pub struct ReflectDefault { /* private fields */ }Expand description
A struct used to provide the default value of a type.
A ReflectDefault for type T can be obtained via FromType::from_type.
Implementations§
Source§impl ReflectDefault
impl ReflectDefault
Sourcepub fn default(&self) -> Box<dyn Reflect>
pub fn default(&self) -> Box<dyn Reflect>
Returns the default value for a type.
Examples found in repository?
examples/reflection/dynamic_types.rs (line 117)
12fn main() {
13 #[derive(Reflect, Default, PartialEq, Debug)]
14 #[reflect(Identifiable, Default)]
15 struct Player {
16 id: u32,
17 }
18
19 #[reflect_trait]
20 trait Identifiable {
21 fn id(&self) -> u32;
22 }
23
24 impl Identifiable for Player {
25 fn id(&self) -> u32 {
26 self.id
27 }
28 }
29
30 // Normally, when instantiating a type, you get back exactly that type.
31 // This is because the type is known at compile time.
32 // We call this the "concrete" or "canonical" type.
33 let player: Player = Player { id: 123 };
34
35 // When working with reflected types, however, we often "erase" this type information
36 // using the `Reflect` trait object.
37 // This trait object also gives us access to all the methods in the `PartialReflect` trait too.
38 // The underlying type is still the same (in this case, `Player`),
39 // but now we've hidden that information from the compiler.
40 let reflected: Box<dyn Reflect> = Box::new(player);
41
42 // Because it's the same type under the hood, we can still downcast it back to the original type.
43 assert!(reflected.downcast_ref::<Player>().is_some());
44
45 // We can attempt to clone our value using `PartialReflect::reflect_clone`.
46 // This will recursively call `PartialReflect::reflect_clone` on all fields of the type.
47 // Or, if we had registered `ReflectClone` using `#[reflect(Clone)]`, it would simply call `Clone::clone` directly.
48 let cloned: Box<dyn Reflect> = reflected.reflect_clone().unwrap();
49 assert_eq!(cloned.downcast_ref::<Player>(), Some(&Player { id: 123 }));
50
51 // Another way we can "clone" our data is by converting it to a dynamic type.
52 // Notice here we bind it as a `dyn PartialReflect` instead of `dyn Reflect`.
53 // This is because it returns a dynamic type that simply represents the original type.
54 // In this case, because `Player` is a struct, it will return a `DynamicStruct`.
55 let dynamic: Box<dyn PartialReflect> = reflected.to_dynamic();
56 assert!(dynamic.is_dynamic());
57
58 // And if we try to convert it back to a `dyn Reflect` trait object, we'll get `None`.
59 // Dynamic types cannot be directly cast to `dyn Reflect` trait objects.
60 assert!(dynamic.try_as_reflect().is_none());
61
62 // Generally dynamic types are used to represent (or "proxy") the original type,
63 // so that we can continue to access its fields and overall structure.
64 let dynamic_ref = dynamic.reflect_ref().as_struct().unwrap();
65 let id = dynamic_ref.field("id").unwrap().try_downcast_ref::<u32>();
66 assert_eq!(id, Some(&123));
67
68 // It also enables us to create a representation of a type without having compile-time
69 // access to the actual type. This is how the reflection deserializers work.
70 // They generally can't know how to construct a type ahead of time,
71 // so they instead build and return these dynamic representations.
72 let input = "(id: 123)";
73 let mut registry = TypeRegistry::default();
74 registry.register::<Player>();
75 let registration = registry.get(std::any::TypeId::of::<Player>()).unwrap();
76 let deserialized = TypedReflectDeserializer::new(registration, ®istry)
77 .deserialize(&mut ron::Deserializer::from_str(input).unwrap())
78 .unwrap();
79
80 // Our deserialized output is a `DynamicStruct` that proxies/represents a `Player`.
81 assert!(deserialized.represents::<Player>());
82
83 // And while this does allow us to access the fields and structure of the type,
84 // there may be instances where we need the actual type.
85 // For example, if we want to convert our `dyn Reflect` into a `dyn Identifiable`,
86 // we can't use the `DynamicStruct` proxy.
87 let reflect_identifiable = registration
88 .data::<ReflectIdentifiable>()
89 .expect("`ReflectIdentifiable` should be registered");
90
91 // Trying to access the registry with our `deserialized` will give a compile error
92 // since it doesn't implement `Reflect`, only `PartialReflect`.
93 // Similarly, trying to force the operation will fail.
94 // This fails since the underlying type of `deserialized` is `DynamicStruct` and not `Player`.
95 assert!(deserialized
96 .try_as_reflect()
97 .and_then(|reflect_trait_obj| reflect_identifiable.get(reflect_trait_obj))
98 .is_none());
99
100 // So how can we go from a dynamic type to a concrete type?
101 // There are two ways:
102
103 // 1. Using `PartialReflect::apply`.
104 {
105 // If you know the type at compile time, you can construct a new value and apply the dynamic
106 // value to it.
107 let mut value = Player::default();
108 value.apply(deserialized.as_ref());
109 assert_eq!(value.id, 123);
110
111 // If you don't know the type at compile time, you need a dynamic way of constructing
112 // an instance of the type. One such way is to use the `ReflectDefault` type data.
113 let reflect_default = registration
114 .data::<ReflectDefault>()
115 .expect("`ReflectDefault` should be registered");
116
117 let mut value: Box<dyn Reflect> = reflect_default.default();
118 value.apply(deserialized.as_ref());
119
120 let identifiable: &dyn Identifiable = reflect_identifiable.get(value.as_reflect()).unwrap();
121 assert_eq!(identifiable.id(), 123);
122 }
123
124 // 2. Using `FromReflect`
125 {
126 // If you know the type at compile time, you can use the `FromReflect` trait to convert the
127 // dynamic value into the concrete type directly.
128 let value: Player = Player::from_reflect(deserialized.as_ref()).unwrap();
129 assert_eq!(value.id, 123);
130
131 // If you don't know the type at compile time, you can use the `ReflectFromReflect` type data
132 // to perform the conversion dynamically.
133 let reflect_from_reflect = registration
134 .data::<ReflectFromReflect>()
135 .expect("`ReflectFromReflect` should be registered");
136
137 let value: Box<dyn Reflect> = reflect_from_reflect
138 .from_reflect(deserialized.as_ref())
139 .unwrap();
140 let identifiable: &dyn Identifiable = reflect_identifiable.get(value.as_reflect()).unwrap();
141 assert_eq!(identifiable.id(), 123);
142 }
143
144 // Lastly, while dynamic types are commonly generated via reflection methods like
145 // `PartialReflect::to_dynamic` or via the reflection deserializers,
146 // you can also construct them manually.
147 let mut my_dynamic_list = DynamicList::from_iter([1u32, 2u32, 3u32]);
148
149 // This is useful when you just need to apply some subset of changes to a type.
150 let mut my_list: Vec<u32> = Vec::new();
151 my_list.apply(&my_dynamic_list);
152 assert_eq!(my_list, vec![1, 2, 3]);
153
154 // And if you want it to actually proxy a type, you can configure it to do that as well:
155 assert!(!my_dynamic_list
156 .as_partial_reflect()
157 .represents::<Vec<u32>>());
158 my_dynamic_list.set_represented_type(Some(<Vec<u32>>::type_info()));
159 assert!(my_dynamic_list
160 .as_partial_reflect()
161 .represents::<Vec<u32>>());
162
163 // ============================= REFERENCE ============================= //
164 // For reference, here are all the available dynamic types:
165
166 // 1. `DynamicTuple`
167 {
168 let mut dynamic_tuple = DynamicTuple::default();
169 dynamic_tuple.insert(1u32);
170 dynamic_tuple.insert(2u32);
171 dynamic_tuple.insert(3u32);
172
173 let mut my_tuple: (u32, u32, u32) = (0, 0, 0);
174 my_tuple.apply(&dynamic_tuple);
175 assert_eq!(my_tuple, (1, 2, 3));
176 }
177
178 // 2. `DynamicArray`
179 {
180 let dynamic_array = DynamicArray::from_iter([1u32, 2u32, 3u32]);
181
182 let mut my_array = [0u32; 3];
183 my_array.apply(&dynamic_array);
184 assert_eq!(my_array, [1, 2, 3]);
185 }
186
187 // 3. `DynamicList`
188 {
189 let dynamic_list = DynamicList::from_iter([1u32, 2u32, 3u32]);
190
191 let mut my_list: Vec<u32> = Vec::new();
192 my_list.apply(&dynamic_list);
193 assert_eq!(my_list, vec![1, 2, 3]);
194 }
195
196 // 4. `DynamicSet`
197 {
198 let mut dynamic_set = DynamicSet::from_iter(["x", "y", "z"]);
199 assert!(dynamic_set.contains(&"x"));
200
201 dynamic_set.remove(&"y");
202
203 let mut my_set: HashSet<&str> = HashSet::default();
204 my_set.apply(&dynamic_set);
205 assert_eq!(my_set, HashSet::from_iter(["x", "z"]));
206 }
207
208 // 5. `DynamicMap`
209 {
210 let dynamic_map = DynamicMap::from_iter([("x", 1u32), ("y", 2u32), ("z", 3u32)]);
211
212 let mut my_map: HashMap<&str, u32> = HashMap::default();
213 my_map.apply(&dynamic_map);
214 assert_eq!(my_map.get("x"), Some(&1));
215 assert_eq!(my_map.get("y"), Some(&2));
216 assert_eq!(my_map.get("z"), Some(&3));
217 }
218
219 // 6. `DynamicStruct`
220 {
221 #[derive(Reflect, Default, Debug, PartialEq)]
222 struct MyStruct {
223 x: u32,
224 y: u32,
225 z: u32,
226 }
227
228 let mut dynamic_struct = DynamicStruct::default();
229 dynamic_struct.insert("x", 1u32);
230 dynamic_struct.insert("y", 2u32);
231 dynamic_struct.insert("z", 3u32);
232
233 let mut my_struct = MyStruct::default();
234 my_struct.apply(&dynamic_struct);
235 assert_eq!(my_struct, MyStruct { x: 1, y: 2, z: 3 });
236 }
237
238 // 7. `DynamicTupleStruct`
239 {
240 #[derive(Reflect, Default, Debug, PartialEq)]
241 struct MyTupleStruct(u32, u32, u32);
242
243 let mut dynamic_tuple_struct = DynamicTupleStruct::default();
244 dynamic_tuple_struct.insert(1u32);
245 dynamic_tuple_struct.insert(2u32);
246 dynamic_tuple_struct.insert(3u32);
247
248 let mut my_tuple_struct = MyTupleStruct::default();
249 my_tuple_struct.apply(&dynamic_tuple_struct);
250 assert_eq!(my_tuple_struct, MyTupleStruct(1, 2, 3));
251 }
252
253 // 8. `DynamicEnum`
254 {
255 #[derive(Reflect, Default, Debug, PartialEq)]
256 enum MyEnum {
257 #[default]
258 Empty,
259 Xyz(u32, u32, u32),
260 }
261
262 let mut values = DynamicTuple::default();
263 values.insert(1u32);
264 values.insert(2u32);
265 values.insert(3u32);
266
267 let dynamic_variant = DynamicVariant::Tuple(values);
268 let dynamic_enum = DynamicEnum::new("Xyz", dynamic_variant);
269
270 let mut my_enum = MyEnum::default();
271 my_enum.apply(&dynamic_enum);
272 assert_eq!(my_enum, MyEnum::Xyz(1, 2, 3));
273 }
274}Trait Implementations§
Source§impl Clone for ReflectDefault
impl Clone for ReflectDefault
Source§fn clone(&self) -> ReflectDefault
fn clone(&self) -> ReflectDefault
Returns a duplicate of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moreSource§impl<T> FromType<T> for ReflectDefault
impl<T> FromType<T> for ReflectDefault
Source§fn from_type() -> ReflectDefault
fn from_type() -> ReflectDefault
Creates an instance of
Self for type T.Auto Trait Implementations§
impl Freeze for ReflectDefault
impl RefUnwindSafe for ReflectDefault
impl Send for ReflectDefault
impl Sync for ReflectDefault
impl Unpin for ReflectDefault
impl UnwindSafe for ReflectDefault
Blanket Implementations§
Source§impl<T, U> AsBindGroupShaderType<U> for T
impl<T, U> AsBindGroupShaderType<U> for T
Source§fn as_bind_group_shader_type(&self, _images: &RenderAssets<GpuImage>) -> U
fn as_bind_group_shader_type(&self, _images: &RenderAssets<GpuImage>) -> U
Return the
T ShaderType for self. When used in AsBindGroup
derives, it is safe to assume that all images in self exist.Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> Downcast for Twhere
T: Any,
impl<T> Downcast for Twhere
T: Any,
Source§fn into_any(self: Box<T>) -> Box<dyn Any>
fn into_any(self: Box<T>) -> Box<dyn Any>
Converts
Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>, which can then be
downcast into Box<dyn ConcreteType> where ConcreteType implements Trait.Source§fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
Converts
Rc<Trait> (where Trait: Downcast) to Rc<Any>, which can then be further
downcast into Rc<ConcreteType> where ConcreteType implements Trait.Source§fn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
Converts
&Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot
generate &Any’s vtable from &Trait’s.Source§fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
Converts
&mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot
generate &mut Any’s vtable from &mut Trait’s.Source§impl<T> Downcast for Twhere
T: Any,
impl<T> Downcast for Twhere
T: Any,
Source§fn into_any(self: Box<T>) -> Box<dyn Any>
fn into_any(self: Box<T>) -> Box<dyn Any>
Convert
Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can
then be further downcast into Box<ConcreteType> where ConcreteType implements Trait.Source§fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
Convert
Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be
further downcast into Rc<ConcreteType> where ConcreteType implements Trait.Source§fn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
Convert
&Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot
generate &Any’s vtable from &Trait’s.Source§fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
Convert
&mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot
generate &mut Any’s vtable from &mut Trait’s.Source§impl<T> DowncastSend for T
impl<T> DowncastSend for T
Source§impl<T> DowncastSync for T
impl<T> DowncastSync for T
Source§impl<T> FmtForward for T
impl<T> FmtForward for T
Source§fn fmt_binary(self) -> FmtBinary<Self>where
Self: Binary,
fn fmt_binary(self) -> FmtBinary<Self>where
Self: Binary,
Causes
self to use its Binary implementation when Debug-formatted.Source§fn fmt_display(self) -> FmtDisplay<Self>where
Self: Display,
fn fmt_display(self) -> FmtDisplay<Self>where
Self: Display,
Causes
self to use its Display implementation when
Debug-formatted.Source§fn fmt_lower_exp(self) -> FmtLowerExp<Self>where
Self: LowerExp,
fn fmt_lower_exp(self) -> FmtLowerExp<Self>where
Self: LowerExp,
Causes
self to use its LowerExp implementation when
Debug-formatted.Source§fn fmt_lower_hex(self) -> FmtLowerHex<Self>where
Self: LowerHex,
fn fmt_lower_hex(self) -> FmtLowerHex<Self>where
Self: LowerHex,
Causes
self to use its LowerHex implementation when
Debug-formatted.Source§fn fmt_octal(self) -> FmtOctal<Self>where
Self: Octal,
fn fmt_octal(self) -> FmtOctal<Self>where
Self: Octal,
Causes
self to use its Octal implementation when Debug-formatted.Source§fn fmt_pointer(self) -> FmtPointer<Self>where
Self: Pointer,
fn fmt_pointer(self) -> FmtPointer<Self>where
Self: Pointer,
Causes
self to use its Pointer implementation when
Debug-formatted.Source§fn fmt_upper_exp(self) -> FmtUpperExp<Self>where
Self: UpperExp,
fn fmt_upper_exp(self) -> FmtUpperExp<Self>where
Self: UpperExp,
Causes
self to use its UpperExp implementation when
Debug-formatted.Source§fn fmt_upper_hex(self) -> FmtUpperHex<Self>where
Self: UpperHex,
fn fmt_upper_hex(self) -> FmtUpperHex<Self>where
Self: UpperHex,
Causes
self to use its UpperHex implementation when
Debug-formatted.Source§impl<S> FromSample<S> for S
impl<S> FromSample<S> for S
fn from_sample_(s: S) -> S
Source§impl<T, W> HasTypeWitness<W> for Twhere
W: MakeTypeWitness<Arg = T>,
T: ?Sized,
impl<T, W> HasTypeWitness<W> for Twhere
W: MakeTypeWitness<Arg = T>,
T: ?Sized,
Source§impl<T> Identity for Twhere
T: ?Sized,
impl<T> Identity for Twhere
T: ?Sized,
Source§impl<T> InitializeFromFunction<T> for T
impl<T> InitializeFromFunction<T> for T
Source§fn initialize_from_function(f: fn() -> T) -> T
fn initialize_from_function(f: fn() -> T) -> T
Create an instance of this type from an initialization function
Source§impl<T> Instrument for T
impl<T> Instrument for T
Source§fn instrument(self, span: Span) -> Instrumented<Self> ⓘ
fn instrument(self, span: Span) -> Instrumented<Self> ⓘ
Source§fn in_current_span(self) -> Instrumented<Self> ⓘ
fn in_current_span(self) -> Instrumented<Self> ⓘ
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> IntoResult<T> for T
impl<T> IntoResult<T> for T
Source§fn into_result(self) -> Result<T, RunSystemError>
fn into_result(self) -> Result<T, RunSystemError>
Converts this type into the system output type.
Source§impl<F, T> IntoSample<T> for Fwhere
T: FromSample<F>,
impl<F, T> IntoSample<T> for Fwhere
T: FromSample<F>,
fn into_sample(self) -> T
Source§impl<T> Pipe for Twhere
T: ?Sized,
impl<T> Pipe for Twhere
T: ?Sized,
Source§fn pipe<R>(self, func: impl FnOnce(Self) -> R) -> Rwhere
Self: Sized,
fn pipe<R>(self, func: impl FnOnce(Self) -> R) -> Rwhere
Self: Sized,
Pipes by value. This is generally the method you want to use. Read more
Source§fn pipe_ref<'a, R>(&'a self, func: impl FnOnce(&'a Self) -> R) -> Rwhere
R: 'a,
fn pipe_ref<'a, R>(&'a self, func: impl FnOnce(&'a Self) -> R) -> Rwhere
R: 'a,
Borrows
self and passes that borrow into the pipe function. Read moreSource§fn pipe_ref_mut<'a, R>(&'a mut self, func: impl FnOnce(&'a mut Self) -> R) -> Rwhere
R: 'a,
fn pipe_ref_mut<'a, R>(&'a mut self, func: impl FnOnce(&'a mut Self) -> R) -> Rwhere
R: 'a,
Mutably borrows
self and passes that borrow into the pipe function. Read moreSource§fn pipe_borrow<'a, B, R>(&'a self, func: impl FnOnce(&'a B) -> R) -> R
fn pipe_borrow<'a, B, R>(&'a self, func: impl FnOnce(&'a B) -> R) -> R
Source§fn pipe_borrow_mut<'a, B, R>(
&'a mut self,
func: impl FnOnce(&'a mut B) -> R,
) -> R
fn pipe_borrow_mut<'a, B, R>( &'a mut self, func: impl FnOnce(&'a mut B) -> R, ) -> R
Source§fn pipe_as_ref<'a, U, R>(&'a self, func: impl FnOnce(&'a U) -> R) -> R
fn pipe_as_ref<'a, U, R>(&'a self, func: impl FnOnce(&'a U) -> R) -> R
Borrows
self, then passes self.as_ref() into the pipe function.Source§fn pipe_as_mut<'a, U, R>(&'a mut self, func: impl FnOnce(&'a mut U) -> R) -> R
fn pipe_as_mut<'a, U, R>(&'a mut self, func: impl FnOnce(&'a mut U) -> R) -> R
Mutably borrows
self, then passes self.as_mut() into the pipe
function.Source§fn pipe_deref<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R
fn pipe_deref<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R
Borrows
self, then passes self.deref() into the pipe function.Source§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<Ret> SpawnIfAsync<(), Ret> for Ret
impl<Ret> SpawnIfAsync<(), Ret> for Ret
Source§impl<T, O> SuperFrom<T> for Owhere
O: From<T>,
impl<T, O> SuperFrom<T> for Owhere
O: From<T>,
Source§fn super_from(input: T) -> O
fn super_from(input: T) -> O
Convert from a type to another type.
Source§impl<T, O, M> SuperInto<O, M> for Twhere
O: SuperFrom<T, M>,
impl<T, O, M> SuperInto<O, M> for Twhere
O: SuperFrom<T, M>,
Source§fn super_into(self) -> O
fn super_into(self) -> O
Convert from a type to another type.
Source§impl<T> Tap for T
impl<T> Tap for T
Source§fn tap_borrow<B>(self, func: impl FnOnce(&B)) -> Self
fn tap_borrow<B>(self, func: impl FnOnce(&B)) -> Self
Immutable access to the
Borrow<B> of a value. Read moreSource§fn tap_borrow_mut<B>(self, func: impl FnOnce(&mut B)) -> Self
fn tap_borrow_mut<B>(self, func: impl FnOnce(&mut B)) -> Self
Mutable access to the
BorrowMut<B> of a value. Read moreSource§fn tap_ref<R>(self, func: impl FnOnce(&R)) -> Self
fn tap_ref<R>(self, func: impl FnOnce(&R)) -> Self
Immutable access to the
AsRef<R> view of a value. Read moreSource§fn tap_ref_mut<R>(self, func: impl FnOnce(&mut R)) -> Self
fn tap_ref_mut<R>(self, func: impl FnOnce(&mut R)) -> Self
Mutable access to the
AsMut<R> view of a value. Read moreSource§fn tap_deref<T>(self, func: impl FnOnce(&T)) -> Self
fn tap_deref<T>(self, func: impl FnOnce(&T)) -> Self
Immutable access to the
Deref::Target of a value. Read moreSource§fn tap_deref_mut<T>(self, func: impl FnOnce(&mut T)) -> Self
fn tap_deref_mut<T>(self, func: impl FnOnce(&mut T)) -> Self
Mutable access to the
Deref::Target of a value. Read moreSource§fn tap_dbg(self, func: impl FnOnce(&Self)) -> Self
fn tap_dbg(self, func: impl FnOnce(&Self)) -> Self
Calls
.tap() only in debug builds, and is erased in release builds.Source§fn tap_mut_dbg(self, func: impl FnOnce(&mut Self)) -> Self
fn tap_mut_dbg(self, func: impl FnOnce(&mut Self)) -> Self
Calls
.tap_mut() only in debug builds, and is erased in release
builds.Source§fn tap_borrow_dbg<B>(self, func: impl FnOnce(&B)) -> Self
fn tap_borrow_dbg<B>(self, func: impl FnOnce(&B)) -> Self
Calls
.tap_borrow() only in debug builds, and is erased in release
builds.Source§fn tap_borrow_mut_dbg<B>(self, func: impl FnOnce(&mut B)) -> Self
fn tap_borrow_mut_dbg<B>(self, func: impl FnOnce(&mut B)) -> Self
Calls
.tap_borrow_mut() only in debug builds, and is erased in release
builds.Source§fn tap_ref_dbg<R>(self, func: impl FnOnce(&R)) -> Self
fn tap_ref_dbg<R>(self, func: impl FnOnce(&R)) -> Self
Calls
.tap_ref() only in debug builds, and is erased in release
builds.Source§fn tap_ref_mut_dbg<R>(self, func: impl FnOnce(&mut R)) -> Self
fn tap_ref_mut_dbg<R>(self, func: impl FnOnce(&mut R)) -> Self
Calls
.tap_ref_mut() only in debug builds, and is erased in release
builds.Source§fn tap_deref_dbg<T>(self, func: impl FnOnce(&T)) -> Self
fn tap_deref_dbg<T>(self, func: impl FnOnce(&T)) -> Self
Calls
.tap_deref() only in debug builds, and is erased in release
builds.Source§impl<T, U> ToSample<U> for Twhere
U: FromSample<T>,
impl<T, U> ToSample<U> for Twhere
U: FromSample<T>,
fn to_sample_(self) -> U
Source§impl<T> TypeData for T
impl<T> TypeData for T
Source§fn clone_type_data(&self) -> Box<dyn TypeData>
fn clone_type_data(&self) -> Box<dyn TypeData>
Creates a type-erased clone of this value.