Struct DrawFunctions

Source
pub struct DrawFunctions<P>
where P: PhaseItem,
{ /* private fields */ }
Expand description

Stores all draw functions for the PhaseItem type hidden behind a reader-writer lock.

To access them the DrawFunctions::read and DrawFunctions::write methods are used.

Implementations§

Source§

impl<P> DrawFunctions<P>
where P: PhaseItem,

Source

pub fn read(&self) -> RwLockReadGuard<'_, DrawFunctionsInternal<P>>

Accesses the draw functions in read mode.

Examples found in repository?
examples/shader/custom_shader_instancing.rs (line 137)
126fn queue_custom(
127    transparent_3d_draw_functions: Res<DrawFunctions<Transparent3d>>,
128    custom_pipeline: Res<CustomPipeline>,
129    mut pipelines: ResMut<SpecializedMeshPipelines<CustomPipeline>>,
130    pipeline_cache: Res<PipelineCache>,
131    meshes: Res<RenderAssets<RenderMesh>>,
132    render_mesh_instances: Res<RenderMeshInstances>,
133    material_meshes: Query<(Entity, &MainEntity), With<InstanceMaterialData>>,
134    mut transparent_render_phases: ResMut<ViewSortedRenderPhases<Transparent3d>>,
135    views: Query<(&ExtractedView, &Msaa)>,
136) {
137    let draw_custom = transparent_3d_draw_functions.read().id::<DrawCustom>();
138
139    for (view, msaa) in &views {
140        let Some(transparent_phase) = transparent_render_phases.get_mut(&view.retained_view_entity)
141        else {
142            continue;
143        };
144
145        let msaa_key = MeshPipelineKey::from_msaa_samples(msaa.samples());
146
147        let view_key = msaa_key | MeshPipelineKey::from_hdr(view.hdr);
148        let rangefinder = view.rangefinder3d();
149        for (entity, main_entity) in &material_meshes {
150            let Some(mesh_instance) = render_mesh_instances.render_mesh_queue_data(*main_entity)
151            else {
152                continue;
153            };
154            let Some(mesh) = meshes.get(mesh_instance.mesh_asset_id) else {
155                continue;
156            };
157            let key =
158                view_key | MeshPipelineKey::from_primitive_topology(mesh.primitive_topology());
159            let pipeline = pipelines
160                .specialize(&pipeline_cache, &custom_pipeline, key, &mesh.layout)
161                .unwrap();
162            transparent_phase.add(Transparent3d {
163                entity: (entity, *main_entity),
164                pipeline,
165                draw_function: draw_custom,
166                distance: rangefinder.distance_translation(&mesh_instance.translation),
167                batch_range: 0..1,
168                extra_index: PhaseItemExtraIndex::None,
169                indexed: true,
170            });
171        }
172    }
173}
More examples
Hide additional examples
examples/2d/mesh2d_manual.rs (line 395)
375pub fn queue_colored_mesh2d(
376    transparent_draw_functions: Res<DrawFunctions<Transparent2d>>,
377    colored_mesh2d_pipeline: Res<ColoredMesh2dPipeline>,
378    mut pipelines: ResMut<SpecializedRenderPipelines<ColoredMesh2dPipeline>>,
379    pipeline_cache: Res<PipelineCache>,
380    render_meshes: Res<RenderAssets<RenderMesh>>,
381    render_mesh_instances: Res<RenderColoredMesh2dInstances>,
382    mut transparent_render_phases: ResMut<ViewSortedRenderPhases<Transparent2d>>,
383    views: Query<(&RenderVisibleEntities, &ExtractedView, &Msaa)>,
384) {
385    if render_mesh_instances.is_empty() {
386        return;
387    }
388    // Iterate each view (a camera is a view)
389    for (visible_entities, view, msaa) in &views {
390        let Some(transparent_phase) = transparent_render_phases.get_mut(&view.retained_view_entity)
391        else {
392            continue;
393        };
394
395        let draw_colored_mesh2d = transparent_draw_functions.read().id::<DrawColoredMesh2d>();
396
397        let mesh_key = Mesh2dPipelineKey::from_msaa_samples(msaa.samples())
398            | Mesh2dPipelineKey::from_hdr(view.hdr);
399
400        // Queue all entities visible to that view
401        for (render_entity, visible_entity) in visible_entities.iter::<Mesh2d>() {
402            if let Some(mesh_instance) = render_mesh_instances.get(visible_entity) {
403                let mesh2d_handle = mesh_instance.mesh_asset_id;
404                let mesh2d_transforms = &mesh_instance.transforms;
405                // Get our specialized pipeline
406                let mut mesh2d_key = mesh_key;
407                let Some(mesh) = render_meshes.get(mesh2d_handle) else {
408                    continue;
409                };
410                mesh2d_key |= Mesh2dPipelineKey::from_primitive_topology(mesh.primitive_topology());
411
412                let pipeline_id =
413                    pipelines.specialize(&pipeline_cache, &colored_mesh2d_pipeline, mesh2d_key);
414
415                let mesh_z = mesh2d_transforms.world_from_local.translation.z;
416                transparent_phase.add(Transparent2d {
417                    entity: (*render_entity, *visible_entity),
418                    draw_function: draw_colored_mesh2d,
419                    pipeline: pipeline_id,
420                    // The 2d render items are sorted according to their z value before rendering,
421                    // in order to get correct transparency
422                    sort_key: FloatOrd(mesh_z),
423                    // This material is not batched
424                    batch_range: 0..1,
425                    extra_index: PhaseItemExtraIndex::None,
426                    extracted_index: usize::MAX,
427                    indexed: mesh.indexed(),
428                });
429            }
430        }
431    }
432}
examples/shader/custom_phase_item.rs (line 232)
222fn queue_custom_phase_item(
223    pipeline_cache: Res<PipelineCache>,
224    custom_phase_pipeline: Res<CustomPhasePipeline>,
225    mut opaque_render_phases: ResMut<ViewBinnedRenderPhases<Opaque3d>>,
226    opaque_draw_functions: Res<DrawFunctions<Opaque3d>>,
227    mut specialized_render_pipelines: ResMut<SpecializedRenderPipelines<CustomPhasePipeline>>,
228    views: Query<(&ExtractedView, &RenderVisibleEntities, &Msaa)>,
229    mut next_tick: Local<Tick>,
230) {
231    let draw_custom_phase_item = opaque_draw_functions
232        .read()
233        .id::<DrawCustomPhaseItemCommands>();
234
235    // Render phases are per-view, so we need to iterate over all views so that
236    // the entity appears in them. (In this example, we have only one view, but
237    // it's good practice to loop over all views anyway.)
238    for (view, view_visible_entities, msaa) in views.iter() {
239        let Some(opaque_phase) = opaque_render_phases.get_mut(&view.retained_view_entity) else {
240            continue;
241        };
242
243        // Find all the custom rendered entities that are visible from this
244        // view.
245        for &entity in view_visible_entities.get::<CustomRenderedEntity>().iter() {
246            // Ordinarily, the [`SpecializedRenderPipeline::Key`] would contain
247            // some per-view settings, such as whether the view is HDR, but for
248            // simplicity's sake we simply hard-code the view's characteristics,
249            // with the exception of number of MSAA samples.
250            let pipeline_id = specialized_render_pipelines.specialize(
251                &pipeline_cache,
252                &custom_phase_pipeline,
253                *msaa,
254            );
255
256            // Bump the change tick in order to force Bevy to rebuild the bin.
257            let this_tick = next_tick.get() + 1;
258            next_tick.set(this_tick);
259
260            // Add the custom render item. We use the
261            // [`BinnedRenderPhaseType::NonMesh`] type to skip the special
262            // handling that Bevy has for meshes (preprocessing, indirect
263            // draws, etc.)
264            //
265            // The asset ID is arbitrary; we simply use [`AssetId::invalid`],
266            // but you can use anything you like. Note that the asset ID need
267            // not be the ID of a [`Mesh`].
268            opaque_phase.add(
269                Opaque3dBatchSetKey {
270                    draw_function: draw_custom_phase_item,
271                    pipeline: pipeline_id,
272                    material_bind_group_index: None,
273                    lightmap_slab: None,
274                    vertex_slab: default(),
275                    index_slab: None,
276                },
277                Opaque3dBinKey {
278                    asset_id: AssetId::<Mesh>::invalid().untyped(),
279                },
280                entity,
281                InputUniformIndex::default(),
282                BinnedRenderPhaseType::NonMesh,
283                *next_tick,
284            );
285        }
286    }
287}
examples/shader/custom_render_phase.rs (line 515)
500fn queue_custom_meshes(
501    custom_draw_functions: Res<DrawFunctions<Stencil3d>>,
502    mut pipelines: ResMut<SpecializedMeshPipelines<StencilPipeline>>,
503    pipeline_cache: Res<PipelineCache>,
504    custom_draw_pipeline: Res<StencilPipeline>,
505    render_meshes: Res<RenderAssets<RenderMesh>>,
506    render_mesh_instances: Res<RenderMeshInstances>,
507    mut custom_render_phases: ResMut<ViewSortedRenderPhases<Stencil3d>>,
508    mut views: Query<(&ExtractedView, &RenderVisibleEntities, &Msaa)>,
509    has_marker: Query<(), With<DrawStencil>>,
510) {
511    for (view, visible_entities, msaa) in &mut views {
512        let Some(custom_phase) = custom_render_phases.get_mut(&view.retained_view_entity) else {
513            continue;
514        };
515        let draw_custom = custom_draw_functions.read().id::<DrawMesh3dStencil>();
516
517        // Create the key based on the view.
518        // In this case we only care about MSAA and HDR
519        let view_key = MeshPipelineKey::from_msaa_samples(msaa.samples())
520            | MeshPipelineKey::from_hdr(view.hdr);
521
522        let rangefinder = view.rangefinder3d();
523        // Since our phase can work on any 3d mesh we can reuse the default mesh 3d filter
524        for (render_entity, visible_entity) in visible_entities.iter::<Mesh3d>() {
525            // We only want meshes with the marker component to be queued to our phase.
526            if has_marker.get(*render_entity).is_err() {
527                continue;
528            }
529            let Some(mesh_instance) = render_mesh_instances.render_mesh_queue_data(*visible_entity)
530            else {
531                continue;
532            };
533            let Some(mesh) = render_meshes.get(mesh_instance.mesh_asset_id) else {
534                continue;
535            };
536
537            // Specialize the key for the current mesh entity
538            // For this example we only specialize based on the mesh topology
539            // but you could have more complex keys and that's where you'd need to create those keys
540            let mut mesh_key = view_key;
541            mesh_key |= MeshPipelineKey::from_primitive_topology(mesh.primitive_topology());
542
543            let pipeline_id = pipelines.specialize(
544                &pipeline_cache,
545                &custom_draw_pipeline,
546                mesh_key,
547                &mesh.layout,
548            );
549            let pipeline_id = match pipeline_id {
550                Ok(id) => id,
551                Err(err) => {
552                    error!("{}", err);
553                    continue;
554                }
555            };
556            let distance = rangefinder.distance_translation(&mesh_instance.translation);
557            // At this point we have all the data we need to create a phase item and add it to our
558            // phase
559            custom_phase.add(Stencil3d {
560                // Sort the data based on the distance to the view
561                sort_key: FloatOrd(distance),
562                entity: (*render_entity, *visible_entity),
563                pipeline: pipeline_id,
564                draw_function: draw_custom,
565                // Sorted phase items aren't batched
566                batch_range: 0..1,
567                extra_index: PhaseItemExtraIndex::None,
568                indexed: mesh.indexed(),
569            });
570        }
571    }
572}
examples/shader/specialized_mesh_pipeline.rs (line 312)
274fn queue_custom_mesh_pipeline(
275    pipeline_cache: Res<PipelineCache>,
276    custom_mesh_pipeline: Res<CustomMeshPipeline>,
277    (mut opaque_render_phases, opaque_draw_functions): (
278        ResMut<ViewBinnedRenderPhases<Opaque3d>>,
279        Res<DrawFunctions<Opaque3d>>,
280    ),
281    mut specialized_mesh_pipelines: ResMut<SpecializedMeshPipelines<CustomMeshPipeline>>,
282    views: Query<(
283        &RenderVisibleEntities,
284        &ExtractedView,
285        &Msaa,
286        Has<NoIndirectDrawing>,
287        Has<OcclusionCulling>,
288    )>,
289    (render_meshes, render_mesh_instances): (
290        Res<RenderAssets<RenderMesh>>,
291        Res<RenderMeshInstances>,
292    ),
293    param: StaticSystemParam<<MeshPipeline as GetBatchData>::Param>,
294    mut phase_batched_instance_buffers: ResMut<
295        PhaseBatchedInstanceBuffers<Opaque3d, <MeshPipeline as GetBatchData>::BufferData>,
296    >,
297    mut phase_indirect_parameters_buffers: ResMut<PhaseIndirectParametersBuffers<Opaque3d>>,
298    mut change_tick: Local<Tick>,
299) {
300    let system_param_item = param.into_inner();
301
302    let UntypedPhaseBatchedInstanceBuffers {
303        ref mut data_buffer,
304        ref mut work_item_buffers,
305        ref mut late_indexed_indirect_parameters_buffer,
306        ref mut late_non_indexed_indirect_parameters_buffer,
307        ..
308    } = phase_batched_instance_buffers.buffers;
309
310    // Get the id for our custom draw function
311    let draw_function_id = opaque_draw_functions
312        .read()
313        .id::<DrawSpecializedPipelineCommands>();
314
315    // Render phases are per-view, so we need to iterate over all views so that
316    // the entity appears in them. (In this example, we have only one view, but
317    // it's good practice to loop over all views anyway.)
318    for (view_visible_entities, view, msaa, no_indirect_drawing, gpu_occlusion_culling) in
319        views.iter()
320    {
321        let Some(opaque_phase) = opaque_render_phases.get_mut(&view.retained_view_entity) else {
322            continue;
323        };
324
325        // Create *work item buffers* if necessary. Work item buffers store the
326        // indices of meshes that are to be rendered when indirect drawing is
327        // enabled.
328        let work_item_buffer = gpu_preprocessing::get_or_create_work_item_buffer::<Opaque3d>(
329            work_item_buffers,
330            view.retained_view_entity,
331            no_indirect_drawing,
332            gpu_occlusion_culling,
333        );
334
335        // Initialize those work item buffers in preparation for this new frame.
336        gpu_preprocessing::init_work_item_buffers(
337            work_item_buffer,
338            late_indexed_indirect_parameters_buffer,
339            late_non_indexed_indirect_parameters_buffer,
340        );
341
342        // Create the key based on the view. In this case we only care about MSAA and HDR
343        let view_key = MeshPipelineKey::from_msaa_samples(msaa.samples())
344            | MeshPipelineKey::from_hdr(view.hdr);
345
346        // Set up a slot to hold information about the batch set we're going to
347        // create. If there are any of our custom meshes in the scene, we'll
348        // need this information in order for Bevy to kick off the rendering.
349        let mut mesh_batch_set_info = None;
350
351        // Find all the custom rendered entities that are visible from this
352        // view.
353        for &(render_entity, visible_entity) in
354            view_visible_entities.get::<CustomRenderedEntity>().iter()
355        {
356            // Get the mesh instance
357            let Some(mesh_instance) = render_mesh_instances.render_mesh_queue_data(visible_entity)
358            else {
359                continue;
360            };
361
362            // Get the mesh data
363            let Some(mesh) = render_meshes.get(mesh_instance.mesh_asset_id) else {
364                continue;
365            };
366
367            // Specialize the key for the current mesh entity
368            // For this example we only specialize based on the mesh topology
369            // but you could have more complex keys and that's where you'd need to create those keys
370            let mut mesh_key = view_key;
371            mesh_key |= MeshPipelineKey::from_primitive_topology(mesh.primitive_topology());
372
373            // Initialize the batch set information if this was the first custom
374            // mesh we saw. We'll need that information later to create the
375            // batch set.
376            if mesh_batch_set_info.is_none() {
377                mesh_batch_set_info = Some(MeshBatchSetInfo {
378                    indirect_parameters_index: phase_indirect_parameters_buffers
379                        .buffers
380                        .allocate(mesh.indexed(), 1),
381                    is_indexed: mesh.indexed(),
382                });
383            }
384            let mesh_info = mesh_batch_set_info.unwrap();
385
386            // Allocate some input and output indices. We'll need these to
387            // create the *work item* below.
388            let Some(input_index) =
389                MeshPipeline::get_binned_index(&system_param_item, visible_entity)
390            else {
391                continue;
392            };
393            let output_index = data_buffer.add() as u32;
394
395            // Finally, we can specialize the pipeline based on the key
396            let pipeline_id = specialized_mesh_pipelines
397                .specialize(
398                    &pipeline_cache,
399                    &custom_mesh_pipeline,
400                    mesh_key,
401                    &mesh.layout,
402                )
403                // This should never with this example, but if your pipeline specialization
404                // can fail you need to handle the error here
405                .expect("Failed to specialize mesh pipeline");
406
407            // Bump the change tick so that Bevy is forced to rebuild the bin.
408            let next_change_tick = change_tick.get() + 1;
409            change_tick.set(next_change_tick);
410
411            // Add the mesh with our specialized pipeline
412            opaque_phase.add(
413                Opaque3dBatchSetKey {
414                    draw_function: draw_function_id,
415                    pipeline: pipeline_id,
416                    material_bind_group_index: None,
417                    vertex_slab: default(),
418                    index_slab: None,
419                    lightmap_slab: None,
420                },
421                // The asset ID is arbitrary; we simply use [`AssetId::invalid`],
422                // but you can use anything you like. Note that the asset ID need
423                // not be the ID of a [`Mesh`].
424                Opaque3dBinKey {
425                    asset_id: AssetId::<Mesh>::invalid().untyped(),
426                },
427                (render_entity, visible_entity),
428                mesh_instance.current_uniform_index,
429                // This example supports batching, but if your pipeline doesn't
430                // support it you can use `BinnedRenderPhaseType::UnbatchableMesh`
431                BinnedRenderPhaseType::BatchableMesh,
432                *change_tick,
433            );
434
435            // Create a *work item*. A work item tells the Bevy renderer to
436            // transform the mesh on GPU.
437            work_item_buffer.push(
438                mesh.indexed(),
439                PreprocessWorkItem {
440                    input_index: input_index.into(),
441                    output_or_indirect_parameters_index: if no_indirect_drawing {
442                        output_index
443                    } else {
444                        mesh_info.indirect_parameters_index
445                    },
446                },
447            );
448        }
449
450        // Now if there were any meshes, we need to add a command to the
451        // indirect parameters buffer, so that the renderer will end up
452        // enqueuing a command to draw the mesh.
453        if let Some(mesh_info) = mesh_batch_set_info {
454            phase_indirect_parameters_buffers
455                .buffers
456                .add_batch_set(mesh_info.is_indexed, mesh_info.indirect_parameters_index);
457        }
458    }
459}
Source

pub fn write(&self) -> RwLockWriteGuard<'_, DrawFunctionsInternal<P>>

Accesses the draw functions in write mode.

Trait Implementations§

Source§

impl<P> Default for DrawFunctions<P>
where P: PhaseItem,

Source§

fn default() -> DrawFunctions<P>

Returns the “default value” for a type. Read more
Source§

impl<P> Resource for DrawFunctions<P>
where P: PhaseItem, DrawFunctions<P>: Send + Sync + 'static,

Auto Trait Implementations§

§

impl<P> !Freeze for DrawFunctions<P>

§

impl<P> RefUnwindSafe for DrawFunctions<P>

§

impl<P> Send for DrawFunctions<P>

§

impl<P> Sync for DrawFunctions<P>

§

impl<P> Unpin for DrawFunctions<P>

§

impl<P> UnwindSafe for DrawFunctions<P>

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T, U> AsBindGroupShaderType<U> for T
where U: ShaderType, &'a T: for<'a> Into<U>,

Source§

fn as_bind_group_shader_type(&self, _images: &RenderAssets<GpuImage>) -> U

Return the T ShaderType for self. When used in AsBindGroup derives, it is safe to assume that all images in self exist.
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> Conv for T

Source§

fn conv<T>(self) -> T
where Self: Into<T>,

Converts self into T using Into<T>. Read more
Source§

impl<T> Downcast<T> for T

Source§

fn downcast(&self) -> &T

Source§

impl<T> Downcast for T
where T: Any,

Source§

fn into_any(self: Box<T>) -> Box<dyn Any>

Converts Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>, which can then be downcast into Box<dyn ConcreteType> where ConcreteType implements Trait.
Source§

fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>

Converts Rc<Trait> (where Trait: Downcast) to Rc<Any>, which can then be further downcast into Rc<ConcreteType> where ConcreteType implements Trait.
Source§

fn as_any(&self) -> &(dyn Any + 'static)

Converts &Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &Any’s vtable from &Trait’s.
Source§

fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)

Converts &mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &mut Any’s vtable from &mut Trait’s.
Source§

impl<T> Downcast for T
where T: Any,

Source§

fn into_any(self: Box<T>) -> Box<dyn Any>

Convert Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can then be further downcast into Box<ConcreteType> where ConcreteType implements Trait.
Source§

fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>

Convert Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be further downcast into Rc<ConcreteType> where ConcreteType implements Trait.
Source§

fn as_any(&self) -> &(dyn Any + 'static)

Convert &Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &Any’s vtable from &Trait’s.
Source§

fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)

Convert &mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &mut Any’s vtable from &mut Trait’s.
Source§

impl<T> DowncastSend for T
where T: Any + Send,

Source§

fn into_any_send(self: Box<T>) -> Box<dyn Any + Send>

Converts Box<Trait> (where Trait: DowncastSend) to Box<dyn Any + Send>, which can then be downcast into Box<ConcreteType> where ConcreteType implements Trait.
Source§

impl<T> DowncastSync for T
where T: Any + Send + Sync,

Source§

fn into_any_arc(self: Arc<T>) -> Arc<dyn Any + Send + Sync>

Convert Arc<Trait> (where Trait: Downcast) to Arc<Any>. Arc<Any> can then be further downcast into Arc<ConcreteType> where ConcreteType implements Trait.
Source§

impl<T> FmtForward for T

Source§

fn fmt_binary(self) -> FmtBinary<Self>
where Self: Binary,

Causes self to use its Binary implementation when Debug-formatted.
Source§

fn fmt_display(self) -> FmtDisplay<Self>
where Self: Display,

Causes self to use its Display implementation when Debug-formatted.
Source§

fn fmt_lower_exp(self) -> FmtLowerExp<Self>
where Self: LowerExp,

Causes self to use its LowerExp implementation when Debug-formatted.
Source§

fn fmt_lower_hex(self) -> FmtLowerHex<Self>
where Self: LowerHex,

Causes self to use its LowerHex implementation when Debug-formatted.
Source§

fn fmt_octal(self) -> FmtOctal<Self>
where Self: Octal,

Causes self to use its Octal implementation when Debug-formatted.
Source§

fn fmt_pointer(self) -> FmtPointer<Self>
where Self: Pointer,

Causes self to use its Pointer implementation when Debug-formatted.
Source§

fn fmt_upper_exp(self) -> FmtUpperExp<Self>
where Self: UpperExp,

Causes self to use its UpperExp implementation when Debug-formatted.
Source§

fn fmt_upper_hex(self) -> FmtUpperHex<Self>
where Self: UpperHex,

Causes self to use its UpperHex implementation when Debug-formatted.
Source§

fn fmt_list(self) -> FmtList<Self>
where &'a Self: for<'a> IntoIterator,

Formats each item in a sequence. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<S> FromSample<S> for S

Source§

fn from_sample_(s: S) -> S

Source§

impl<T> FromWorld for T
where T: Default,

Source§

fn from_world(_world: &mut World) -> T

Creates Self using default().

Source§

impl<T> Instrument for T

Source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
Source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<F, T> IntoSample<T> for F
where T: FromSample<F>,

Source§

fn into_sample(self) -> T

Source§

impl<T> NoneValue for T
where T: Default,

Source§

type NoneType = T

Source§

fn null_value() -> T

The none-equivalent value.
Source§

impl<T> Pipe for T
where T: ?Sized,

Source§

fn pipe<R>(self, func: impl FnOnce(Self) -> R) -> R
where Self: Sized,

Pipes by value. This is generally the method you want to use. Read more
Source§

fn pipe_ref<'a, R>(&'a self, func: impl FnOnce(&'a Self) -> R) -> R
where R: 'a,

Borrows self and passes that borrow into the pipe function. Read more
Source§

fn pipe_ref_mut<'a, R>(&'a mut self, func: impl FnOnce(&'a mut Self) -> R) -> R
where R: 'a,

Mutably borrows self and passes that borrow into the pipe function. Read more
Source§

fn pipe_borrow<'a, B, R>(&'a self, func: impl FnOnce(&'a B) -> R) -> R
where Self: Borrow<B>, B: 'a + ?Sized, R: 'a,

Borrows self, then passes self.borrow() into the pipe function. Read more
Source§

fn pipe_borrow_mut<'a, B, R>( &'a mut self, func: impl FnOnce(&'a mut B) -> R, ) -> R
where Self: BorrowMut<B>, B: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.borrow_mut() into the pipe function. Read more
Source§

fn pipe_as_ref<'a, U, R>(&'a self, func: impl FnOnce(&'a U) -> R) -> R
where Self: AsRef<U>, U: 'a + ?Sized, R: 'a,

Borrows self, then passes self.as_ref() into the pipe function.
Source§

fn pipe_as_mut<'a, U, R>(&'a mut self, func: impl FnOnce(&'a mut U) -> R) -> R
where Self: AsMut<U>, U: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.as_mut() into the pipe function.
Source§

fn pipe_deref<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R
where Self: Deref<Target = T>, T: 'a + ?Sized, R: 'a,

Borrows self, then passes self.deref() into the pipe function.
Source§

fn pipe_deref_mut<'a, T, R>( &'a mut self, func: impl FnOnce(&'a mut T) -> R, ) -> R
where Self: DerefMut<Target = T> + Deref, T: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.deref_mut() into the pipe function.
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<R, P> ReadPrimitive<R> for P
where R: Read + ReadEndian<P>, P: Default,

Source§

fn read_from_little_endian(read: &mut R) -> Result<Self, Error>

Read this value from the supplied reader. Same as ReadEndian::read_from_little_endian().
Source§

fn read_from_big_endian(read: &mut R) -> Result<Self, Error>

Read this value from the supplied reader. Same as ReadEndian::read_from_big_endian().
Source§

fn read_from_native_endian(read: &mut R) -> Result<Self, Error>

Read this value from the supplied reader. Same as ReadEndian::read_from_native_endian().
Source§

impl<T> Tap for T

Source§

fn tap(self, func: impl FnOnce(&Self)) -> Self

Immutable access to a value. Read more
Source§

fn tap_mut(self, func: impl FnOnce(&mut Self)) -> Self

Mutable access to a value. Read more
Source§

fn tap_borrow<B>(self, func: impl FnOnce(&B)) -> Self
where Self: Borrow<B>, B: ?Sized,

Immutable access to the Borrow<B> of a value. Read more
Source§

fn tap_borrow_mut<B>(self, func: impl FnOnce(&mut B)) -> Self
where Self: BorrowMut<B>, B: ?Sized,

Mutable access to the BorrowMut<B> of a value. Read more
Source§

fn tap_ref<R>(self, func: impl FnOnce(&R)) -> Self
where Self: AsRef<R>, R: ?Sized,

Immutable access to the AsRef<R> view of a value. Read more
Source§

fn tap_ref_mut<R>(self, func: impl FnOnce(&mut R)) -> Self
where Self: AsMut<R>, R: ?Sized,

Mutable access to the AsMut<R> view of a value. Read more
Source§

fn tap_deref<T>(self, func: impl FnOnce(&T)) -> Self
where Self: Deref<Target = T>, T: ?Sized,

Immutable access to the Deref::Target of a value. Read more
Source§

fn tap_deref_mut<T>(self, func: impl FnOnce(&mut T)) -> Self
where Self: DerefMut<Target = T> + Deref, T: ?Sized,

Mutable access to the Deref::Target of a value. Read more
Source§

fn tap_dbg(self, func: impl FnOnce(&Self)) -> Self

Calls .tap() only in debug builds, and is erased in release builds.
Source§

fn tap_mut_dbg(self, func: impl FnOnce(&mut Self)) -> Self

Calls .tap_mut() only in debug builds, and is erased in release builds.
Source§

fn tap_borrow_dbg<B>(self, func: impl FnOnce(&B)) -> Self
where Self: Borrow<B>, B: ?Sized,

Calls .tap_borrow() only in debug builds, and is erased in release builds.
Source§

fn tap_borrow_mut_dbg<B>(self, func: impl FnOnce(&mut B)) -> Self
where Self: BorrowMut<B>, B: ?Sized,

Calls .tap_borrow_mut() only in debug builds, and is erased in release builds.
Source§

fn tap_ref_dbg<R>(self, func: impl FnOnce(&R)) -> Self
where Self: AsRef<R>, R: ?Sized,

Calls .tap_ref() only in debug builds, and is erased in release builds.
Source§

fn tap_ref_mut_dbg<R>(self, func: impl FnOnce(&mut R)) -> Self
where Self: AsMut<R>, R: ?Sized,

Calls .tap_ref_mut() only in debug builds, and is erased in release builds.
Source§

fn tap_deref_dbg<T>(self, func: impl FnOnce(&T)) -> Self
where Self: Deref<Target = T>, T: ?Sized,

Calls .tap_deref() only in debug builds, and is erased in release builds.
Source§

fn tap_deref_mut_dbg<T>(self, func: impl FnOnce(&mut T)) -> Self
where Self: DerefMut<Target = T> + Deref, T: ?Sized,

Calls .tap_deref_mut() only in debug builds, and is erased in release builds.
Source§

impl<T, U> ToSample<U> for T
where U: FromSample<T>,

Source§

fn to_sample_(self) -> U

Source§

impl<T> TryConv for T

Source§

fn try_conv<T>(self) -> Result<T, Self::Error>
where Self: TryInto<T>,

Attempts to convert self into T using TryInto<T>. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<T> Upcast<T> for T

Source§

fn upcast(&self) -> Option<&T>

Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V

Source§

impl<T> WithSubscriber for T

Source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

impl<T> ConditionalSend for T
where T: Send,

Source§

impl<S, T> Duplex<S> for T
where T: FromSample<S> + ToSample<S>,

Source§

impl<T> Settings for T
where T: 'static + Send + Sync,

Source§

impl<T> WasmNotSend for T
where T: Send,

Source§

impl<T> WasmNotSendSync for T

Source§

impl<T> WasmNotSync for T
where T: Sync,