces that there can only be one mutable reference to a particular piece of data in a particular scope. Because of this, attempting to use swap_with_slice on a single slice will result in a compile failure:

let mut slice = [1, 2, 3, 4, 5];
slice[..2].swap_with_slice(&mut slice[3..]); // compile fail!

To work around this, we can use split_at_mut to create two distinct mutable sub-slices from a slice:

let mut slice = [1, 2, 3, 4, 5];

{
    let (left, right) = slice.split_at_mut(2);
    left.swap_with_slice(&mut right[1..]);
}

assert_eq!(slice, [4, 5, 3, 1, 2]);
1.30.0 · Source

pub unsafe fn align_to<U>(&self) -> (&[T], &[U], &[T])

Transmutes the slice to a slice of another type, ensuring alignment of the types is maintained.

This method splits the slice into three distinct slices: prefix, correctly aligned middle slice of a new type, and the suffix slice. The middle part will be as big as possible under the given alignment constraint and element size.

This method has no purpose when either input element T or output element U are zero-sized and will return the original slice without splitting anything.

§Safety

This method is essentially a transmute with respect to the elements in the returned middle slice, so all the usual caveats pertaining to transmute::<T, U> also apply here.

§Examples

Basic usage:

unsafe {
    let bytes: [u8; 7] = [1, 2, 3, 4, 5, 6, 7];
    let (prefix, shorts, suffix) = bytes.align_to::<u16>();
    // less_efficient_algorithm_for_bytes(prefix);
    // more_efficient_algorithm_for_aligned_shorts(shorts);
    // less_efficient_algorithm_for_bytes(suffix);
}
1.30.0 · Source

pub unsafe fn align_to_mut<U>(&mut self) -> (&mut [T], &mut [U], &mut [T])

Transmutes the mutable slice to a mutable slice of another type, ensuring alignment of the types is maintained.

This method splits the slice into three distinct slices: prefix, correctly aligned middle slice of a new type, and the suffix slice. The middle part will be as big as possible under the given alignment constraint and element size.

This method has no purpose when either input element T or output element U are zero-sized and will return the original slice without splitting anything.

§Safety

This method is essentially a transmute with respect to the elements in the returned middle slice, so all the usual caveats pertaining to transmute::<T, U> also apply here.

§Examples

Basic usage:

unsafe {
    let mut bytes: [u8; 7] = [1, 2, 3, 4, 5, 6, 7];
    let (prefix, shorts, suffix) = bytes.align_to_mut::<u16>();
    // less_efficient_algorithm_for_bytes(prefix);
    // more_efficient_algorithm_for_aligned_shorts(shorts);
    // less_efficient_algorithm_for_bytes(suffix);
}
Source

pub fn as_simd<const LANES: usize>(&self) -> (&[T], &[Simd<T, LANES>], &[T])

🔬This is a nightly-only experimental API. (portable_simd)

Splits a slice into a prefix, a middle of aligned SIMD types, and a suffix.

This is a safe wrapper around slice::align_to, so inherits the same guarantees as that method.

§Panics

This will panic if the size of the SIMD type is different from LANES times that of the scalar.

At the time of writing, the trait restrictions on Simd<T, LANES> keeps that from ever happening, as only power-of-two numbers of lanes are supported. It’s possible that, in the future, those restrictions might be lifted in a way that would make it possible to see panics from this method for something like LANES == 3.

§Examples
#![feature(portable_simd)]
use core::simd::prelude::*;

let short = &[1, 2, 3];
let (prefix, middle, suffix) = short.as_simd::<4>();
assert_eq!(middle, []); // Not enough elements for anything in the middle

// They might be split in any possible way between prefix and suffix
let it = prefix.iter().chain(suffix).copied();
assert_eq!(it.collect::<Vec<_>>(), vec![1, 2, 3]);

fn basic_simd_sum(x: &[f32]) -> f32 {
    use std::ops::Add;
    let (prefix, middle, suffix) = x.as_simd();
    let sums = f32x4::from_array([
        prefix.iter().copied().sum(),
        0.0,
        0.0,
        suffix.iter().copied().sum(),
    ]);
    let sums = middle.iter().copied().fold(sums, f32x4::add);
    sums.reduce_sum()
}

let numbers: Vec<f32> = (1..101).map(|x| x as _).collect();
assert_eq!(basic_simd_sum(&numbers[1..99]), 4949.0);
Source

pub fn as_simd_mut<const LANES: usize>( &mut self, ) -> (&mut [T], &mut [Simd<T, LANES>], &mut [T])

🔬This is a nightly-only experimental API. (portable_simd)

Splits a mutable slice into a mutable prefix, a middle of aligned SIMD types, and a mutable suffix.

This is a safe wrapper around slice::align_to_mut, so inherits the same guarantees as that method.

This is the mutable version of slice::as_simd; see that for examples.

§Panics

This will panic if the size of the SIMD type is different from LANES times that of the scalar.

At the time of writing, the trait restrictions on Simd<T, LANES> keeps that from ever happening, as only power-of-two numbers of lanes are supported. It’s possible that, in the future, those restrictions might be lifted in a way that would make it possible to see panics from this method for something like LANES == 3.

1.82.0 · Source

pub fn is_sorted(&self) -> bool
where T: PartialOrd,

Checks if the elements of this slice are sorted.

That is, for each element a and its following element b, a <= b must hold. If the slice yields exactly zero or one element, true is returned.

Note that if Self::Item is only PartialOrd, but not Ord, the above definition implies that this function returns false if any two consecutive items are not comparable.

§Examples
let empty: [i32; 0] = [];

assert!([1, 2, 2, 9].is_sorted());
assert!(![1, 3, 2, 4].is_sorted());
assert!([0].is_sorted());
assert!(empty.is_sorted());
assert!(![0.0, 1.0, f32::NAN].is_sorted());
1.82.0 · Source

pub fn is_sorted_by<'a, F>(&'a self, compare: F) -> bool
where F: FnMut(&'a T, &'a T) -> bool,

Checks if the elements of this slice are sorted using the given comparator function.

Instead of using PartialOrd::partial_cmp, this function uses the given compare function to determine whether two elements are to be considered in sorted order.

§Examples
assert!([1, 2, 2, 9].is_sorted_by(|a, b| a <= b));
assert!(![1, 2, 2, 9].is_sorted_by(|a, b| a < b));

assert!([0].is_sorted_by(|a, b| true));
assert!([0].is_sorted_by(|a, b| false));

let empty: [i32; 0] = [];
assert!(empty.is_sorted_by(|a, b| false));
assert!(empty.is_sorted_by(|a, b| true));
1.82.0 · Source

pub fn is_sorted_by_key<'a, F, K>(&'a self, f: F) -> bool
where F: FnMut(&'a T) -> K, K: PartialOrd,

Checks if the elements of this slice are sorted using the given key extraction function.

Instead of comparing the slice’s elements directly, this function compares the keys of the elements, as determined by f. Apart from that, it’s equivalent to is_sorted; see its documentation for more information.

§Examples
assert!(["c", "bb", "aaa"].is_sorted_by_key(|s| s.len()));
assert!(![-2i32, -1, 0, 3].is_sorted_by_key(|n| n.abs()));
1.52.0 · Source

pub fn partition_point<P>(&self, pred: P) -> usize
where P: FnMut(&T) -> bool,

Returns the index of the partition point according to the given predicate (the index of the first element of the second partition).

The slice is assumed to be partitioned according to the given predicate. This means that all elements for which the predicate returns true are at the start of the slice and all elements for which the predicate returns false are at the end. For example, [7, 15, 3, 5, 4, 12, 6] is partitioned under the predicate x % 2 != 0 (all odd numbers are at the start, all even at the end).

If this slice is not partitioned, the returned result is unspecified and meaningless, as this method performs a kind of binary search.

See also binary_search, binary_search_by, and binary_search_by_key.

§Examples
let v = [1, 2, 3, 3, 5, 6, 7];
let i = v.partition_point(|&x| x < 5);

assert_eq!(i, 4);
assert!(v[..i].iter().all(|&x| x < 5));
assert!(v[i..].iter().all(|&x| !(x < 5)));

If all elements of the slice match the predicate, including if the slice is empty, then the length of the slice will be returned:

let a = [2, 4, 8];
assert_eq!(a.partition_point(|x| x < &100), a.len());
let a: [i32; 0] = [];
assert_eq!(a.partition_point(|x| x < &100), 0);

If you want to insert an item to a sorted vector, while maintaining sort order:

let mut s = vec![0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
let num = 42;
let idx = s.partition_point(|&x| x <= num);
s.insert(idx, num);
assert_eq!(s, [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 42, 55]);
1.87.0 · Source

pub fn split_off<'a, R>(self: &mut &'a [T], range: R) -> Option<&'a [T]>
where R: OneSidedRange<usize>,

Removes the subslice corresponding to the given range and returns a reference to it.

Returns None and does not modify the slice if the given range is out of bounds.

Note that this method only accepts one-sided ranges such as 2.. or ..6, but not 2..6.

§Examples

Splitting off the first three elements of a slice:

let mut slice: &[_] = &['a', 'b', 'c', 'd'];
let mut first_three = slice.split_off(..3).unwrap();

assert_eq!(slice, &['d']);
assert_eq!(first_three, &['a', 'b', 'c']);

Splitting off the last two elements of a slice:

let mut slice: &[_] = &['a', 'b', 'c', 'd'];
let mut tail = slice.split_off(2..).unwrap();

assert_eq!(slice, &['a', 'b']);
assert_eq!(tail, &['c', 'd']);

Getting None when range is out of bounds:

let mut slice: &[_] = &['a', 'b', 'c', 'd'];

assert_eq!(None, slice.split_off(5..));
assert_eq!(None, slice.split_off(..5));
assert_eq!(None, slice.split_off(..=4));
let expected: &[char] = &['a', 'b', 'c', 'd'];
assert_eq!(Some(expected), slice.split_off(..4));
1.87.0 · Source

pub fn split_off_mut<'a, R>( self: &mut &'a mut [T], range: R, ) -> Option<&'a mut [T]>
where R: OneSidedRange<usize>,

Removes the subslice corresponding to the given range and returns a mutable reference to it.

Returns None and does not modify the slice if the given range is out of bounds.

Note that this method only accepts one-sided ranges such as 2.. or ..6, but not 2..6.

§Examples

Splitting off the first three elements of a slice:

let mut slice: &mut [_] = &mut ['a', 'b', 'c', 'd'];
let mut first_three = slice.split_off_mut(..3).unwrap();

assert_eq!(slice, &mut ['d']);
assert_eq!(first_three, &mut ['a', 'b', 'c']);

Taking the last two elements of a slice:

let mut slice: &mut [_] = &mut ['a', 'b', 'c', 'd'];
let mut tail = slice.split_off_mut(2..).unwrap();

assert_eq!(slice, &mut ['a', 'b']);
assert_eq!(tail, &mut ['c', 'd']);

Getting None when range is out of bounds:

let mut slice: &mut [_] = &mut ['a', 'b', 'c', 'd'];

assert_eq!(None, slice.split_off_mut(5..));
assert_eq!(None, slice.split_off_mut(..5));
assert_eq!(None, slice.split_off_mut(..=4));
let expected: &mut [_] = &mut ['a', 'b', 'c', 'd'];
assert_eq!(Some(expected), slice.split_off_mut(..4));
1.87.0 · Source

pub fn split_off_first<'a>(self: &mut &'a [T]) -> Option<&'a T>

Removes the first element of the slice and returns a reference to it.

Returns None if the slice is empty.

§Examples
let mut slice: &[_] = &['a', 'b', 'c'];
let first = slice.split_off_first().unwrap();

assert_eq!(slice, &['b', 'c']);
assert_eq!(first, &'a');
1.87.0 · Source

pub fn split_off_first_mut<'a>(self: &mut &'a mut [T]) -> Option<&'a mut T>

Removes the first element of the slice and returns a mutable reference to it.

Returns None if the slice is empty.

§Examples
let mut slice: &mut [_] = &mut ['a', 'b', 'c'];
let first = slice.split_off_first_mut().unwrap();
*first = 'd';

assert_eq!(slice, &['b', 'c']);
assert_eq!(first, &'d');
1.87.0 · Source

pub fn split_off_last<'a>(self: &mut &'a [T]) -> Option<&'a T>

Removes the last element of the slice and returns a reference to it.

Returns None if the slice is empty.

§Examples
let mut slice: &[_] = &['a', 'b', 'c'];
let last = slice.split_off_last().unwrap();

assert_eq!(slice, &['a', 'b']);
assert_eq!(last, &'c');
1.87.0 · Source

pub fn split_off_last_mut<'a>(self: &mut &'a mut [T]) -> Option<&'a mut T>

Removes the last element of the slice and returns a mutable reference to it.

Returns None if the slice is empty.

§Examples
let mut slice: &mut [_] = &mut ['a', 'b', 'c'];
let last = slice.split_off_last_mut().unwrap();
*last = 'd';

assert_eq!(slice, &['a', 'b']);
assert_eq!(last, &'d');
1.86.0 · Source

pub unsafe fn get_disjoint_unchecked_mut<I, const N: usize>( &mut self, indices: [I; N], ) -> [&mut <I as SliceIndex<[T]>>::Output; N]

Returns mutable references to many indices at once, without doing any checks.

An index can be either a usize, a Range or a RangeInclusive. Note that this method takes an array, so all indices must be of the same type. If passed an array of usizes this method gives back an array of mutable references to single elements, while if passed an array of ranges it gives back an array of mutable references to slices.

For a safe alternative see get_disjoint_mut.

§Safety

Calling this method with overlapping or out-of-bounds indices is undefined behavior even if the resulting references are not used.

§Examples
let x = &mut [1, 2, 4];

unsafe {
    let [a, b] = x.get_disjoint_unchecked_mut([0, 2]);
    *a *= 10;
    *b *= 100;
}
assert_eq!(x, &[10, 2, 400]);

unsafe {
    let [a, b] = x.get_disjoint_unchecked_mut([0..1, 1..3]);
    a[0] = 8;
    b[0] = 88;
    b[1] = 888;
}
assert_eq!(x, &[8, 88, 888]);

unsafe {
    let [a, b] = x.get_disjoint_unchecked_mut([1..=2, 0..=0]);
    a[0] = 11;
    a[1] = 111;
    b[0] = 1;
}
assert_eq!(x, &[1, 11, 111]);
1.86.0 · Source

pub fn get_disjoint_mut<I, const N: usize>( &mut self, indices: [I; N], ) -> Result<[&mut <I as SliceIndex<[T]>>::Output; N], GetDisjointMutError>

Returns mutable references to many indices at once.

An index can be either a usize, a Range or a RangeInclusive. Note that this method takes an array, so all indices must be of the same type. If passed an array of usizes this method gives back an array of mutable references to single elements, while if passed an array of ranges it gives back an array of mutable references to slices.

Returns an error if any index is out-of-bounds, or if there are overlapping indices. An empty range is not considered to overlap if it is located at the beginning or at the end of another range, but is considered to overlap if it is located in the middle.

This method does a O(n^2) check to check that there are no overlapping indices, so be careful when passing many indices.

§Examples
let v = &mut [1, 2, 3];
if let Ok([a, b]) = v.get_disjoint_mut([0, 2]) {
    *a = 413;
    *b = 612;
}
assert_eq!(v, &[413, 2, 612]);

if let Ok([a, b]) = v.get_disjoint_mut([0..1, 1..3]) {
    a[0] = 8;
    b[0] = 88;
    b[1] = 888;
}
assert_eq!(v, &[8, 88, 888]);

if let Ok([a, b]) = v.get_disjoint_mut([1..=2, 0..=0]) {
    a[0] = 11;
    a[1] = 111;
    b[0] = 1;
}
assert_eq!(v, &[1, 11, 111]);
Source

pub fn element_offset(&self, element: &T) -> Option<usize>

🔬This is a nightly-only experimental API. (substr_range)

Returns the index that an element reference points to.

Returns None if element does not point to the start of an element within the slice.

This method is useful for extending slice iterators like slice::split.

Note that this uses pointer arithmetic and does not compare elements. To find the index of an element via comparison, use .iter().position() instead.

§Panics

Panics if T is zero-sized.

§Examples

Basic usage:

#![feature(substr_range)]

let nums: &[u32] = &[1, 7, 1, 1];
let num = &nums[2];

assert_eq!(num, &1);
assert_eq!(nums.element_offset(num), Some(2));

Returning None with an unaligned element:

#![feature(substr_range)]

let arr: &[[u32; 2]] = &[[0, 1], [2, 3]];
let flat_arr: &[u32] = arr.as_flattened();

let ok_elm: &[u32; 2] = flat_arr[0..2].try_into().unwrap();
let weird_elm: &[u32; 2] = flat_arr[1..3].try_into().unwrap();

assert_eq!(ok_elm, &[0, 1]);
assert_eq!(weird_elm, &[1, 2]);

assert_eq!(arr.element_offset(ok_elm), Some(0)); // Points to element 0
assert_eq!(arr.element_offset(weird_elm), None); // Points between element 0 and 1
Source

pub fn subslice_range(&self, subslice: &[T]) -> Option<Range<usize>>

🔬This is a nightly-only experimental API. (substr_range)

Returns the range of indices that a subslice points to.

Returns None if subslice does not point within the slice or if it is not aligned with the elements in the slice.

This method does not compare elements. Instead, this method finds the location in the slice that subslice was obtained from. To find the index of a subslice via comparison, instead use .windows().position().

This method is useful for extending slice iterators like slice::split.

Note that this may return a false positive (either Some(0..0) or Some(self.len()..self.len())) if subslice has a length of zero and points to the beginning or end of another, separate, slice.

§Panics

Panics if T is zero-sized.

§Examples

Basic usage:

#![feature(substr_range)]

let nums = &[0, 5, 10, 0, 0, 5];

let mut iter = nums
    .split(|t| *t == 0)
    .map(|n| nums.subslice_range(n).unwrap());

assert_eq!(iter.next(), Some(0..0));
assert_eq!(iter.next(), Some(1..3));
assert_eq!(iter.next(), Some(4..4));
assert_eq!(iter.next(), Some(5..6));
1.0.0 · Source

pub fn sort(&mut self)
where T: Ord,

Sorts the slice, preserving initial order of equal elements.

This sort is stable (i.e., does not reorder equal elements) and O(n * log(n)) worst-case.

If the implementation of Ord for T does not implement a total order, the function may panic; even if the function exits normally, the resulting order of elements in the slice is unspecified. See also the note on panicking below.

When applicable, unstable sorting is preferred because it is generally faster than stable sorting and it doesn’t allocate auxiliary memory. See sort_unstable. The exception are partially sorted slices, which may be better served with slice::sort.

Sorting types that only implement PartialOrd such as f32 and f64 require additional precautions. For example, f32::NAN != f32::NAN, which doesn’t fulfill the reflexivity requirement of Ord. By using an alternative comparison function with slice::sort_by such as f32::total_cmp or f64::total_cmp that defines a total order users can sort slices containing floating-point values. Alternatively, if all values in the slice are guaranteed to be in a subset for which PartialOrd::partial_cmp forms a total order, it’s possible to sort the slice with sort_by(|a, b| a.partial_cmp(b).unwrap()).

§Current implementation

The current implementation is based on driftsort by Orson Peters and Lukas Bergdoll, which combines the fast average case of quicksort with the fast worst case and partial run detection of mergesort, achieving linear time on fully sorted and reversed inputs. On inputs with k distinct elements, the expected time to sort the data is O(n * log(k)).

The auxiliary memory allocation behavior depends on the input length. Short slices are handled without allocation, medium sized slices allocate self.len() and beyond that it clamps at self.len() / 2.

§Panics

May panic if the implementation of Ord for T does not implement a total order, or if the Ord implementation itself panics.

All safe functions on slices preserve the invariant that even if the function panics, all original elements will remain in the slice and any possible modifications via interior mutability are observed in the input. This ensures that recovery code (for instance inside of a Drop or following a catch_unwind) will still have access to all the original elements. For instance, if the slice belongs to a Vec, the Vec::drop method will be able to dispose of all contained elements.

§Examples
let mut v = [4, -5, 1, -3, 2];

v.sort();
assert_eq!(v, [-5, -3, 1, 2, 4]);
1.0.0 · Source

pub fn sort_by<F>(&mut self, compare: F)
where F: FnMut(&T, &T) -> Ordering,

Sorts the slice with a comparison function, preserving initial order of equal elements.

This sort is stable (i.e., does not reorder equal elements) and O(n * log(n)) worst-case.

If the comparison function compare does not implement a total order, the function may panic; even if the function exits normally, the resulting order of elements in the slice is unspecified. See also the note on panicking below.

For example |a, b| (a - b).cmp(a) is a comparison function that is neither transitive nor reflexive nor total, a < b < c < a with a = 1, b = 2, c = 3. For more information and examples see the Ord documentation.

§Current implementation

The current implementation is based on driftsort by Orson Peters and Lukas Bergdoll, which combines the fast average case of quicksort with the fast worst case and partial run detection of mergesort, achieving linear time on fully sorted and reversed inputs. On inputs with k distinct elements, the expected time to sort the data is O(n * log(k)).

The auxiliary memory allocation behavior depends on the input length. Short slices are handled without allocation, medium sized slices allocate self.len() and beyond that it clamps at self.len() / 2.

§Panics

May panic if compare does not implement a total order, or if compare itself panics.

All safe functions on slices preserve the invariant that even if the function panics, all original elements will remain in the slice and any possible modifications via interior mutability are observed in the input. This ensures that recovery code (for instance inside of a Drop or following a catch_unwind) will still have access to all the original elements. For instance, if the slice belongs to a Vec, the Vec::drop method will be able to dispose of all contained elements.

§Examples
let mut v = [4, -5, 1, -3, 2];
v.sort_by(|a, b| a.cmp(b));
assert_eq!(v, [-5, -3, 1, 2, 4]);

// reverse sorting
v.sort_by(|a, b| b.cmp(a));
assert_eq!(v, [4, 2, 1, -3, -5]);
1.7.0 · Source

pub fn sort_by_key<K, F>(&mut self, f: F)
where F: FnMut(&T) -> K, K: Ord,

Sorts the slice with a key extraction function, preserving initial order of equal elements.

This sort is stable (i.e., does not reorder equal elements) and O(m * n * log(n)) worst-case, where the key function is O(m).

If the implementation of Ord for K does not implement a total order, the function may panic; even if the function exits normally, the resulting order of elements in the slice is unspecified. See also the note on panicking below.

§Current implementation

The current implementation is based on driftsort by Orson Peters and Lukas Bergdoll, which combines the fast average case of quicksort with the fast worst case and partial run detection of mergesort, achieving linear time on fully sorted and reversed inputs. On inputs with k distinct elements, the expected time to sort the data is O(n * log(k)).

The auxiliary memory allocation behavior depends on the input length. Short slices are handled without allocation, medium sized slices allocate self.len() and beyond that it clamps at self.len() / 2.

§Panics

May panic if the implementation of Ord for K does not implement a total order, or if the Ord implementation or the key-function f panics.

All safe functions on slices preserve the invariant that even if the function panics, all original elements will remain in the slice and any possible modifications via interior mutability are observed in the input. This ensures that recovery code (for instance inside of a Drop or following a catch_unwind) will still have access to all the original elements. For instance, if the slice belongs to a Vec, the Vec::drop method will be able to dispose of all contained elements.

§Examples
let mut v = [4i32, -5, 1, -3, 2];

v.sort_by_key(|k| k.abs());
assert_eq!(v, [1, 2, -3, 4, -5]);
Examples found in repository?
examples/shader/custom_render_phase.rs (line 322)
318    fn sort(items: &mut [Self]) {
319        // bevy normally uses radsort instead of the std slice::sort_by_key
320        // radsort is a stable radix sort that performed better than `slice::sort_by_key` or `slice::sort_unstable_by_key`.
321        // Since it is not re-exported by bevy, we just use the std sort for the purpose of the example
322        items.sort_by_key(SortedPhaseItem::sort_key);
323    }
1.34.0 · Source

pub fn sort_by_cached_key<K, F>(&mut self, f: F)
where F: FnMut(&T) -> K, K: Ord,

Sorts the slice with a key extraction function, preserving initial order of equal elements.

This sort is stable (i.e., does not reorder equal elements) and O(m * n + n * log(n)) worst-case, where the key function is O(m).

During sorting, the key function is called at most once per element, by using temporary storage to remember the results of key evaluation. The order of calls to the key function is unspecified and may change in future versions of the standard library.

If the implementation of Ord for K does not implement a total order, the function may panic; even if the function exits normally, the resulting order of elements in the slice is unspecified. See also the note on panicking below.

For simple key functions (e.g., functions that are property accesses or basic operations), sort_by_key is likely to be faster.

§Current implementation

The current implementation is based on instruction-parallel-network sort by Lukas Bergdoll, which combines the fast average case of randomized quicksort with the fast worst case of heapsort, while achieving linear time on fully sorted and reversed inputs. And O(k * log(n)) where k is the number of distinct elements in the input. It leverages superscalar out-of-order execution capabilities commonly found in CPUs, to efficiently perform the operation.

In the worst case, the algorithm allocates temporary storage in a Vec<(K, usize)> the length of the slice.

§Panics

May panic if the implementation of Ord for K does not implement a total order, or if the Ord implementation panics.

All safe functions on slices preserve the invariant that even if the function panics, all original elements will remain in the slice and any possible modifications via interior mutability are observed in the input. This ensures that recovery code (for instance inside of a Drop or following a catch_unwind) will still have access to all the original elements. For instance, if the slice belongs to a Vec, the Vec::drop method will be able to dispose of all contained elements.

§Examples
let mut v = [4i32, -5, 1, -3, 2, 10];

// Strings are sorted by lexicographical order.
v.sort_by_cached_key(|k| k.to_string());
assert_eq!(v, [-3, -5, 1, 10, 2, 4]);
1.0.0 · Source

pub fn to_vec(&self) -> Vec<T>
where T: Clone,

Copies self into a new Vec.

§Examples
let s = [10, 40, 30];
let x = s.to_vec();
// Here, `s` and `x` can be modified independently.
Examples found in repository?
examples/3d/occlusion_culling.rs (line 623)
597fn readback_indirect_parameters(
598    mut indirect_parameters_staging_buffers: ResMut<IndirectParametersStagingBuffers>,
599    saved_indirect_parameters: Res<SavedIndirectParameters>,
600    gpu_preprocessing_support: Res<GpuPreprocessingSupport>,
601) {
602    // If culling isn't supported on this platform, note that, and bail.
603    if gpu_preprocessing_support.max_supported_mode != GpuPreprocessingMode::Culling {
604        saved_indirect_parameters
605            .lock()
606            .unwrap()
607            .occlusion_culling_supported = false;
608        return;
609    }
610
611    // Grab the staging buffers.
612    let (Some(data_buffer), Some(batch_sets_buffer)) = (
613        indirect_parameters_staging_buffers.data.take(),
614        indirect_parameters_staging_buffers.batch_sets.take(),
615    ) else {
616        return;
617    };
618
619    // Read the GPU buffers back.
620    let saved_indirect_parameters_0 = (**saved_indirect_parameters).clone();
621    let saved_indirect_parameters_1 = (**saved_indirect_parameters).clone();
622    readback_buffer::<IndirectParametersIndexed>(data_buffer, move |indirect_parameters| {
623        saved_indirect_parameters_0.lock().unwrap().data = indirect_parameters.to_vec();
624    });
625    readback_buffer::<u32>(batch_sets_buffer, move |indirect_parameters_count| {
626        saved_indirect_parameters_1.lock().unwrap().count = indirect_parameters_count[0];
627    });
628}
More examples
Hide additional examples
examples/shader/texture_binding_array.rs (line 189)
156    fn bind_group_layout_entries(_: &RenderDevice, _: bool) -> Vec<BindGroupLayoutEntry>
157    where
158        Self: Sized,
159    {
160        BindGroupLayoutEntries::with_indices(
161            // The layout entries will only be visible in the fragment stage
162            ShaderStages::FRAGMENT,
163            (
164                // Screen texture
165                //
166                // @group(2) @binding(0) var textures: binding_array<texture_2d<f32>>;
167                (
168                    0,
169                    texture_2d(TextureSampleType::Float { filterable: true })
170                        .count(NonZero::<u32>::new(MAX_TEXTURE_COUNT as u32).unwrap()),
171                ),
172                // Sampler
173                //
174                // @group(2) @binding(1) var nearest_sampler: sampler;
175                //
176                // Note: as with textures, multiple samplers can also be bound
177                // onto one binding slot:
178                //
179                // ```
180                // sampler(SamplerBindingType::Filtering)
181                //     .count(NonZero::<u32>::new(MAX_TEXTURE_COUNT as u32).unwrap()),
182                // ```
183                //
184                // One may need to pay attention to the limit of sampler binding
185                // amount on some platforms.
186                (1, sampler(SamplerBindingType::Filtering)),
187            ),
188        )
189        .to_vec()
190    }
examples/app/headless_renderer.rs (line 458)
399fn receive_image_from_buffer(
400    image_copiers: Res<ImageCopiers>,
401    render_device: Res<RenderDevice>,
402    sender: Res<RenderWorldSender>,
403) {
404    for image_copier in image_copiers.0.iter() {
405        if !image_copier.enabled() {
406            continue;
407        }
408
409        // Finally time to get our data back from the gpu.
410        // First we get a buffer slice which represents a chunk of the buffer (which we
411        // can't access yet).
412        // We want the whole thing so use unbounded range.
413        let buffer_slice = image_copier.buffer.slice(..);
414
415        // Now things get complicated. WebGPU, for safety reasons, only allows either the GPU
416        // or CPU to access a buffer's contents at a time. We need to "map" the buffer which means
417        // flipping ownership of the buffer over to the CPU and making access legal. We do this
418        // with `BufferSlice::map_async`.
419        //
420        // The problem is that map_async is not an async function so we can't await it. What
421        // we need to do instead is pass in a closure that will be executed when the slice is
422        // either mapped or the mapping has failed.
423        //
424        // The problem with this is that we don't have a reliable way to wait in the main
425        // code for the buffer to be mapped and even worse, calling get_mapped_range or
426        // get_mapped_range_mut prematurely will cause a panic, not return an error.
427        //
428        // Using channels solves this as awaiting the receiving of a message from
429        // the passed closure will force the outside code to wait. It also doesn't hurt
430        // if the closure finishes before the outside code catches up as the message is
431        // buffered and receiving will just pick that up.
432        //
433        // It may also be worth noting that although on native, the usage of asynchronous
434        // channels is wholly unnecessary, for the sake of portability to Wasm
435        // we'll use async channels that work on both native and Wasm.
436
437        let (s, r) = crossbeam_channel::bounded(1);
438
439        // Maps the buffer so it can be read on the cpu
440        buffer_slice.map_async(MapMode::Read, move |r| match r {
441            // This will execute once the gpu is ready, so after the call to poll()
442            Ok(r) => s.send(r).expect("Failed to send map update"),
443            Err(err) => panic!("Failed to map buffer {err}"),
444        });
445
446        // In order for the mapping to be completed, one of three things must happen.
447        // One of those can be calling `Device::poll`. This isn't necessary on the web as devices
448        // are polled automatically but natively, we need to make sure this happens manually.
449        // `Maintain::Wait` will cause the thread to wait on native but not on WebGpu.
450
451        // This blocks until the gpu is done executing everything
452        render_device.poll(Maintain::wait()).panic_on_timeout();
453
454        // This blocks until the buffer is mapped
455        r.recv().expect("Failed to receive the map_async message");
456
457        // This could fail on app exit, if Main world clears resources (including receiver) while Render world still renders
458        let _ = sender.send(buffer_slice.get_mapped_range().to_vec());
459
460        // We need to make sure all `BufferView`'s are dropped before we do what we're about
461        // to do.
462        // Unmap so that we can copy to the staging buffer in the next iteration.
463        image_copier.buffer.unmap();
464    }
465}
examples/ecs/dynamic.rs (line 185)
51fn main() {
52    let mut world = World::new();
53    let mut lines = std::io::stdin().lines();
54    let mut component_names = HashMap::<String, ComponentId>::new();
55    let mut component_info = HashMap::<ComponentId, ComponentInfo>::new();
56
57    println!("{PROMPT}");
58    loop {
59        print!("\n> ");
60        let _ = std::io::stdout().flush();
61        let Some(Ok(line)) = lines.next() else {
62            return;
63        };
64
65        if line.is_empty() {
66            return;
67        };
68
69        let Some((first, rest)) = line.trim().split_once(|c: char| c.is_whitespace()) else {
70            match &line.chars().next() {
71                Some('c') => println!("{COMPONENT_PROMPT}"),
72                Some('s') => println!("{ENTITY_PROMPT}"),
73                Some('q') => println!("{QUERY_PROMPT}"),
74                _ => println!("{PROMPT}"),
75            }
76            continue;
77        };
78
79        match &first[0..1] {
80            "c" => {
81                rest.split(',').for_each(|component| {
82                    let mut component = component.split_whitespace();
83                    let Some(name) = component.next() else {
84                        return;
85                    };
86                    let size = match component.next().map(str::parse) {
87                        Some(Ok(size)) => size,
88                        _ => 0,
89                    };
90                    // Register our new component to the world with a layout specified by it's size
91                    // SAFETY: [u64] is Send + Sync
92                    let id = world.register_component_with_descriptor(unsafe {
93                        ComponentDescriptor::new_with_layout(
94                            name.to_string(),
95                            StorageType::Table,
96                            Layout::array::<u64>(size).unwrap(),
97                            None,
98                            true,
99                            ComponentCloneBehavior::Default,
100                        )
101                    });
102                    let Some(info) = world.components().get_info(id) else {
103                        return;
104                    };
105                    component_names.insert(name.to_string(), id);
106                    component_info.insert(id, info.clone());
107                    println!("Component {} created with id: {}", name, id.index());
108                });
109            }
110            "s" => {
111                let mut to_insert_ids = Vec::new();
112                let mut to_insert_data = Vec::new();
113                rest.split(',').for_each(|component| {
114                    let mut component = component.split_whitespace();
115                    let Some(name) = component.next() else {
116                        return;
117                    };
118
119                    // Get the id for the component with the given name
120                    let Some(&id) = component_names.get(name) else {
121                        println!("Component {name} does not exist");
122                        return;
123                    };
124
125                    // Calculate the length for the array based on the layout created for this component id
126                    let info = world.components().get_info(id).unwrap();
127                    let len = info.layout().size() / size_of::<u64>();
128                    let mut values: Vec<u64> = component
129                        .take(len)
130                        .filter_map(|value| value.parse::<u64>().ok())
131                        .collect();
132                    values.resize(len, 0);
133
134                    // Collect the id and array to be inserted onto our entity
135                    to_insert_ids.push(id);
136                    to_insert_data.push(values);
137                });
138
139                let mut entity = world.spawn_empty();
140
141                // Construct an `OwningPtr` for each component in `to_insert_data`
142                let to_insert_ptr = to_owning_ptrs(&mut to_insert_data);
143
144                // SAFETY:
145                // - Component ids have been taken from the same world
146                // - Each array is created to the layout specified in the world
147                unsafe {
148                    entity.insert_by_ids(&to_insert_ids, to_insert_ptr.into_iter());
149                }
150
151                println!("Entity spawned with id: {}", entity.id());
152            }
153            "q" => {
154                let mut builder = QueryBuilder::<FilteredEntityMut>::new(&mut world);
155                parse_query(rest, &mut builder, &component_names);
156                let mut query = builder.build();
157                query.iter_mut(&mut world).for_each(|filtered_entity| {
158                    let terms = filtered_entity
159                        .access()
160                        .try_iter_component_access()
161                        .unwrap()
162                        .map(|component_access| {
163                            let id = *component_access.index();
164                            let ptr = filtered_entity.get_by_id(id).unwrap();
165                            let info = component_info.get(&id).unwrap();
166                            let len = info.layout().size() / size_of::<u64>();
167
168                            // SAFETY:
169                            // - All components are created with layout [u64]
170                            // - len is calculated from the component descriptor
171                            let data = unsafe {
172                                std::slice::from_raw_parts_mut(
173                                    ptr.assert_unique().as_ptr().cast::<u64>(),
174                                    len,
175                                )
176                            };
177
178                            // If we have write access, increment each value once
179                            if matches!(component_access, ComponentAccessKind::Exclusive(_)) {
180                                data.iter_mut().for_each(|data| {
181                                    *data += 1;
182                                });
183                            }
184
185                            format!("{}: {:?}", info.name(), data[0..len].to_vec())
186                        })
187                        .collect::<Vec<_>>()
188                        .join(", ");
189
190                    println!("{}: {}", filtered_entity.id(), terms);
191                });
192            }
193            _ => continue,
194        }
195    }
196}
Source

pub fn to_vec_in<A>(&self, alloc: A) -> Vec<T, A>
where A: Allocator, T: Clone,

🔬This is a nightly-only experimental API. (allocator_api)

Copies self into a new Vec with an allocator.

§Examples
#![feature(allocator_api)]

use std::alloc::System;

let s = [10, 40, 30];
let x = s.to_vec_in(System);
// Here, `s` and `x` can be modified independently.
1.40.0 · Source

pub fn repeat(&self, n: usize) -> Vec<T>
where T: Copy,

Creates a vector by copying a slice n times.

§Panics

This function will panic if the capacity would overflow.

§Examples

Basic usage:

assert_eq!([1, 2].repeat(3), vec![1, 2, 1, 2, 1, 2]);

A panic upon overflow:

// this will panic at runtime
b"0123456789abcdef".repeat(usize::MAX);
1.0.0 · Source

pub fn concat<Item>(&self) -> <[T] as Concat<Item>>::Output
where [T]: Concat<Item>, Item: ?Sized,

Flattens a slice of T into a single value Self::Output.

§Examples
assert_eq!(["hello", "world"].concat(), "helloworld");
assert_eq!([[1, 2], [3, 4]].concat(), [1, 2, 3, 4]);
1.3.0 · Source

pub fn join<Separator>( &self, sep: Separator, ) -> <[T] as Join<Separator>>::Output
where [T]: Join<Separator>,

Flattens a slice of T into a single value Self::Output, placing a given separator between each.

§Examples
assert_eq!(["hello", "world"].join(" "), "hello world");
assert_eq!([[1, 2], [3, 4]].join(&0), [1, 2, 0, 3, 4]);
assert_eq!([[1, 2], [3, 4]].join(&[0, 0][..]), [1, 2, 0, 0, 3, 4]);
Examples found in repository?
examples/3d/load_gltf_extras.rs (line 89)
52fn check_for_gltf_extras(
53    gltf_extras_per_entity: Query<(
54        Entity,
55        Option<&Name>,
56        Option<&GltfSceneExtras>,
57        Option<&GltfExtras>,
58        Option<&GltfMeshExtras>,
59        Option<&GltfMaterialExtras>,
60    )>,
61    mut display: Single<&mut Text, With<ExampleDisplay>>,
62) {
63    let mut gltf_extra_infos_lines: Vec<String> = vec![];
64
65    for (id, name, scene_extras, extras, mesh_extras, material_extras) in
66        gltf_extras_per_entity.iter()
67    {
68        if scene_extras.is_some()
69            || extras.is_some()
70            || mesh_extras.is_some()
71            || material_extras.is_some()
72        {
73            let formatted_extras = format!(
74                "Extras per entity {} ('Name: {}'):
75    - scene extras:     {:?}
76    - primitive extras: {:?}
77    - mesh extras:      {:?}
78    - material extras:  {:?}
79                ",
80                id,
81                name.unwrap_or(&Name::default()),
82                scene_extras,
83                extras,
84                mesh_extras,
85                material_extras
86            );
87            gltf_extra_infos_lines.push(formatted_extras);
88        }
89        display.0 = gltf_extra_infos_lines.join("\n");
90    }
91}
More examples
Hide additional examples
examples/ecs/relationships.rs (line 97)
78    fn debug_relationships(
79        // Not all of our entities are targeted by something, so we use `Option` in our query to handle this case.
80        relations_query: Query<(&Name, &Targeting, Option<&TargetedBy>)>,
81        name_query: Query<&Name>,
82    ) {
83        let mut relationships = String::new();
84
85        for (name, targeting, maybe_targeted_by) in relations_query.iter() {
86            let targeting_name = name_query.get(targeting.0).unwrap();
87            let targeted_by_string = if let Some(targeted_by) = maybe_targeted_by {
88                let mut vec_of_names = Vec::<&Name>::new();
89
90                for entity in &targeted_by.0 {
91                    let name = name_query.get(*entity).unwrap();
92                    vec_of_names.push(name);
93                }
94
95                // Convert this to a nice string for printing.
96                let vec_of_str: Vec<&str> = vec_of_names.iter().map(|name| name.as_str()).collect();
97                vec_of_str.join(", ")
98            } else {
99                "nobody".to_string()
100            };
101
102            relationships.push_str(&format!(
103                "{name} is targeting {targeting_name}, and is targeted by {targeted_by_string}\n",
104            ));
105        }
106
107        println!("{}", relationships);
108    }
examples/ecs/dynamic.rs (line 188)
51fn main() {
52    let mut world = World::new();
53    let mut lines = std::io::stdin().lines();
54    let mut component_names = HashMap::<String, ComponentId>::new();
55    let mut component_info = HashMap::<ComponentId, ComponentInfo>::new();
56
57    println!("{PROMPT}");
58    loop {
59        print!("\n> ");
60        let _ = std::io::stdout().flush();
61        let Some(Ok(line)) = lines.next() else {
62            return;
63        };
64
65        if line.is_empty() {
66            return;
67        };
68
69        let Some((first, rest)) = line.trim().split_once(|c: char| c.is_whitespace()) else {
70            match &line.chars().next() {
71                Some('c') => println!("{COMPONENT_PROMPT}"),
72                Some('s') => println!("{ENTITY_PROMPT}"),
73                Some('q') => println!("{QUERY_PROMPT}"),
74                _ => println!("{PROMPT}"),
75            }
76            continue;
77        };
78
79        match &first[0..1] {
80            "c" => {
81                rest.split(',').for_each(|component| {
82                    let mut component = component.split_whitespace();
83                    let Some(name) = component.next() else {
84                        return;
85                    };
86                    let size = match component.next().map(str::parse) {
87                        Some(Ok(size)) => size,
88                        _ => 0,
89                    };
90                    // Register our new component to the world with a layout specified by it's size
91                    // SAFETY: [u64] is Send + Sync
92                    let id = world.register_component_with_descriptor(unsafe {
93                        ComponentDescriptor::new_with_layout(
94                            name.to_string(),
95                            StorageType::Table,
96                            Layout::array::<u64>(size).unwrap(),
97                            None,
98                            true,
99                            ComponentCloneBehavior::Default,
100                        )
101                    });
102                    let Some(info) = world.components().get_info(id) else {
103                        return;
104                    };
105                    component_names.insert(name.to_string(), id);
106                    component_info.insert(id, info.clone());
107                    println!("Component {} created with id: {}", name, id.index());
108                });
109            }
110            "s" => {
111                let mut to_insert_ids = Vec::new();
112                let mut to_insert_data = Vec::new();
113                rest.split(',').for_each(|component| {
114                    let mut component = component.split_whitespace();
115                    let Some(name) = component.next() else {
116                        return;
117                    };
118
119                    // Get the id for the component with the given name
120                    let Some(&id) = component_names.get(name) else {
121                        println!("Component {name} does not exist");
122                        return;
123                    };
124
125                    // Calculate the length for the array based on the layout created for this component id
126                    let info = world.components().get_info(id).unwrap();
127                    let len = info.layout().size() / size_of::<u64>();
128                    let mut values: Vec<u64> = component
129                        .take(len)
130                        .filter_map(|value| value.parse::<u64>().ok())
131                        .collect();
132                    values.resize(len, 0);
133
134                    // Collect the id and array to be inserted onto our entity
135                    to_insert_ids.push(id);
136                    to_insert_data.push(values);
137                });
138
139                let mut entity = world.spawn_empty();
140
141                // Construct an `OwningPtr` for each component in `to_insert_data`
142                let to_insert_ptr = to_owning_ptrs(&mut to_insert_data);
143
144                // SAFETY:
145                // - Component ids have been taken from the same world
146                // - Each array is created to the layout specified in the world
147                unsafe {
148                    entity.insert_by_ids(&to_insert_ids, to_insert_ptr.into_iter());
149                }
150
151                println!("Entity spawned with id: {}", entity.id());
152            }
153            "q" => {
154                let mut builder = QueryBuilder::<FilteredEntityMut>::new(&mut world);
155                parse_query(rest, &mut builder, &component_names);
156                let mut query = builder.build();
157                query.iter_mut(&mut world).for_each(|filtered_entity| {
158                    let terms = filtered_entity
159                        .access()
160                        .try_iter_component_access()
161                        .unwrap()
162                        .map(|component_access| {
163                            let id = *component_access.index();
164                            let ptr = filtered_entity.get_by_id(id).unwrap();
165                            let info = component_info.get(&id).unwrap();
166                            let len = info.layout().size() / size_of::<u64>();
167
168                            // SAFETY:
169                            // - All components are created with layout [u64]
170                            // - len is calculated from the component descriptor
171                            let data = unsafe {
172                                std::slice::from_raw_parts_mut(
173                                    ptr.assert_unique().as_ptr().cast::<u64>(),
174                                    len,
175                                )
176                            };
177
178                            // If we have write access, increment each value once
179                            if matches!(component_access, ComponentAccessKind::Exclusive(_)) {
180                                data.iter_mut().for_each(|data| {
181                                    *data += 1;
182                                });
183                            }
184
185                            format!("{}: {:?}", info.name(), data[0..len].to_vec())
186                        })
187                        .collect::<Vec<_>>()
188                        .join(", ");
189
190                    println!("{}: {}", filtered_entity.id(), terms);
191                });
192            }
193            _ => continue,
194        }
195    }
196}
1.0.0 · Source

pub fn connect<Separator>( &self, sep: Separator, ) -> <[T] as Join<Separator>>::Output
where [T]: Join<Separator>,

👎Deprecated since 1.3.0: renamed to join

Flattens a slice of T into a single value Self::Output, placing a given separator between each.

§Examples
assert_eq!(["hello", "world"].connect(" "), "hello world");
assert_eq!([[1, 2], [3, 4]].connect(&0), [1, 2, 0, 3, 4]);

Trait Implementations§

Source§

impl Clone for BoxShadow

Source§

fn clone(&self) -> BoxShadow

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Component for BoxShadow
where BoxShadow: Send + Sync + 'static,

Source§

const STORAGE_TYPE: StorageType = bevy_ecs::component::StorageType::Table

A constant indicating the storage type used for this component.
Source§

type Mutability = Mutable

A marker type to assist Bevy with determining if this component is mutable, or immutable. Mutable components will have [Component<Mutability = Mutable>], while immutable components will instead have [Component<Mutability = Immutable>]. Read more
Source§

fn register_required_components( requiree: ComponentId, components: &mut ComponentsRegistrator<'_>, required_components: &mut RequiredComponents, inheritance_depth: u16, recursion_check_stack: &mut Vec<ComponentId>, )

Registers required components.
Source§

fn clone_behavior() -> ComponentCloneBehavior

Called when registering this component, allowing to override clone function (or disable cloning altogether) for this component. Read more
Source§

fn register_component_hooks(hooks: &mut ComponentHooks)

👎Deprecated since 0.16.0: Use the individual hook methods instead (e.g., Component::on_add, etc.)
Called when registering this component, allowing mutable access to its ComponentHooks.
Source§

fn on_add() -> Option<for<'w> fn(DeferredWorld<'w>, HookContext)>

Gets the on_add ComponentHook for this Component if one is defined.
Source§

fn on_insert() -> Option<for<'w> fn(DeferredWorld<'w>, HookContext)>

Gets the on_insert ComponentHook for this Component if one is defined.
Source§

fn on_replace() -> Option<for<'w> fn(DeferredWorld<'w>, HookContext)>

Gets the on_replace ComponentHook for this Component if one is defined.
Source§

fn on_remove() -> Option<for<'w> fn(DeferredWorld<'w>, HookContext)>

Gets the on_remove ComponentHook for this Component if one is defined.
Source§

fn on_despawn() -> Option<for<'w> fn(DeferredWorld<'w>, HookContext)>

Gets the on_despawn ComponentHook for this Component if one is defined.
Source§

fn map_entities<E>(_this: &mut Self, _mapper: &mut E)
where E: EntityMapper,

Maps the entities on this component using the given EntityMapper. This is used to remap entities in contexts like scenes and entity cloning. When deriving Component, this is populated by annotating fields containing entities with #[entities] Read more
Source§

impl Debug for BoxShadow

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
Source§

impl Default for BoxShadow

Source§

fn default() -> BoxShadow

Returns the “default value” for a type. Read more
Source§

impl Deref for BoxShadow

Source§

type Target = Vec<ShadowStyle>

The resulting type after dereferencing.
Source§

fn deref(&self) -> &<BoxShadow as Deref>::Target

Dereferences the value.
Source§

impl DerefMut for BoxShadow

Source§

fn deref_mut(&mut self) -> &mut <BoxShadow as Deref>::Target

Mutably dereferences the value.
Source§

impl<'de> Deserialize<'de> for BoxShadow

Source§

fn deserialize<__D>( __deserializer: __D, ) -> Result<BoxShadow, <__D as Deserializer<'de>>::Error>
where __D: Deserializer<'de>,

Deserialize this value from the given Serde deserializer. Read more
Source§

impl From<ShadowStyle> for BoxShadow

Source§

fn from(value: ShadowStyle) -> BoxShadow

Converts to this type from the input type.
Source§

impl FromArg for &'static BoxShadow
where BoxShadow: Any + Send + Sync, Vec<ShadowStyle>: FromReflect + TypePath + MaybeTyped + RegisterForReflection,

Source§

type This<'from_arg> = &'from_arg BoxShadow

The type to convert into. Read more
Source§

fn from_arg( arg: Arg<'_>, ) -> Result<<&'static BoxShadow as FromArg>::This<'_>, ArgError>

Creates an item from an argument. Read more
Source§

impl FromArg for &'static mut BoxShadow
where BoxShadow: Any + Send + Sync, Vec<ShadowStyle>: FromReflect + TypePath + MaybeTyped + RegisterForReflection,

Source§

type This<'from_arg> = &'from_arg mut BoxShadow

The type to convert into. Read more
Source§

fn from_arg( arg: Arg<'_>, ) -> Result<<&'static mut BoxShadow as FromArg>::This<'_>, ArgError>

Creates an item from an argument. Read more
Source§

impl FromArg for BoxShadow
where BoxShadow: Any + Send + Sync, Vec<ShadowStyle>: FromReflect + TypePath + MaybeTyped + RegisterForReflection,

Source§

type This<'from_arg> = BoxShadow

The type to convert into. Read more
Source§

fn from_arg(arg: Arg<'_>) -> Result<<BoxShadow as FromArg>::This<'_>, ArgError>

Creates an item from an argument. Read more
Source§

impl FromReflect for BoxShadow
where BoxShadow: Any + Send + Sync, Vec<ShadowStyle>: FromReflect + TypePath + MaybeTyped + RegisterForReflection,

Source§

fn from_reflect(reflect: &(dyn PartialReflect + 'static)) -> Option<BoxShadow>

Constructs a concrete instance of Self from a reflected value.
Source§

fn take_from_reflect( reflect: Box<dyn PartialReflect>, ) -> Result<Self, Box<dyn PartialReflect>>

Attempts to downcast the given value to Self using, constructing the value using from_reflect if that fails. Read more
Source§

impl GetOwnership for &BoxShadow
where BoxShadow: Any + Send + Sync, Vec<ShadowStyle>: FromReflect + TypePath + MaybeTyped + RegisterForReflection,

Source§

fn ownership() -> Ownership

Returns the ownership of Self.
Source§

impl GetOwnership for &mut BoxShadow
where BoxShadow: Any + Send + Sync, Vec<ShadowStyle>: FromReflect + TypePath + MaybeTyped + RegisterForReflection,

Source§

fn ownership() -> Ownership

Returns the ownership of Self.
Source§

impl GetOwnership for BoxShadow
where BoxShadow: Any + Send + Sync, Vec<ShadowStyle>: FromReflect + TypePath + MaybeTyped + RegisterForReflection,

Source§

fn ownership() -> Ownership

Returns the ownership of Self.
Source§

impl GetTypeRegistration for BoxShadow
where BoxShadow: Any + Send + Sync, Vec<ShadowStyle>: FromReflect + TypePath + MaybeTyped + RegisterForReflection,

Source§

fn get_type_registration() -> TypeRegistration

Returns the default TypeRegistration for this type.
Source§

fn register_type_dependencies(registry: &mut TypeRegistry)

Registers other types needed by this type. Read more
Source§

impl IntoReturn for &BoxShadow
where BoxShadow: Any + Send + Sync, Vec<ShadowStyle>: FromReflect + TypePath + MaybeTyped + RegisterForReflection,

Source§

fn into_return<'into_return>(self) -> Return<'into_return>
where &BoxShadow: 'into_return,

Converts Self into a Return value.
Source§

impl IntoReturn for &mut BoxShadow
where BoxShadow: Any + Send + Sync, Vec<ShadowStyle>: FromReflect + TypePath + MaybeTyped + RegisterForReflection,

Source§

fn into_return<'into_return>(self) -> Return<'into_return>
where &mut BoxShadow: 'into_return,

Converts Self into a Return value.
Source§

impl IntoReturn for BoxShadow
where BoxShadow: Any + Send + Sync, Vec<ShadowStyle>: FromReflect + TypePath + MaybeTyped + RegisterForReflection,

Source§

fn into_return<'into_return>(self) -> Return<'into_return>
where BoxShadow: 'into_return,

Converts Self into a Return value.
Source§

impl PartialEq for BoxShadow

Source§

fn eq(&self, other: &BoxShadow) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl PartialReflect for BoxShadow
where BoxShadow: Any + Send + Sync, Vec<ShadowStyle>: FromReflect + TypePath + MaybeTyped + RegisterForReflection,

Source§

fn get_represented_type_info(&self) -> Option<&'static TypeInfo>

Returns the TypeInfo of the type represented by this value. Read more
Source§

fn try_apply( &mut self, value: &(dyn PartialReflect + 'static), ) -> Result<(), ApplyError>

Tries to apply a reflected value to this value. Read more
Source§

fn reflect_kind(&self) -> ReflectKind

Returns a zero-sized enumeration of “kinds” of type. Read more
Source§

fn reflect_ref(&self) -> ReflectRef<'_>

Returns an immutable enumeration of “kinds” of type. Read more
Source§

fn reflect_mut(&mut self) -> ReflectMut<'_>

Returns a mutable enumeration of “kinds” of type. Read more
Source§

fn reflect_owned(self: Box<BoxShadow>) -> ReflectOwned

Returns an owned enumeration of “kinds” of type. Read more
Source§

fn try_into_reflect( self: Box<BoxShadow>, ) -> Result<Box<dyn Reflect>, Box<dyn PartialReflect>>

Attempts to cast this type to a boxed, fully-reflected value.
Source§

fn try_as_reflect(&self) -> Option<&(dyn Reflect + 'static)>

Attempts to cast this type to a fully-reflected value.
Source§

fn try_as_reflect_mut(&mut self) -> Option<&mut (dyn Reflect + 'static)>

Attempts to cast this type to a mutable, fully-reflected value.
Source§

fn into_partial_reflect(self: Box<BoxShadow>) -> Box<dyn PartialReflect>

Casts this type to a boxed, reflected value. Read more
Source§

fn as_partial_reflect(&self) -> &(dyn PartialReflect + 'static)

Casts this type to a reflected value. Read more
Source§

fn as_partial_reflect_mut(&mut self) -> &mut (dyn PartialReflect + 'static)

Casts this type to a mutable, reflected value. Read more
Source§

fn reflect_partial_eq( &self, value: &(dyn PartialReflect + 'static), ) -> Option<bool>

Returns a “partial equality” comparison result. Read more
Source§

fn reflect_clone(&self) -> Result<Box<dyn Reflect>, ReflectCloneError>

Attempts to clone Self using reflection. Read more
Source§

fn apply(&mut self, value: &(dyn PartialReflect + 'static))

Applies a reflected value to this value. Read more
Source§

fn clone_value(&self) -> Box<dyn PartialReflect>

👎Deprecated since 0.16.0: to clone reflected values, prefer using reflect_clone. To convert reflected values to dynamic ones, use to_dynamic.
Clones Self into its dynamic representation. Read more
Source§

fn to_dynamic(&self) -> Box<dyn PartialReflect>

Converts this reflected value into its dynamic representation based on its kind. Read more
Source§

fn reflect_hash(&self) -> Option<u64>

Returns a hash of the value (which includes the type). Read more
Source§

fn debug(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Debug formatter for the value. Read more
Source§

fn is_dynamic(&self) -> bool

Indicates whether or not this type is a dynamic type. Read more
Source§

impl Reflect for BoxShadow
where BoxShadow: Any + Send + Sync, Vec<ShadowStyle>: FromReflect + TypePath + MaybeTyped + RegisterForReflection,

Source§

fn into_any(self: Box<BoxShadow>) -> Box<dyn Any>

Returns the value as a Box<dyn Any>. Read more
Source§

fn as_any(&self) -> &(dyn Any + 'static)

Returns the value as a &dyn Any. Read more
Source§

fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)

Returns the value as a &mut dyn Any. Read more
Source§

fn into_reflect(self: Box<BoxShadow>) -> Box<dyn Reflect>

Casts this type to a boxed, fully-reflected value.
Source§

fn as_reflect(&self) -> &(dyn Reflect + 'static)

Casts this type to a fully-reflected value.
Source§

fn as_reflect_mut(&mut self) -> &mut (dyn Reflect + 'static)

Casts this type to a mutable, fully-reflected value.
Source§

fn set(&mut self, value: Box<dyn Reflect>) -> Result<(), Box<dyn Reflect>>

Performs a type-checked assignment of a reflected value to this value. Read more
Source§

impl Serialize for BoxShadow

Source§

fn serialize<__S>( &self, __serializer: __S, ) -> Result<<__S as Serializer>::Ok, <__S as Serializer>::Error>
where __S: Serializer,

Serialize this value into the given Serde serializer. Read more
Source§

impl TupleStruct for BoxShadow
where BoxShadow: Any + Send + Sync, Vec<ShadowStyle>: FromReflect + TypePath + MaybeTyped + RegisterForReflection,

Source§

fn field(&self, index: usize) -> Option<&(dyn PartialReflect + 'static)>

Returns a reference to the value of the field with index index as a &dyn Reflect.
Source§

fn field_mut( &mut self, index: usize, ) -> Option<&mut (dyn PartialReflect + 'static)>

Returns a mutable reference to the value of the field with index index as a &mut dyn Reflect.
Source§

fn field_len(&self) -> usize

Returns the number of fields in the tuple struct.
Source§

fn iter_fields(&self) -> TupleStructFieldIter<'_>

Returns an iterator over the values of the tuple struct’s fields.
Source§

fn to_dynamic_tuple_struct(&self) -> DynamicTupleStruct

Creates a new DynamicTupleStruct from this tuple struct.
Source§

fn clone_dynamic(&self) -> DynamicTupleStruct

👎Deprecated since 0.16.0: use to_dynamic_tuple_struct instead
Clones the struct into a DynamicTupleStruct.
Source§

fn get_represented_tuple_struct_info(&self) -> Option<&'static TupleStructInfo>

Will return None if TypeInfo is not available.
Source§

impl TypePath for BoxShadow
where BoxShadow: Any + Send + Sync,

Source§

fn type_path() -> &'static str

Returns the fully qualified path of the underlying type. Read more
Source§

fn short_type_path() -> &'static str

Returns a short, pretty-print enabled path to the type. Read more
Source§

fn type_ident() -> Option<&'static str>

Returns the name of the type, or None if it is anonymous. Read more
Source§

fn crate_name() -> Option<&'static str>

Returns the name of the crate the type is in, or None if it is anonymous. Read more
Source§

fn module_path() -> Option<&'static str>

Returns the path to the module the type is in, or None if it is anonymous. Read more
Source§

impl Typed for BoxShadow
where BoxShadow: Any + Send + Sync, Vec<ShadowStyle>: FromReflect + TypePath + MaybeTyped + RegisterForReflection,

Source§

fn type_info() -> &'static TypeInfo

Returns the compile-time info for the underlying type.
Source§

impl StructuralPartialEq for BoxShadow

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T, U> AsBindGroupShaderType<U> for T
where U: ShaderType, &'a T: for<'a> Into<U>,

Source§

fn as_bind_group_shader_type(&self, _images: &RenderAssets<GpuImage>) -> U

Return the T ShaderType for self. When used in AsBindGroup derives, it is safe to assume that all images in self exist.
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<C> Bundle for C
where C: Component,

Source§

fn component_ids( components: &mut ComponentsRegistrator<'_>, ids: &mut impl FnMut(ComponentId), )

Source§

fn register_required_components( components: &mut ComponentsRegistrator<'_>, required_components: &mut RequiredComponents, )

Registers components that are required by the components in this Bundle.
Source§

fn get_component_ids( components: &Components, ids: &mut impl FnMut(Option<ComponentId>), )

Gets this Bundle’s component ids. This will be None if the component has not been registered.
Source§

impl<C> BundleFromComponents for C
where C: Component,

Source§

unsafe fn from_components<T, F>(ctx: &mut T, func: &mut F) -> C
where F: for<'a> FnMut(&'a mut T) -> OwningPtr<'a>,

Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> Conv for T

Source§

fn conv<T>(self) -> T
where Self: Into<T>,

Converts self into T using Into<T>. Read more
Source§

impl<T> Downcast<T> for T

Source§

fn downcast(&self) -> &T

Source§

impl<T> Downcast for T
where T: Any,

Source§

fn into_any(self: Box<T>) -> Box<dyn Any>

Converts Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>, which can then be downcast into Box<dyn ConcreteType> where ConcreteType implements Trait.
Source§

fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>

Converts Rc<Trait> (where Trait: Downcast) to Rc<Any>, which can then be further downcast into Rc<ConcreteType> where ConcreteType implements Trait.
Source§

fn as_any(&self) -> &(dyn Any + 'static)

Converts &Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &Any’s vtable from &Trait’s.
Source§

fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)

Converts &mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &mut Any’s vtable from &mut Trait’s.
Source§

impl<T> Downcast for T
where T: Any,

Source§

fn into_any(self: Box<T>) -> Box<dyn Any>

Convert Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can then be further downcast into Box<ConcreteType> where ConcreteType implements Trait.
Source§

fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>

Convert Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be further downcast into Rc<ConcreteType> where ConcreteType implements Trait.
Source§

fn as_any(&self) -> &(dyn Any + 'static)

Convert &Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &Any’s vtable from &Trait’s.
Source§

fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)

Convert &mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &mut Any’s vtable from &mut Trait’s.
Source§

impl<T> DowncastSend for T
where T: Any + Send,

Source§

fn into_any_send(self: Box<T>) -> Box<dyn Any + Send>

Converts Box<Trait> (where Trait: DowncastSend) to Box<dyn Any + Send>, which can then be downcast into Box<ConcreteType> where ConcreteType implements Trait.
Source§

impl<T> DowncastSync for T
where T: Any + Send + Sync,

Source§

fn into_any_arc(self: Arc<T>) -> Arc<dyn Any + Sync + Send>

Convert Arc<Trait> (where Trait: Downcast) to Arc<Any>. Arc<Any> can then be further downcast into Arc<ConcreteType> where ConcreteType implements Trait.
Source§

impl<C> DynamicBundle for C
where C: Component,

Source§

type Effect = ()

An operation on the entity that happens after inserting this bundle.
Source§

fn get_components( self, func: &mut impl FnMut(StorageType, OwningPtr<'_>), ) -> <C as DynamicBundle>::Effect

Source§

impl<T> DynamicTypePath for T
where T: TypePath,

Source§

impl<T> DynamicTyped for T
where T: Typed,

Source§

impl<T> FmtForward for T

Source§

fn fmt_binary(self) -> FmtBinary<Self>
where Self: Binary,

Causes self to use its Binary implementation when Debug-formatted.
Source§

fn fmt_display(self) -> FmtDisplay<Self>
where Self: Display,

Causes self to use its Display implementation when Debug-formatted.
Source§

fn fmt_lower_exp(self) -> FmtLowerExp<Self>
where Self: LowerExp,

Causes self to use its LowerExp implementation when Debug-formatted.
Source§

fn fmt_lower_hex(self) -> FmtLowerHex<Self>
where Self: LowerHex,

Causes self to use its LowerHex implementation when Debug-formatted.
Source§

fn fmt_octal(self) -> FmtOctal<Self>
where Self: Octal,

Causes self to use its Octal implementation when Debug-formatted.
Source§

fn fmt_pointer(self) -> FmtPointer<Self>
where Self: Pointer,

Causes self to use its Pointer implementation when Debug-formatted.
Source§

fn fmt_upper_exp(self) -> FmtUpperExp<Self>
where Self: UpperExp,

Causes self to use its UpperExp implementation when Debug-formatted.
Source§

fn fmt_upper_hex(self) -> FmtUpperHex<Self>
where Self: UpperHex,

Causes self to use its UpperHex implementation when Debug-formatted.
Source§

fn fmt_list(self) -> FmtList<Self>
where &'a Self: for<'a> IntoIterator,

Formats each item in a sequence. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<S> FromSample<S> for S

Source§

fn from_sample_(s: S) -> S

Source§

impl<T> FromWorld for T
where T: Default,

Source§

fn from_world(_world: &mut World) -> T

Creates Self using default().

Source§

impl<T> GetPath for T
where T: Reflect + ?Sized,

Source§

fn reflect_path<'p>( &self, path: impl ReflectPath<'p>, ) -> Result<&(dyn PartialReflect + 'static), ReflectPathError<'p>>

Returns a reference to the value specified by path. Read more
Source§

fn reflect_path_mut<'p>( &mut self, path: impl ReflectPath<'p>, ) -> Result<&mut (dyn PartialReflect + 'static), ReflectPathError<'p>>

Returns a mutable reference to the value specified by path. Read more
Source§

fn path<'p, T>( &self, path: impl ReflectPath<'p>, ) -> Result<&T, ReflectPathError<'p>>
where T: Reflect,

Returns a statically typed reference to the value specified by path. Read more
Source§

fn path_mut<'p, T>( &mut self, path: impl ReflectPath<'p>, ) -> Result<&mut T, ReflectPathError<'p>>
where T: Reflect,

Returns a statically typed mutable reference to the value specified by path. Read more
Source§

impl<S> GetTupleStructField for S
where S: TupleStruct,

Source§

fn get_field<T>(&self, index: usize) -> Option<&T>
where T: Reflect,

Returns a reference to the value of the field with index index, downcast to T.
Source§

fn get_field_mut<T>(&mut self, index: usize) -> Option<&mut T>
where T: Reflect,

Returns a mutable reference to the value of the field with index index, downcast to T.
Source§

impl<T> Instrument for T

Source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
Source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<F, T> IntoSample<T> for F
where T: FromSample<F>,

Source§

fn into_sample(self) -> T

Source§

impl<T> NoneValue for T
where T: Default,

Source§

type NoneType = T

Source§

fn null_value() -> T

The none-equivalent value.
Source§

impl<T> Pipe for T
where T: ?Sized,

Source§

fn pipe<R>(self, func: impl FnOnce(Self) -> R) -> R
where Self: Sized,

Pipes by value. This is generally the method you want to use. Read more
Source§

fn pipe_ref<'a, R>(&'a self, func: impl FnOnce(&'a Self) -> R) -> R
where R: 'a,

Borrows self and passes that borrow into the pipe function. Read more
Source§

fn pipe_ref_mut<'a, R>(&'a mut self, func: impl FnOnce(&'a mut Self) -> R) -> R
where R: 'a,

Mutably borrows self and passes that borrow into the pipe function. Read more
Source§

fn pipe_borrow<'a, B, R>(&'a self, func: impl FnOnce(&'a B) -> R) -> R
where Self: Borrow<B>, B: 'a + ?Sized, R: 'a,

Borrows self, then passes self.borrow() into the pipe function. Read more
Source§

fn pipe_borrow_mut<'a, B, R>( &'a mut self, func: impl FnOnce(&'a mut B) -> R, ) -> R
where Self: BorrowMut<B>, B: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.borrow_mut() into the pipe function. Read more
Source§

fn pipe_as_ref<'a, U, R>(&'a self, func: impl FnOnce(&'a U) -> R) -> R
where Self: AsRef<U>, U: 'a + ?Sized, R: 'a,

Borrows self, then passes self.as_ref() into the pipe function.
Source§

fn pipe_as_mut<'a, U, R>(&'a mut self, func: impl FnOnce(&'a mut U) -> R) -> R
where Self: AsMut<U>, U: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.as_mut() into the pipe function.
Source§

fn pipe_deref<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R
where Self: Deref<Target = T>, T: 'a + ?Sized, R: 'a,

Borrows self, then passes self.deref() into the pipe function.
Source§

fn pipe_deref_mut<'a, T, R>( &'a mut self, func: impl FnOnce(&'a mut T) -> R, ) -> R
where Self: DerefMut<Target = T> + Deref, T: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.deref_mut() into the pipe function.
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<R, P> ReadPrimitive<R> for P
where R: Read + ReadEndian<P>, P: Default,

Source§

fn read_from_little_endian(read: &mut R) -> Result<Self, Error>

Read this value from the supplied reader. Same as ReadEndian::read_from_little_endian().
Source§

fn read_from_big_endian(read: &mut R) -> Result<Self, Error>

Read this value from the supplied reader. Same as ReadEndian::read_from_big_endian().
Source§

fn read_from_native_endian(read: &mut R) -> Result<Self, Error>

Read this value from the supplied reader. Same as ReadEndian::read_from_native_endian().
Source§

impl<P, T> Receiver for P
where P: Deref<Target = T> + ?Sized, T: ?Sized,

Source§

type Target = T

🔬This is a nightly-only experimental API. (arbitrary_self_types)
The target type on which the method may be called.
Source§

impl<T> Serialize for T
where T: Serialize + ?Sized,

Source§

fn erased_serialize(&self, serializer: &mut dyn Serializer) -> Result<(), Error>

Source§

fn do_erased_serialize( &self, serializer: &mut dyn Serializer, ) -> Result<(), ErrorImpl>

Source§

impl<T> Tap for T

Source§

fn tap(self, func: impl FnOnce(&Self)) -> Self

Immutable access to a value. Read more
Source§

fn tap_mut(self, func: impl FnOnce(&mut Self)) -> Self

Mutable access to a value. Read more
Source§

fn tap_borrow<B>(self, func: impl FnOnce(&B)) -> Self
where Self: Borrow<B>, B: ?Sized,

Immutable access to the Borrow<B> of a value. Read more
Source§

fn tap_borrow_mut<B>(self, func: impl FnOnce(&mut B)) -> Self
where Self: BorrowMut<B>, B: ?Sized,

Mutable access to the BorrowMut<B> of a value. Read more
Source§

fn tap_ref<R>(self, func: impl FnOnce(&R)) -> Self
where Self: AsRef<R>, R: ?Sized,

Immutable access to the AsRef<R> view of a value. Read more
Source§

fn tap_ref_mut<R>(self, func: impl FnOnce(&mut R)) -> Self
where Self: AsMut<R>, R: ?Sized,

Mutable access to the AsMut<R> view of a value. Read more
Source§

fn tap_deref<T>(self, func: impl FnOnce(&T)) -> Self
where Self: Deref<Target = T>, T: ?Sized,

Immutable access to the Deref::Target of a value. Read more
Source§

fn tap_deref_mut<T>(self, func: impl FnOnce(&mut T)) -> Self
where Self: DerefMut<Target = T> + Deref, T: ?Sized,

Mutable access to the Deref::Target of a value. Read more
Source§

fn tap_dbg(self, func: impl FnOnce(&Self)) -> Self

Calls .tap() only in debug builds, and is erased in release builds.
Source§

fn tap_mut_dbg(self, func: impl FnOnce(&mut Self)) -> Self

Calls .tap_mut() only in debug builds, and is erased in release builds.
Source§

fn tap_borrow_dbg<B>(self, func: impl FnOnce(&B)) -> Self
where Self: Borrow<B>, B: ?Sized,

Calls .tap_borrow() only in debug builds, and is erased in release builds.
Source§

fn tap_borrow_mut_dbg<B>(self, func: impl FnOnce(&mut B)) -> Self
where Self: BorrowMut<B>, B: ?Sized,

Calls .tap_borrow_mut() only in debug builds, and is erased in release builds.
Source§

fn tap_ref_dbg<R>(self, func: impl FnOnce(&R)) -> Self
where Self: AsRef<R>, R: ?Sized,

Calls .tap_ref() only in debug builds, and is erased in release builds.
Source§

fn tap_ref_mut_dbg<R>(self, func: impl FnOnce(&mut R)) -> Self
where Self: AsMut<R>, R: ?Sized,

Calls .tap_ref_mut() only in debug builds, and is erased in release builds.
Source§

fn tap_deref_dbg<T>(self, func: impl FnOnce(&T)) -> Self
where Self: Deref<Target = T>, T: ?Sized,

Calls .tap_deref() only in debug builds, and is erased in release builds.
Source§

fn tap_deref_mut_dbg<T>(self, func: impl FnOnce(&mut T)) -> Self
where Self: DerefMut<Target = T> + Deref, T: ?Sized,

Calls .tap_deref_mut() only in debug builds, and is erased in release builds.
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> ToSample<U> for T
where U: FromSample<T>,

Source§

fn to_sample_(self) -> U

Source§

impl<T> TryConv for T

Source§

fn try_conv<T>(self) -> Result<T, Self::Error>
where Self: TryInto<T>,

Attempts to convert self into T using TryInto<T>. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<T> TypeData for T
where T: 'static + Send + Sync + Clone,

Source§

impl<T> Upcast<T> for T

Source§

fn upcast(&self) -> Option<&T>

Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V

Source§

impl<T> WithSubscriber for T

Source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

impl<T> ConditionalSend for T
where T: Send,

Source§

impl<T> DeserializeOwned for T
where T: for<'de> Deserialize<'de>,

Source§

impl<S, T> Duplex<S> for T
where T: FromSample<S> + ToSample<S>,

Source§

impl<T> Reflectable for T

Source§

impl<T> Settings for T
where T: 'static + Send + Sync,

Source§

impl<T> WasmNotSend for T
where T: Send,

Source§

impl<T> WasmNotSendSync for T

Source§

impl<T> WasmNotSync for T
where T: Sync,